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1. Introduction and preliminaries

Let (X,Σ, µ) be a σ-finite measure space and A be a sub-σ-algebra of Σ such
that (X,A, ϕ) is σ-finite. In measure space context, statements concerning function

equality or inequality and set equality or inclusion are to be interpreted as holding up

to sets of measure 0. We denote the linear space of all complex-valued Σ-measurable

functions on X by L0(Σ). For f ∈ L0(Σ) we let σ(f) be the support of f so that

σ(f) = {x ∈ X : f(x) 6= 0}. Let ϕ : X → X be a measurable transformation. Then

µ ◦ ϕ−1(A) := µ(ϕ−1(A)) is a measure on Σ. Let µ ◦ ϕ−1 be absolutely continuous

with respect to µ. Then for each n ∈ N, µ ◦ ϕ−n is also absolutely continuous with

respect to µ. Put hn := d(µ ◦ϕ−n)/dµ the Radon-Nikodym derivative. Here we use

the notation Lp(Σ) for Lp(X,Σ, µ).

For a sub-σ-algebraA ⊆ Σ, the conditional expectation mapping associated withA
is a mapping EA : f 7→ EAf defined for all non-negative Σ-measurable functions f ,

where EAf is the unique A-measurable function satisfying
∫

A

f dµ =

∫

A

EAf dµ ∀A ∈ A.
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Now, let f be a real valued Σ-measurable function on X . Then f is said to be

conditionable if µ({x : EA(f+(x)) = EA(f−(x)) = ∞}) = 0. A complex valued

function f is conditionable if both the real part and the imaginary part of f are

conditionable and the respective expectations are not both infinite on the same set of

positive measure. We show the set of all conditionable functions with respect to sub-

σ-algebra A with D(EA). As an operator on L2(Σ), EA is an orthogonal projection

and EA(L2(Σ)) = L2(A). For each n ∈ N and C ∈ Σ put AC = {A ∩ C : A ∈ A},
Σn = ϕ−n(Σ) and En = EΣn . We use E instead of E1. Let f ∈ D(En). Since

En(f) is a Σn-measurable function, there is a g ∈ L0(Σ) such that En(f) = g ◦ ϕn.

In general, g is not unique. This deficiency can be solved by assuming σ(g) ⊆ σ(hn)

because for each g1, g2 ∈ L0(Σ), g1 ◦ ϕn = g2 ◦ ϕn if and only if g1 = g2 on σ(hn).

As a notation, we then write g = En(f) ◦ ϕ−n. With this setting, by the change of

variables formula we obtain
∫
X f dµ =

∫
X hnEn(f) ◦ϕ−n dµ, in the sense that if one

of the integrals exists, then so does the other and they have the same value. Let

u ∈ D(EA). The weighted composition operator W on L2(Σ) induced by the pair

(u, ϕ) is given by W = Mu ◦ Cϕ, where Mu is the multiplication operator and Cϕ

is the composition operator defined by Muf = uf and Cϕf = f ◦ ϕ, respectively.

It is a classical fact that W is a bounded linear operator on L2(Σ) if and only if

J := hE(|u|2)◦ϕ−1 ∈ L∞(Σ) (see [5]). It follows thatWn = Mun ◦Cϕn is a bounded

operator on L2(Σ) precisely when Jn := hnEn(|un|2) ◦ ϕ−n ∈ L∞(Σ), where n > 0

and un = u(u ◦ ϕ)(u ◦ ϕ2) . . . (u ◦ ϕn−1). Throughout this paper we assume that

W : L2(Σ) → L2(Σ) is a weighted composition operator with non-negative weight

function u. A good reference for information on composition operators on various

function spaces is the monograph [9].

