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1. Introduction

Let A be an algebra. An endomorphism ϕ of A is strong if ϕ is compatible with all

congruences on the algebra A. If every congruence on A is a kernel of some strong

endomorphism of A, then we say that the algebra A has a strong endomorphism

kernel property. We will write that A has SEKP for short.

There are many papers dealing with this property, e.g. for semilattices in [4],

distributive lattices in [6], p-algebras in [1], [3], [6], Ockham algebras in [2] and

Stone algebras in [5]. The definition of SEKP omits the universal congruence in

these papers. We will denote this weaker property by wSEKP and we will handle it

in the last section.

All monounary algebras with SEKP are described in Theorem 4.1 and all mo-

nounary algebras with wSEKP are described in Theorem 5.1.
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2. Preliminaries

The set of all positive integers is denoted by N, the set of all nonnegative integers

is denoted by N0. If ψ is a mapping from a set A into a set B, then Ker(ψ) denotes

the kernel of ψ.

Let A be an algebra. We denote by

⊲ I(A) the class of all algebras which are isomorphic to A,

⊲ S(A) the class of all algebras which are isomorphic to a subalgebra of A,

⊲ H(A) the class of all algebras which are isomorphic to a homomorphic image of A,

⊲ End(A) the set of all endomorphisms of A,

⊲ Con(A) the set of all congruences on A.

Let A, B be algebras of the same type. We will repeatedly use the following fact.

Lemma 2.1. Let ψ be a homomorphism from A onto B. Then the following

statements are equivalent:

(1) there exists ϕ ∈ End(A) such that Ker(ϕ) = Ker(ψ);

(2) B ∈ S(A).

P r o o f. Let (1) hold. Then ϕ(A) is a subalgebra of A and it is isomorphic to B.

Suppose that (2) is fulfilled. Let D be a subalgebra of A such that Ψ is an

isomorphism from the algebra B onto D. Take ϕ(a) = Ψ(ψ(a)) for every a ∈ A. �

We deal with monounary algebras. The fundamental operation is denoted by f .

For monounary terminology see, e.g. [7], [8]. One-element monounary algebra will

be called trivial.

Let A = (A, f) be a monounary algebra. If b ∈ A, then we denote

f−1(b) = {d ∈ A : f(d) = b},

↓b = {d ∈ A : fk(d) = b for some k ∈ N0},

↑b = {fk(b), k ∈ N}.

Let (Ai, i ∈ I) be a partition of the set A. We will write

τ = [Ai]i∈I

if τ is an equivalence relation on A determined by (Ai, i ∈ I). We will write

τ = [A1][A2] for I = {1, 2} and we will use the notation τ = [Ai][Aj ]j∈J if I = J∪{i}.

Let ιA = [A] be the universal congruence on A.

Let ϕ ∈ End(A). We will say that ϕ is strong if it is compatible with all congru-

ences of A, i.e. if θ ∈ Con(A) and (a, b) ∈ θ, then (ϕ(a), ϕ(b)) ∈ θ.

162



E x am p l e 2.1. The identity mapping is a strong endomorphism of A.

If A contains a one-element cycle {a}, then the constant mapping ϕ(x) = a for

each x ∈ A is a strong endomorphism of A.

Lemma 2.2. Let {a}, {b}, {c} be distinct one-element cycles of A. Let

ϕ ∈ End(A) be such that Ker(ϕ) = [↓a ∪ ↓b][A− (↓a ∪ ↓b)]. Then ϕ is not strong.

P r o o f. We have that there exist u, v ∈ A such that ϕ(A) = {u, v}, u 6= v and

f(u) = u, f(v) = v, because u, v are homomorphic images of one-element cycles.

Suppose that ϕ(a) = u. Then ϕ(b) = u and ϕ(c) = v. We will analyse all possible

cases.

Assume that {u, v} = {a, b}. Take

θ = [↓a ∪ ↓c][A− (↓a ∪ ↓c)].

Then θ ∈ Con(A). We have (a, c) ∈ θ. Further, (u, v) /∈ θ according to (a, b) /∈ θ.

Conclude ϕ does not preserve θ.

Assume that u, v /∈ {a, b}. Then A has at least four one-element cycles. Take

θ = [↓a ∪ ↓u][A− (↓a ∪ ↓u)].

