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ON THE DIOPHANTINE EQUATION
∑k

j=1 jF
p
j = F q

n

Gökhan Soydan, László Németh, and László Szalay

Abstract. Let Fn denote the nth term of the Fibonacci sequence. In this
paper, we investigate the Diophantine equation F p1 + 2F p2 + · · ·+ kF p

k
= F qn

in the positive integers k and n, where p and q are given positive integers. A
complete solution is given if the exponents are included in the set {1, 2}. Based
on the specific cases we could solve, and a computer search with p, q, k ≤ 100
we conjecture that beside the trivial solutions only F8 = F1 + 2F2 + 3F3 + 4F4,
F 2

4 = F1 + 2F2 + 3F3, and F 3
4 = F 3

1 + 2F 3
2 + 3F 3

3 satisfy the title equation.

1. Introduction

As usual, let (Fn)n≥0 and (Ln)n≥0 denote the sequences of Fibonacci and Lucas
numbers, respectively, given by the initial values F0 = 0, F1 = 1, L0 = 2, L1 = 1,
and by the recurrence relations

(1) Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln for all n ≥ 0 ,

respectively. Putting α = (1 +
√

5)/2 and β = (1 −
√

5)/2 = −1/α for the two
roots of the common characteristic equation x2 − x− 1 = 0 of the two sequences,
the formulae

Fn = αn − βn

α− β
and Ln = αn + βn

hold for all n ≥ 0. These numbers are well-known for possessing amazing and
wonderful properties (consult, for instance, [13] and [5] together with their very
rich annotated bibliography for history and additional references). Observing

F1 = F2 ,

F1 + 2F2 = F4 ,

F1 + 2F2 + 3F3 = F 2
4 ,

F1 + 2F2 + 3F3 + 4F4 = F8 ,

the question arises naturally: is there any rule for F1 + 2F2 + 3F3 + · · ·+ kFk? We
study this question more generally, according to the title equation.
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Diophantine equations among the terms of Fibonacci numbers have a very
extensive literature. Here we quote a few results that partially motivated us.

By the defining equality (1) of the Fibonacci numbers and the identity F 2
n +

F 2
n+1 = F2n+1 (Lemma 1.8), we see that F sn + F sn+1 (n ≥ 0) is a Fibonacci number

for s ∈ {1, 2}. For larger s Marques and Togbé [8] proved in 2010 that if F sn +F sn+1
is a Fibonacci number for all sufficiently large n then s = 1 or 2. Next year Luca
and Oyono [6] completed the solution of the question by showing that apart from
F s1 + F s2 = F3 there is no solution s ≥ 3 to the equation F sn + F sn+1 = Fm.

Let l, s1, . . . , sl, a1, . . . , al be integers with l ≥ 1 and sj ≥ 1. Suppose that there
exists 1 ≤ t ≤ l such that at 6= 0 and st > sj , for all j 6= t. Chaves, Marques and
Togbé [4], showed that if either st is even or at is not a positive power of 5, then
the sum

a1F
s1
n+1 + a2F

s2
n+2 + · · ·+ alF

sl
n+l

does not belong to the Fibonacci sequence for all sufficiently large n.
A balancing problem having similar flavor has been considered by Behera et

al. [3]. They studied the equation

(2) F p1 + F p2 + · · ·+ F pk−1 = F qk+1 + · · ·+ F qk+r ,

and solved it for the cases (p, q) = (2, 1), (3, 1), (3, 2), and for 2 ≤ p ≤ q by showing
the non-existence of any solution. Further the authors conjectured that only the
quadruple (k, r, p, q) = (4, 3, 8, 2) of positive integers satisfies (2). The conjecture
was completely justified by Alvarado et al. [1]. Note that if (p, q) = (1, 1) we obtain
the problem of sequence balancing numbers handled by Panda [9].

Recalling the formulae F1 +F2 + · · ·+Fk = Fk+2− 1 and F 2
1 +F 2

2 + · · ·+F 2
k =

FkFk+1, it is obvious that the problems

F1 + F2 + · · ·+ Fk = F qn , and F 2
1 + F 2

2 + · · ·+ F 2
k = F qn

are rather simple. Indeed, the equations above lead to the lightsome ones

Fk+2 − 1 = F qn , FkFk+1 = F qn .

However the equation F p1 +F p2 + · · ·+F pk = F qn might be taken an interest if p ≥ 3.
The last motivation of our examination was the Diophantine equation

(3) x2 + 2(x+ 1)2 + · · ·+ n(x+ n− 1)2 = y2

to determine the values of n for which it has finitely or infinitely many positive
integer solutions (x, y) (see Wulczyn [14], and for details, see also [2]). For variations
of the equation (3), we refer the reader to [12].