Let H be the infinite dimensional complex Hilbert spaces and let B(H) denote the

C∗-algebra of all bounded linear operators on H. We write N (T ) and R(T ) for the

null-space and the range of an operator T ∈ B(H), respectively. In [7], Morrel and

Muhly introduced the concept of a centered operator. An operator T on a Hilbert

space H is said to be centered if the doubly infinite sequence {T nT ∗n, T ∗mTm :

n,m > 0} consists of mutually commuting operators. For T ∈ B(H) and n ∈ N

let Vn|T n| be the polar decomposition of T n. It is shown in [7], Theorem I, that T

is centered if and only if Vn = V n
1 . The Aluthge transform of T is the operator T̃

given by T̃ := |T |1/2V1|T |1/2. In [2], Embry-Wardrop and Lambert proved that the
composition operator Cϕ ∈ B(L2(Σ)) is centered if and only if h is Σ∞-measurable,

where Σ∞ =
∞⋂

n=1
Σn. Recently, in [4] Giselsson introduced the concept of a half-

centered operator. An operator T ∈ B(H) is called half-centered if the sequence

T ∗T , T ∗2T 2, . . . consists of mutually commuting operators. He proved that if Mu

and Cϕ are bounded on L2(Σ), then the operator W is always half-centered. Singh
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and Komal in [8] showed that the bounded composition operatorCϕ on l
2, the Hilbert

space of all square summable sequences, is centered if and only if hk is constant on

ϕ−p({n}) for every k, p, n ∈ N.

In Section 2, we give some necessary and sufficient conditions for W acting on

L2(Σ) or l2 being centered. In Section 3, to avoid tedious calculations we consider

only the composition case. We show that Cϕ is centered if and only if C
†
ϕ is centered.

In addition, we show that C̃ϕ is centered whenever Cϕ is centered.

2. Embry-Wardrop-Lambert’s theorem on centered weighted

composition operators

Definition 2.1. We say that the weight function u satisfies the support condition

if σ(J) ⊆ σ(u).

Note that if u satisfies the support condition, then σ(u) is invariant under ϕ.

Support condition for u provides an interesting situation for studying weighted com-

position operators with arbitrary weight function u ∈ D(E). From now on, we

assume that u satisfies the support condition.

Put Xσ = σ(u), Σσ = Σσ(u), µσ = µ|Σσ , ϕσ = ϕ|σ(u), hσ = d(µσ ◦ ϕ−1
σ )/dµσ and

Eσ = Eϕ−1
σ (Σσ). It is easy to check that (Xσ,Σσ, µσ) is σ-finite, µσ ◦ ϕ−1

σ ≪ µσ and

L2(Σ) = L2(Σσ)⊕ L2(Σσc), where σc = X \ σ(u).
Recall that for T ∈ B(H) there is a unique factorization T = U |T |, where N (T ) =

N (U) = N (|T |), U is a partial isometry; i.e. UU∗U = U and |T | = (T ∗T )1/2 is

a positive operator. This factorization is called the polar decomposition of T . It

is known that the parts U , |W | of the polar decomposition for W are given by

U = M
u/
√

h◦ϕE(u2)
Cϕ and |W | = M√

J . Note that σ(h ◦ ϕi) = X , σ(E(u2)) =

σ(E(u)) ⊇ σ(u) and σ(J ◦ ϕi) = σ(h ◦ ϕiE(u2) ◦ ϕi−1) ⊇ σ(u ◦ ϕi−1). Also, the

support condition σ(Jn ◦ ϕn) = σ(En(u
2
n)) ⊇ σ(un) = σ(u) holds for each n ∈ N.

The following lemma is checked by a direct calculation.

Lemma 2.2. Let n ∈ N and Un, |Wn| be the polar decomposition of Wn, the

n-th iterate of W . Then

Un = Mun/
√
Jn◦ϕnCϕn , |Wn| = M√

Jn
.

Moreover, for each f ∈ L2(Σ),

Unf =

n∏

i=1

(u ◦ ϕi−1

√
J ◦ ϕi

)
f ◦ ϕn.
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Lemma 2.3. For each n ∈ N the following assertions hold.

(a) Let g ∈ L0(Σ) be a finite valued function such that gf = 0 for all f ∈ L2(Σn).

Then g = 0.

(b) Jn+1 = hnEn(Ju
2
n) ◦ ϕ−n = hE(Jnu

2) ◦ ϕ−1.