We have θ ∈ Con(A). As u /∈ {a, b} and u is a one-element cycle, u ∈ A − (↓a ∪ ↓b)

and therefore ϕ(u) = v. The endomorphism ϕ does not preserve θ, since (a, u) ∈ θ

and (ϕ(a), ϕ(u)) = (u, v) /∈ θ.

Finally, assume that u /∈ {a, b} and v = a. Then a /∈ ↓u ∪ ↓b. Take

θ = [↓u ∪ ↓b][A− (↓u ∪ ↓b)].

We have θ ∈ Con(A), (u, b) ∈ θ and (ϕ(u), ϕ(b)) = (v, u) = (a, u) /∈ θ.

Cases

(1) u /∈ {a, b}, v = b,

(2) u = a, v /∈ {a, b},

(3) u = b, v /∈ {a, b}

can be proved analogously. �

We say that an algebra A has a strong endomorphism kernel property if every

congruence relation on A is a kernel of some strong endomorphism of A, i.e.

Con(A) = {Ker(ϕ) : ϕ is a strong endomorphism of A}.

We will write that A has SEKP for short.
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We say that an algebra A has a weaker strong endomorphism kernel property if

every congruence relation on A different from the universal congruence ιA is a kernel

of some strong endomorphism of A, i.e.

Con(A) = {ιA} ∪ {Ker(ϕ) : ϕ is a strong endomorphism of A}.

We will write that A has wSEKP for short.

Lemma 2.3. Let A be a monounary algebra. Then the following statements are

equivalent:

(1) A has SEKP;

(2) A has wSEKP and A contains a one-element cycle.

P r o o f. It follows from Lemma 2.1 and Example 2.1. �

Lemma 2.4. Let A have wSEKP.

(a) Then A consists of at most two components.

(b) If A is not connected, then every component of A has a one-element cycle.

P r o o f. Let A consist of κ components, κ > 1. Take B a κ-element algebra

with the identity operation. The algebra B consists of κ one-element cycles and it

is a homomorphic image of A. Let ψ be a homomorphism from A onto B. We have

Ker(ψ) 6= ιA. Further, condition (1) from Lemma 2.1 is satisfied by wSEKP of A.

Therefore A contains κ one-element cycles according to Lemma 2.1.

Suppose that κ > 2. Take distinct one-element cycles {a}, {b}, {c} of A. Then

θ = [↓a ∪ ↓b][A − (↓a ∪ ↓b)] is a congruence of A. In view of Lemma 2.2 we have

that θ is not a kernel of any strong endomorphism of A, a contradiction. Therefore

κ = 2. �

3. Algebras Pk,s

Let k ∈ N0 and s ∈ N. Put

Pk,s = {−s+ 1,−s+ 2, . . . , k}.

We define algebras

Pk,s = (Pk,s, f), P∞,s = (P0,s ∪N, f),

such that f(−s+ 1) = 0 and f(i) = i− 1 for every i 6= −s+ 1.
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P0,1 P2,3 P∞,1

Figure 1.

Lemma 3.1. Let A = (A, f) be a connected monounary algebra such that it

contains a cycle C. Then the following conditions are equivalent:

(a) There exist k ∈ N0 ∪ {∞} and s ∈ N such that A is isomorphic to Pk,s.

(b) For every a, b ∈ A there is i ∈ N0 such that f
i(a) = b or f i(b) = a.

Lemma 3.2. Let k ∈ N0 ∪ {∞}, s ∈ N and ϕ ∈ End(Pk,s). Then ϕ is strong.

P r o o f. An endomorphism of a monounary algebra maps a cyclic element to a

cyclic element.

Let a ∈ A and b = ϕ(a). Take i ∈ N0 from Lemma 3.1 (b).

Assume that a is not cyclic and k ∈ N is such that fk(a) is cyclic and fk−1(a) is

not cyclic. Further, let i > 1 and f i(ϕ(a)) = a. If k < i, then ϕ(fk(a)) ∈ ↑ϕ(a) \ ↑a

is not cyclic, a contradiction. If k > i, then ϕ(fk(a)) = fk(ϕ(a)) = fk−1(a) is not

cyclic, a contradiction.