In this paper, we investigate the Diophantine equation

(4) F p1 + 2F p2 + · · ·+ kF pk = F qn

in the positive integers k and n, where p and q are fixed positive integers. We
consider

F p1 = 1 = F q1 = F q2 , and F p1 + 2F p2 = 3 = F4

as trivial solutions to (4). We have the following conjecture based upon the specific
cases we could solve, and a computer search with p, q, k ≤ 100.
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Conjecture 1. The non-trivial solutions to (4) are only
F 2

4 = 9 = F1 + 2F2 + 3F3 ,

F8 = 21 = F1 + 2F2 + 3F3 + 4F4 ,

F 3
4 = 27 = F 3

1 + 2F 3
2 + 3F 3

3 .

This work handles the particular cases p, q ∈ {1, 2} (hence the first two solutions
above will be obtained), the precise results proved are described as follow.

Theorem 1. If
(5) F1 + 2F2 + · · ·+ kFk = Fn ,

then (k, n) = (1, 1), (1, 2), (2, 4), (4, 8), among them only the last one is non-trivial
solution.

Theorem 2. The Diophantine equation
(6) F 2

1 + 2F 2
2 + · · ·+ kF 2

k = F 2
n

possesses only the trivial solutions (k, n) = (1, 1), (1, 2).

Theorem 3. If
(7) F1 + 2F2 + · · ·+ kFk = F 2

n ,

then (k, n) = (1, 1), (1, 2), (3, 4), among them only the last one is non-trivial
solution.

Theorem 4. The Diophantine equation
(8) F 2

1 + 2F 2
2 + · · ·+ kF 2

k = Fn

possesses only the trivial solutions (k, n) = (1, 1), (1, 2), (2, 4).

2. Lemmata

In this section, we present the lemmata that are needed in the proofs of the
theorems. The first lemma is a collection of a few well-known results, we state them
without proof, and in the proof of the theorems sometimes we do not refer to them.

Lemma 1. Let k and n be arbitrary integers.
(i)
∑k
j=1 jFj = kFk+2 − Fk+3 + 2.

(ii)
∑k
j=1 jF

2
j = Fk(kFk+1 − Fk) + τ , where τ = 0 if k is even, and τ = 1

otherwise.
(iii) For k ≥ 0 we have F−k = (−1)k+1Fk, further L−k = (−1)kLk (extension

of the sequences for negative subscripts).
(iv) gcd(Fk, Fn) = Fgcd(k,n).
(v) gcd(Fk, Ln) = 1 or 2 or Lgcd(k,n).
(vi) Fk | Fn if and only if k | n.
(vii) Fk+1Fn − FkFn+1 = (−1)n+1Fk−n (d’ Ocagne’s identity).
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(viii) Fk+n = FkFn+1 + Fk−1Fn.
(ix) F2k = FkLk.
(x) F 2

k+n − F 2
k−n = F2kL2n.

Lemma 2.

Fk − 1 =


F(k+2)/2L(k−2)/2, if k ≡ 0 (mod 4) ,
F(k−1)/2L(k+1)/2, if k ≡ 1 (mod 4) ,
F(k−2)/2L(k+2)/2, if k ≡ 2 (mod 4) ,
F(k+1)/2L(k−1)/2, if k ≡ 3 (mod 4) ,

Fk + 1 =


F(k−2)/2L(k+2)/2, if k ≡ 0 (mod 4) ,
F(k+1)/2L(k−1)/2, if k ≡ 1 (mod 4) ,
F(k+2)/2L(k−2)/2, if k ≡ 2 (mod 4) ,
F(k−1)/2L(k+1)/2, if k ≡ 3 (mod 4) .

Proof. See, for instance, [7] and [11]. �

Lemma 3.

F 2
k − 1 =

{
Fk−1Fk+1, if k ≡ 1 (mod 2) ,
Fk−2Fk+2, if k ≡ 0 (mod 2) ,

F 2
k + 1 =

{
Fk−1Fk+1, if k ≡ 0 (mod 2) ,
Fk−2Fk+2, if k ≡ 1 (mod 2) .

Proof. See Lemma 3 in [10]. �

Lemma 4. If j ≥ 4 is even, then

2Fϕ(Fj)−1
j−1 ≡ Fj−3 (mod Fj) .

Proof. Since gcd(Fj−1, Fj) = 1, and Fϕ(Fj)
j−1 ≡ 1 (mod Fj), it is sufficient to show

that
2 ≡ Fj−3Fj−1 (mod Fj) .