P r o o f. (a) Let σ(g) ⊇ B ∈ Σ with 0 < µ(B) < ∞. Put B# = σ(En(χB)).

Then B ⊆ B# ∈ Σn. If µ(X) < ∞, then χB# ∈ L2(Σn). Since gχB# = 0, it follows

that µ(B) 6 µ(σ(g)∩B#) = 0. But this is a contradiction. Thus µ(σ(g)) = 0. Now,

let X =
⋃
Xm with Xm ∈ Σn and µ(Xm) < ∞. Then g = 0 on each Xm and so

g = 0 on X .

(b) It is enough to show that for everyA ∈ Σ,
∫
A
Jn+1 dµ =

∫
A
hnEn(Ju

2
n)◦ϕ−n dµ.

For this let A ∈ Σ. Then

∫

A

Jn+1 dµ =

∫

ϕ−(n+1)(A)

u2
n+1 dµ =

∫

ϕ−(n+1)(A)

E(u2)u2
n ◦ ϕdµ

=

∫

ϕ−n(A)

hE(u2) ◦ ϕ−1u2
n dµ =

∫

ϕ−n(A)

En(Ju
2
n) dµ

=

∫

A

hnEn(Ju
2
n) ◦ ϕ−n dµ,

and

∫

A

Jn+1 dµ =

∫

ϕ−(n+1)(A)

En(u
2
n)u

2 ◦ ϕn dµ =

∫

ϕ−1(A)

Jnu
2 dµ

=

∫

A

hE(Jnu
2) ◦ ϕ−1 dµ.

This completes the proof. �

As a generalization of Embry-Wardrop-Lambert’s theorem [2], Theorem 5, we can

now characterize this pair (u, ϕ), for which W is centered.

Theorem 2.4. The weighted composition operator W is centered if and only if

for each n ∈ N, Jn ◦ ϕn =
n∏

i=1

J ◦ ϕi on σ(u).

P r o o f. Recall from [2] that W is centered if and only if for any positive inte-

ger n, Un = Un. By Lemma 2.2 this means that for every f in L2(Σ),

(
un√

Jn ◦ ϕn
− un∏n

i=1

√
J ◦ ϕi

)
f ◦ ϕn = 0.

Now, the desired conclusion follows from Lemma 2.3 (a). �
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Corollary 2.5. The composition operator Cϕ is centered if and only if for each

n ∈ N, hn ◦ ϕn =
n∏

i=1

h ◦ ϕi.

Put

(hσ)n =
d(µσ ◦ ϕ−n

σ )

dµσ
; (Σσ)n = ϕ−n

σ (Σσ); (Σσ)∞ =

∞⋂

n=1

(Σσ)n;

(Eσ)n = E(Σσ)n ; (Jσ)n = (hσ)n(Eσ)n(u
2
n) ◦ ϕ−n

σ .

Theorem 2.6. Let Jσ be (Σσ)∞-measurable. Then W is centered.

P r o o f. Let n ∈ N. By Theorem 2.4 it is enough to show that

(2.1) (Jσ)n ◦ ϕn
σ =

n∏

i=1

Jσ ◦ ϕi
σ.

Use induction on n and suppose (2.1) holds for some n. Since for each n ∈ N Jσ is

(Σσ)n-measurable, (Eσ)n(Jσu
2
n) = Jσ(Eσ)n(u

2
n). Now, by Lemma 2.3 (b) we obtain

(Jσ)n+1 ◦ ϕn+1
σ = ((hσ)n(Eσ)n(Jσu

2
n) ◦ ϕ−n

σ ) ◦ ϕn+1
σ

= (hσ)n ◦ ϕn+1
σ (Eσ)n(Jσu

2
n) ◦ ϕσ

= ((hσ)n(Eσ)n(u
2
n) ◦ ϕ−n

σ ) ◦ ϕn+1
σ Jσ ◦ ϕσ

= (Jσn ◦ ϕn+1
σ )Jσ ◦ ϕσ =

n+1∏

i=1

Jσ ◦ ϕi
σ.

Consequently, W is centered. �

Theorem 2.7. If W is centered then, Jσ is ((Σσ)∞)σ(hσ)-measurable.