Therefore ϕ(a) = f i(a). Then ϕ(d) = f i(d) for every d ∈ ↑a.

Suppose that θ ∈ Con(A) and (a, a′) ∈ θ, a 6= a′. Then a ∈ ↑a′ or a′ ∈ ↑a. If

a′ ∈ ↑a, then (f i(a), f i(a′)) ∈ θ and thus (ϕ(a), ϕ(a′)) ∈ θ. �

Lemma 3.3. The following properties are equivalent:

(1) s is a prime;

(2) the algebra P0,s has wSEKP.

P r o o f. If s is a prime, then P0,s is simple and every endomorphism of P0,s is

an automorphism.

Suppose that s is not a prime. Take t a nontrivial divisor of s. Then

P0,t ∈ H(P0,s)− S(P0,s).
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Let ψ be a homomorphism from P0,s onto P0,t. Then

Ker(ψ) 6= ιP0,s
.

In view of Lemma 2.1 we have Ker(ϕ) 6= Ker(ψ) for all ϕ ∈ End(P0,s). �

Lemma 3.4. Let k ∈ N0 ∪ {∞}. Then

Con(Pk,1) = {Ker(ϕ) : ϕ ∈ End(Pk,1)}.

P r o o f. We have

H(P∞,1) = I(P∞,1) ∪ I(P0,1) ⊂ S(P∞,1).

Further, for k 6= ∞ we have

H(Pk,1) =
⋃

l6k

I(Pl,1) = S(Pk,1).

Take θ ∈ Con(Pk,1). Then Pk,1/θ ∈ S(Pk,1). Therefore there exists ϕ ∈ End(Pk,1)

such that Ker(ϕ) = θ according to Lemma 2.1. �

Corollary 3.1. Let k ∈ N0 ∪ {∞}. The algebra Pk,1 has SEKP.

P r o o f. It follows from Lemmas 3.4 and 3.2. �

4. SEKP

Lemma 4.1. If A has SEKP, then A consists of at most two components and

every component of A has a one-element cycle.

P r o o f. It follows from Lemmas 2.3 and 2.4. �

Lemma 4.2. Let {a}, {c} be distinct one-element cycles of A and A consists of

two components. Let ϕ ∈ End(A) be such that

(1) (b, d) ∈ Ker(ϕ) for some b ∈ f−1(a)− {a}, d ∈ f−1(c)− {c};

(2) (a, x) /∈ Ker(ϕ) for every x ∈ A− {a, c}.

Then A does not have SEKP.
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P r o o f. We have (a, c) ∈ Ker(ϕ) according to (1). Thus ϕ(A) ⊆ ↓ϕ(a) since A

has two components. Further, ϕ(b) is not cyclic by (2). Let x be a non-cyclic and y

a cyclic elements of A. Condition (2) yields that (x, y) /∈ Ker(ϕ).

Consider θ = [↓a][d]d∈↓c. Then θ ∈ Con(A). Suppose that ψ ∈ End(A) is such

that θ = Ker(ψ). We have that ψ(b) = ψ(a) is a cyclic element of A. Moreover,

the algebra (ψ(↓c), f) is isomorphic to the algebra (↓c, f). Thus, ψ(d) is a non-cyclic

element of A. It means that the endomorphism ψ does not preserve Ker(ϕ) since

(b, d) ∈ Ker(ϕ) and (ψ(b), ψ(d)) /∈ Ker(ϕ). �

Let us remind the notion of degree s(a) of an element a ∈ A, cf. [7], page 12.

A subset B of A is called a chain of A if for every a, b ∈ B there is n ∈ N0 such

that either fn(a) = b or fn(b) = a.

Let us denote by A(∞) the set of all elements a ∈ A such that the set ↓a contains

a cycle or an infinite chain of A.

Further, let A(0) = {a ∈ A : f−1(a) = ∅}. We can now define a set A(λ) ⊆ A

for each ordinal λ by induction. Assume that we have defined A(α) for each ordinal

α < λ. Then we put

A(λ) =
{

a ∈ A−
⋃

α<λ

A(α) : f−1(a) ⊆
⋃

α<λ

A(α)
}

.