P r o o f. By hypothesis, (2.1) holds for all n ∈ N. Then we have

(Jσ)n+1 ◦ ϕn+1
σ =

n+1∏

i=1

Jσ ◦ ϕi
σ = Jσ ◦ ϕσ

( n∏

i=1

Jσ ◦ ϕi
σ

)
◦ ϕσ

= Jσ ◦ ϕσ(Jσn ◦ ϕn
σ) ◦ ϕσ

= (Jσ ◦ ϕσ)((hσ)n ◦ ϕn+1
σ )((Eσ)n(u

2
n)) ◦ ϕσ.

On the other hand, from Lemma 2.3 (b),

(Jσ)n+1 ◦ ϕn+1
σ = (hσ)n ◦ ϕn+1

σ ((Eσ)n(Ju
2
n)) ◦ ϕσ.
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Since σ((hσ)n ◦ ϕn+1
σ ) = σ(u), we have

(Eσ)n(Jσu
2
n) ◦ ϕσ = Jσ ◦ ϕσ(Eσ)n(u

2
n) ◦ ϕσ,

and so

(Eσ)n(Jσu
2
n) = Jσ(Eσ)n(u

2
n)

on σ(hσ). Hence, for all n ∈ N,

Jσ =
(Eσ)n(Jσu

2
n)

(Eσ)n(u2
n)

on σ(hσ). Thus Jσ is ((Σσ)∞)σ(hσ)-measurable. �

An operator T ∈ B(H) is said to be hyponormal if T ∗T − TT ∗ is positive.

In [6], Lambert proved that W ∗
σ ∈ B(L2(Σσ)) is hyponormal if and only if Σσ(J) ⊆

(ϕ−1(Σ))σ and J ◦ ϕ > J . In the following theorem we give necessary conditions for

cohyponormality of Wσ.

Theorem 2.8. If W ∗
σ is hyponormal, then

(i) ϕ−1
σ (Σσ) = (Σσ)∞,

(ii) Wσ is centered.

P r o o f. Let A ∈ Σσ. If A ⊆ σ(u)\σ(Jσ), then ϕ−1
σ (A) = ∅ because ϕ−1

σ (σ(u)) ⊆
σ(u) and σ(Jσ ◦ ϕσ) = σ(u). Assume that A ⊆ σ(Jσ). Since W

∗
σ is hyponormal,

(Σσ)σ(Jσ) ⊆ ϕ−1
σ (Σσ) and so A ∈ ϕ−1

σ (Σσ). Thus, there is a set B ∈ Σσ with

A = ϕ−1
σ (B). Hence ϕ−1

σ (Σσ) = ϕ−2
σ (Σσ). It follows that ϕ

−1
σ (Σσ) = (Σσ)∞.

Now, let U ⊆ R be an open set. If 0 /∈ U , then J−1
σ (U) ⊆ σ(Jσ). Because

J−1
σ (U) ∈ Σσ and W ∗

σ is hyponormal, J
−1
σ (U) ∈ ϕ−1

σ (Σσ). On the other hand,

since σ(Jσ) ∈ ϕ−1
σ (Σσ), J

−1
σ (U) = (J−1

σ (U)∩σ(Jσ))∪ (σ(Jσ))
c ∈ ϕ−1

σ (Σσ) whenever

0 ∈ U . Hence from (i), Jσ is (Σσ)∞-measurable and thus by Theorem 2.6 Wσ is

centered. �

We now turn to the discrete versions of Embry-Wardrop-Lambert’s theorem forW .

Lemma 2.9. Let m ∈ N. The bounded function f : N → R is Σm-measurable if

and only if f is constant on ϕ−m({n}) for all n ∈ N.

P r o o f. Let f be a Σm-measurable function. Since for each n ∈ N, ϕ−m({n})
is an atom in Σm, f is constant on ϕ

−m({n}). Conversely, let U ⊆ R be an open set
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with U ∩ f(N) = {xj}j∈J . Then f
−1(U) =

⋃
j

Aj , where Aj = f−1({xj}) with j ∈ J .

Since f is constant on ϕ−m({n}), f−1({xj}) =
⋃

y∈Aj

ϕ−m({ϕm(y)}), it follows that

f−1(U) =
⋃

j∈J

⋃

y∈Aj

ϕ−m({ϕm(y)}) ∈ Σm,

and the proof is complete. �

Theorem 2.10. Let W ∈ B(l2). Then the following assertions hold.

(i) If for every m,n ∈ N, Jσ is constant on ϕ−m
σ ({n}), then W is centered.

(ii) If W is centered, then for every n,m ∈ N, Jσ is constant on ϕ
−m
σ ({n})∩σ(hσ).

P r o o f. (i) By Lemma 2.9, if for every m,n ∈ N, Jσ on ϕ−m
σ ({n}) is constant,

then Jσ is Σσm-measurable. It follows that Jσ is (Σσ)∞-measurable, and so by

Theorem 2.6, W is centered.

(ii) By Theorem 2.7, for any m ∈ N, Jσ is (Σσ)m-measurable on σ(hσ). On

the other hand, for any n ∈ N, ϕ−m
σ ({n}) ∩ σ(hσ) is an atom in ((Σσ)m)σ(hσ).

Therefore Jσ is constant on ϕ−m
σ ({n}) ∩ ϕσ(σ(u)). �

3. Centered Moore-Penrose inverse and Aluthge transform of

composition operators

Recall that T ∈ B(H) has a generalized inverse if there exists an operator S ∈
B(H) for which TST = T . It is well known that T ∈ B(H) has a generalized

inverse if and only if R(T ) is closed (see [1]). In general, S is not unique. The

generalized inverse S is called the Moore-Penrose inverse of T if STS = S and the

idempotents TS and ST are self-adjoint. In this case, S is unique and it is denoted

by T †. Note that if U |T | is the polar decomposition of T , then by definition, U∗ is

a generalized inverse of U and hence has closed range. Also, since R(U∗) = N (U)⊥,

U is isometry on R(U∗). It is easy to check that U∗|T ∗|† and |T †|1/2U∗|T †|1/2 are
the polar decomposition and Aluthge transform of T †, respectively.

To avoid tedious calculations we consider only the composition case. Suppose

that Cϕ ∈ B(L2(Σ)) has closed range. Then h is bounded away from zero on σ(h).

Put S = Mχσ(h)/hC
∗
ϕ. Then S ∈ B(L2(Σ)). Since σ(h ◦ ϕ) = X , C∗

ϕCϕ = Mh, and

CϕC
∗
ϕ = Mh◦ϕE, we have CϕSCϕ = Cϕ and SCϕS = S. Also it is easy to check that

CϕS = E = (CϕS)
∗ and SCϕ = Mχσ(h)

= (SCϕ)
∗. Hence, S is the Moore-Penrose

inverse of Cϕ. Also, it is easy to check that

(C†
ϕ)

∗ = CϕMχσ(h)/h
= M1/h◦ϕCϕ,

(C†
ϕ)

∗C†
ϕ = M1/h◦ϕE = (M1/

√
h◦ϕE)2
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and V V ∗V = V , where V (f) =
√
hE(f) ◦ ϕ−1. These observations establish the

following theorem.

Theorem 3.1. Let Cϕ ∈ B(L2(Σ)) have closed range. Then C†
ϕ = Mχσ(h)/h

C∗
ϕ.

Moreover, if V |C†
ϕ| is the polar decomposition of C†

ϕ, then

V (f) =
√
hE(f) ◦ ϕ−1, |C†

ϕ|(f) =
E(f)√
h ◦ ϕ

for each f in L2(Σ).

It follows from Theorem 3.1 that if Vn|(C†
ϕ)

n| is the polar decomposition of (C†
ϕ)

n,

then

Vn(f) =
√
hnEn(f) ◦ ϕ−n, |(C†

ϕ)
n|(f) = En(f)√

hn ◦ ϕn
,

V n(f) =
√
hE(

√
hE(. . .