The sets A(λ) are pairwise disjoint. For each a ∈ A, either a ∈ A(∞) or there is an

ordinal λ with a ∈ A(λ). In the former case we put s(a) = ∞, in the latter we set

s(a) = λ.

Corollary 4.1. Let A consist of two components. If A has SEKP, then there

exists a ∈ A such that {a} is a component of A.

P r o o f. Let a, c ∈ A be such that f(a) = a, f(c) = c and a 6= c. Further, let

f−1(a)− {a} 6= ∅ and f−1(c)− {c} 6= ∅. Consider

M = {s(b) : b ∈ f−1(a)− {a}},

M ′ = {s(d) : d ∈ f−1(c)− {c}}.

We have thatM ,M ′ are sets of ordinal numbers. Suppose that a supremum ofM

is less or equal than a supremum of M ′. Then there exists a homomorphism ϕ from

(↓a, f) into (↓c, f) such that ϕ(↓a−{a}) ⊆ ↓c−{c} according to Theorem 1.2 of [7].

Put ϕ(x) = x for x ∈ ↓c. Now we have ϕ ∈ End(A). Further, ϕ has properties (1), (2)

from the previous lemma, a contradiction with A having SEKP. Therefore either {a}

is a component of A or {c} is a component of A. �
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Lemma 4.3. Let A = (A, f) and a ∈ A. Suppose that

(1) A is connected,

(2) {a} is a one-element cycle of A,

(3) A− {a} 6= ∅ and the operation f is not injective on A− {a}.

Then A does not have SEKP.

P r o o f. Consider ψ a homomorphism from A into P∞,1 such that ψ(x) 6= 0 for

every x ∈ A− {a}. Let θ be a kernel of ψ. Take b1, b2 ∈ A− {a} such that b1 6= b2,

f(b1) = f(b2) and f |({fk(b1) : k ∈ N} − {a}) is injective. We have (b1, b2) ∈ θ and

(a, fk(b1)) /∈ θ for fk(b1) 6= a.

Suppose that ϕ ∈ End(A) is such that Ker(ϕ) = θ. Let ϕ(b1) 6= b1. Denote

D = {fk(b1) : k ∈ N} ∪ ↓b1. We have a ∈ D and ϕ(b1) /∈ D, since ϕ keeps distances

from the cycle. Take τ = [D][d]d∈A−D. Then τ ∈ Con(A) in view ofD is a subalgebra

of A. We have (a, b1) ∈ τ and (ϕ(a), ϕ(b1)) = (a, ϕ(b1)) /∈ τ . Therefore ϕ does not

preserve τ .

Let ϕ(b1) = b1. Then ϕ(b2) 6= b2, because Ker(ϕ) = θ implies that ϕ(b1) = ϕ(b2).

We can use the previous argument for b2 instead of b1. Therefore A does not have

SEKP. �

Corollary 4.2. Let B = (B, f) be such that it contains a one-element compo-

nent {c} such that the algebra A = (B−{c}, f) satisfies assumptions of Lemma 4.3.

Then B does not have SEKP.

P r o o f. Put A = B −{c}. Consider ψ a homomorphism from B into P∞,1 such

that ψ(x) 6= 0 for every x ∈ A − {a}. We continue analogously as in the proof of

Lemma 4.3. Take ϕ ∈ End(B) and τ = [D][d]d∈B−D. �

Theorem 4.1. Let A = (A, f) be a monounary algebra. Then A has SEKP if

and only if the following three conditions are satisfied:

(i) A contains at most two components,

(ii) A contains at most one nontrivial component,

(iii) if B is a component of A, then B is isomorphic to Pk,1 for some k ∈ N0 ∪ {∞}.

P r o o f. Let A have SEKP. Then A has wSEKP and (i) is satisfied according

to Lemma 2.4 (a). Condition (ii) is valid according to Corollary 4.1. Suppose that

B = (B, f) is a component of A. If |B| = 1, then B ∼= P0,1. Let |B| > 1. Then B

contains one-element cycle {b} by Lemma 2.4, because A has wSEKP. Further,

B does not satisfy assumptions of Lemma 4.3. That means f |B − {b} is injective.

Therefore B ∼= Pk,1 for some k ∈ N ∪ {∞} according to Lemma 3.1.
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Let A satisfy (i)–(iii). If A is connected, then A has SEKP according to Corol-

lary 3.1.

Let A = (A, f) be an algebra which consists of two components. Let one of them

be Pk,1 for some k ∈ N0 ∪ {∞} and let the second one be a one-element cycle {a}.

The equality

{Ker(ϕ) : ϕ ∈ End(A)} = Con(A)

follows from Lemma 2.1 since H(A) ⊆ S(A). Let ϕ ∈ End(A). We will prove that ϕ

is strong. Assume that θ ∈ Con(A) and (x, y) ∈ θ, x 6= y. We have three possibilities

for x, y.

(1) Suppose x = a. Then y ∈ N0. Consider 0 6 i, j 6 y. Let k, l ∈ N be such

that fk(y) = i and f l(y) = j. We obtain (a, i) = (fk(a), fk(y)) ∈ θ. Analogously

(a, j) ∈ θ. Further, (i, j) ∈ θ by the transitivity.

(2) Suppose y = a. Then by symmetry (a, x) ∈ θ and therefore

(i, j) ∈ θ for i, j such that 0 6 i, j 6 x.

(3) Suppose a /∈ {x, y}. Then x, y ∈ N0. If x < y, then

(i, j) ∈ θ for 0 6 i, j 6 y.

We will discuss two cases: ϕ(0) = a and ϕ(0) = 0.

Let ϕ(0) = a. Then ϕ(i) = a for every i ∈ Pk,1. If x = a, then

(ϕ(x), ϕ(y)) = (ϕ(a), a) ∈ {(a, 0), (a, a)} ⊂ θ

according to (1). Analogous arguments can be used for y = a. If a /∈ {x, y}, then

(ϕ(x), ϕ(y)) = (a, a) ∈ θ.

Now assume that ϕ(0) = 0. We have ϕ(x) 6 x for all x ∈ Pk,1. If x = a, then

(ϕ(x), ϕ(y)) = (ϕ(a), ϕ(y)) ∈ θ according to (1), since ϕ(a) ∈ {0, a}. Analogous

arguments can be used for y = a. If a /∈ {x, y}, then (ϕ(x), ϕ(y)) ∈ θ according

to (3). �

SEKP is for some varieties of universal algebras preserved by finite direct products,

cf. [5], Theorem 3.1. By Theorem 4.1 we see that this is not true for any variety of

monounary algebras which contains a nontrivial monounary algebra with SEKP.

169



5. Weaker SEKP

Lemma 5.1. Let A be connected without a cycle. Then A does not have wSEKP.

P r o o f. The algebra P0,2 is a homomorphic image of A and it does not belong

to S(A). The assertion follows from Lemma 2.1. �

Lemma 5.2. Let A be connected with a cycle of the length different from 1. If A

has wSEKP, then the operation of A is injective.

P r o o f. Suppose that the operation of A is not injective. Then there exists

k ∈ N ∪ {∞} such that Pk,1 ∈ H(A). Let ψ be a homomorphism from A onto Pk,1.

We have Ker(ψ) 6= ιA. Further, Pk,1 /∈ S(A) since A contains no one-element cycle.

Therefore for every ϕ ∈ End(A) we obtain Ker(ϕ) 6= Ker(ψ) according to Lemma 2.1.

�

Theorem 5.1. Let A = (A, f) be a monounary algebra. Then the following

conditions are equivalent:

(i) A has wSEKP,

(ii) A has SEKP or A is isomorphic to P0,s for some s ∈ N, s prime.

P r o o f. Suppose that A has wSEKP. If A is not connected, then A has SEKP

according to Lemmas 2.4 and 2.3.

Let A be connected. Then A has a cycle according to Lemma 5.1. If A has a one-

element cycle, then A has SEKP according to Lemma 2.3. If the cycle of A has the

length greater than 1, then the operation of A is injective according to Lemma 5.2.

Therefore A ∼= P0,s for some s ∈ N. Then s is a prime according to Lemma 3.3.

The second implication follows from Lemma 3.3 and the fact that if A has SEKP,

then it has wSEKP. �

Ak n ow l e d g em e n t. The author would like to thank the referee for very care-

ful reading of the text.
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