√
hE(f) ◦ ϕ−1 . . .) ◦ ϕ−1) ◦ ϕ−1

for all n ∈ N and f in L2(Σ). Moreover, straightforward calculations show that

C†
ϕn(f) = En(f) ◦ ϕ−n

and

(C†
ϕ)

n(f) = E(E(. . . E(f) ◦ ϕ−1 . . .) ◦ ϕ−1) ◦ ϕ−1.

But it is a classical fact that (C†
ϕ)

n = C†
ϕn . Thus

(3.1) E(E(. . . E(f) ◦ ϕ−1 . . .) ◦ ϕ−1) ◦ ϕ−1 = En(f) ◦ ϕ−n.

Theorem 3.2. Let Cϕ ∈ B(L2(Σ)) have closed range. Then Cϕ is centered if and

only if C†
ϕ is centered.

P r o o f. Recall that C†
ϕ is centered if and only if V

n = Vn. Equivalently,

(3.2)
√
hE(

√
hE(. . .

√
hE(f) ◦ ϕ−1 . . .) ◦ ϕ−1) ◦ ϕ−1 =

√
hnEn(f) ◦ ϕ−n

for all n ∈ N and f ∈ L2(Σ). Now suppose that Cϕ is centered. Then by [2],

Theorem 5, h is Σ∞-measurable. So for 1 6 i 6 n, h◦ϕi−n is well-defined. It follows

that the left hand side of equality (3.2) equals to

√
h · h ◦ ϕ−1 . . . h ◦ ϕ−(n−1)E(E(. . . E(f) ◦ ϕ−1 . . .) ◦ ϕ−1) ◦ ϕ−1.

Since hn = h · h ◦ ϕ−1 . . . h ◦ ϕ−(n−1) (see [2]), by (3.1), equality (3.2) holds.
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Conversely, suppose that C†
ϕ is centered. It is easy to verify that

V n+1(f) =
√
hnEn(

√
hE(f) ◦ ϕ−1) ◦ ϕ−n

and

Vn+1(f) =
√
hn+1En+1(f) ◦ ϕ−(n+1).

It follows that

√
hn+1En+1(f) ◦ ϕ−(n+1) =

√
hnEn(

√
hE(f) ◦ ϕ−1) ◦ ϕ−n.

Now let A ∈ Σ with µ(A) < ∞. Then µ(ϕ−(n+1)(A)) < ∞ because hn+1 ∈ L∞(Σ)

and so f := χϕ−(n+1)(A) is in L2(Σ). It follows that

√
hn+1χA =

√
hnEn(

√
h) ◦ ϕ−nχA

and so hn+1 = hn(En(
√
h))2 ◦ ϕ−n. But hn+1 = hnEn(h) ◦ ϕ−n. Hence

hn ◦ ϕnEn(h) = hn ◦ ϕn(En(
√
h))2.

Consequently, En(
√
h
2
) = (En(

√
h))2 because σ(hn ◦ ϕn) = X . This implies that h

is Σn-measurable for all n ∈ N. Thus, h is Σ∞-measurable and so Cϕ is centered. �

At this stage, we consider the Aluthge transformation of Cϕ. Recall that the

Aluthge transformation of Cϕ is defined by C̃ϕ := |Cϕ|1/2U |Cϕ|1/2. It is easy to
check that

(C̃ϕ)
n(f) =

( h

h ◦ ϕn

)1/4
f ◦ ϕn, n ∈ N, f ∈ L2(Σ).

Performing some direct computations we get the following lemma.

Lemma 3.3. Let Ṽn|(C̃ϕ)
n| be the polar decomposition of (C̃ϕ)

n for n ∈ N. Then

for each f ∈ L2(Σ) we have

Ṽn(f) =
h1/4

√
hn ◦ ϕnEn(

√
h)

f ◦ ϕn,

|(C̃ϕ)
n|(f) =

√

hnEn

( h

h ◦ ϕn

)1/2
◦ ϕ−nf

and

Ṽ n(f) =
( h1/2

h1/2 ◦ ϕ . . . h1/2 ◦ ϕn−1h1/2 ◦ ϕnE(
√
h) . . . E(

√
h) ◦ ϕn−1

)1/2
f ◦ ϕn.
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Note that C̃ϕ is centered if and only if Ṽ
n = Ṽn for all n ∈ N. Therefore using

Lemma 3.3 we get the following corollary.

Corollary 3.4. C̃ϕ is centered if and only if for every n ∈ N

hn ◦ ϕnEn(
√
h) = h1/2 ◦ ϕ . . . h1/2 ◦ ϕn−1h1/2 ◦ ϕnE(

√
h) . . . E(

√
h) ◦ ϕn−1

on σ(h).

Theorem 3.5. If Cϕ ∈ B(L2(Σ)) is a centered operator, then so is C̃ϕ.

P r o o f. Since Cϕ is centered, h is Σ∞-measurable, and so for all n ∈ N,

En(
√
h) =

√
h. Then from Corollary 2.5 we have

h1/2 ◦ ϕ . . . h1/2 ◦ ϕn−1h1/2 ◦ ϕnE(
√
h) . . . E(

√
h) ◦ ϕn−1 =

√
h

n∏

i=1

h ◦ ϕi

= En(
√
h)hn ◦ ϕn.

Now the desired conclusion follows from Corollary 3.4. �

The following example shows that the converse of Theorem 3.5 is in general not

true.

E x am p l e 3.6. Let X = {ai : i ∈ N} ∪ {bi : i ∈ N} ∪ {ci : i ∈ N}, Σ = 2X ,

m({ai}) = mi, m({bi}) = ni, m({ci}) = ki and let ϕ be a transformation on X such

that

ϕ(ai+1) = ai, ϕ(bi+1) = bi, ϕ(a1) = ϕ(b1) = c1, ϕ(ci) = ci+1.

Let u be a nonzero real-valued function on X that satisfies the support condition

σ(u) ⊆ ϕ−1(σ(u)). Then σ(u) ∩ {ci : i ∈ N} 6= ∅. Direct computation shows that

J(ai) =
u2(ai+1)mi+1

mi
, J(bi) =

u2(bi+1)ni+1

ni
,

J(c1) =
u2(a1)m1 + u2(b1)n1

k1
, J(ci) =

u2(ci−1)ki−1

ki
, i = 2, 3, . . .

Also, it is easy to check that ϕ−n
σ ({ai}) = {ai+n}, ϕ−n

σ ({bi}) = {bi+n} and

ϕ−n
σ ({ci}) =

{
{ci−n}, i− n > 1,

{an+1−i, bn+1−i}, i− n < 1.
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By Theorem 2.10, Wσ is centered whenever for every i ∈ N, Jσ is constant on

{ai, bi} ∩ σ(h). But

Jσ(ai) =
u2(ai+1)mi+1

mi
=

u2(bi+1)ni+1

ni
= Jσ(bi)

for each n ∈ N. Hence Wσ is centered. Note that if σ(u) = σ(h) = X , then W is

centered if and only if J(ai) = J(bi) for all i ∈ N.

E x am p l e 3.7. Let X and Σ be as in the above example. Put u = 4
√
h/(h ◦ ϕ).

Then W = C̃ϕ. We set ni = 1, ki = 1 for i 6= 4, k4 = 2, m1 = m3 = 1, m2 = 2, and

for i > 2, mi+2 = mi. Note that σ(u) = σ(h) = X . Since

h(a1) =
m2

m1
= 2 6= 1 =

n2

n1
= h(b1),

Cϕ is not centered. However, since for every i ∈ {4, 5, 6, . . .},

J(ai) =

√
mi+2

mi
= J(bi)

and for i = 1, 2, 3, J(ai) = J(bi) = 1, by Theorem 2.10, C̃ϕ is centered. Moreover,

since

(J ◦ ϕ)(c3) =
4
√
m({c4})

m({c4})
=

4
√
2

2
< 1 = J(c3),

C̃∗
ϕ is not hyponormal. So the converse of [3], Lemma 2 does not hold in general.

A c k n ow l e d gm e n t . The authors would like to thank the referee for very

helpful comments and valuable suggestions.
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