But
Fj−1Fj−3 = (Fj+1 − Fj)Fj−3 ≡ Fj+1Fj−3 = FjFj−2 + (−1)j−2F3 ≡ 2 (mod Fj)
follows from the definition of the Fibonacci numbers, d’ Ocagne’s identity (Lemma
1 (1)), and the parity of j. �

Lemma 5. If j ≥ 3 is odd, then

F
ϕ(Fj)−1
j−1 ≡ Fj−2 (mod Fj) .

Proof. Similarly to the proof of the previous lemma, the statement is equivalent
to

1 ≡ Fj−2Fj−1 (mod Fj) .
And it is easy to see that
Fj−2Fj−1 = (Fj −Fj−1)Fj−1 ≡ −F 2

j−1 = −(Fj−2Fj + (−1)jF−1) ≡ 1 (mod Fj) .
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Lemma 6. Let k0 be a positive integer, and for i ∈ {0, 1} put

δi = logα

(
1 + (−1)i−1 (|β|/α)k0

√
5

)
,

where logα is the logarithm in base α = (1 +
√

5)/2. Then for all integers k ≥ k0,
the two inequalities

αk+δ0 ≤ Fk ≤ αk+δ1

hold.

Proof. This is a part of Lemma 5 in [7]. �

In order to make the application of Lemma 6 more convenient, we shall suppose
that k0 ≥ 1. Then we have

Corollary 5. If k ≥ 1, then

αk−2 ≤ Fk ≤ αk−1 ,

and equality holds if and only if k = 2, and k = 1, respectively.

Now, we are ready to justify the theorems.

3. Proofs

Proof of Theorem 1.
Verifying the cases k = 1, . . . , 5 by hand we found the solutions listed in Theorem

1. Put κ = k + 2, and suppose that κ ≥ 8. Consequently, Fκ−3 ≥ 5 and Fκ ≥ 21. If
equation (5) holds, then n > κ, and then by Lemma 1 (1) we conclude

(9) k = Fn + Fκ+1 − 2
Fκ

= Fn + Fκ−1 − 2
Fκ

+ 1 ∈ N.

In the sequel, we study the sequence (Fu)∞u=0 modulo Fκ if κ is fixed. Note that
we indicate a suitable value congruent to Fu modulo Fκ, not always the smallest
non-negative remainders. The period can be deduced from the range

κ︷ ︸︸ ︷
0, 1, 1, 2, . . . , Fκ−2, Fκ−1,

κ︷ ︸︸ ︷
0, Fκ−1, Fκ−1, 2Fκ−1, . . . , Fκ−2Fκ−1, Fκ−1Fκ−1 ,

of length 2κ if κ is even, since then, by Lemma 1 (1) we have F 2
κ−1 ≡ 1 (mod Fκ)

and then

Fκ−2Fκ−1 = (Fκ − Fκ−1)Fκ−1 ≡ −1 (mod Fκ).
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In case of odd κ we have F 2
κ−1 ≡ −1 (mod Fκ), therefore the length of the

period is 4κ coming from
κ︷ ︸︸ ︷

0, 1, 1, 2, . . . , Fκ−2, Fκ−1,

κ︷ ︸︸ ︷
0, Fκ−1, Fκ−1, 2Fκ−1, . . . , Fκ−2Fκ−1, Fκ−1Fκ−1,

κ︷ ︸︸ ︷
0,−1,−1,−2, . . . ,−Fκ−2,−Fκ−1,

κ︷ ︸︸ ︷
0,−Fκ−1,−Fκ−1,−2Fκ−1, . . . ,−Fκ−2Fκ−1,−Fκ−1Fκ−1 .

Based on the length of the period we distinguish two cases.

Case I: κ is even. Either Fn ≡ Fj or Fn ≡ FjFκ−1 modulo Fκ holds for some
j = 0, 1, . . . , κ− 1. Hence

(10) Fn + Fκ−1 − 2 ≡
{
Fj + Fκ−1 − 2, or
FjFκ−1 + Fκ−1 − 2

(mod Fκ) .

We will show that none of them is congruent to 0 modulo Fκ. In the first branch
Fj + Fκ−1 − 2 ≥ Fκ−1 − 2 ≥ 11 ,

further if j 6= κ− 1, then
Fj + Fκ−1 − 2 ≤ Fκ−2 + Fκ−1 − 2 ≤ Fκ − 2 .

Thus Fj + Fκ−1 − 2 6≡ 0 (mod Fκ), hence (9) does not hold. Assume now, that
j = κ− 1. Then, together with the definition of the Fibonacci sequence we have

Fj + Fκ−1 − 2 = Fκ−1 + (Fκ − Fκ−2)− 2 ≡ Fκ−3 − 2 (mod Fκ) .
But 3 ≤ Fκ−3 − 2 < Fκ contradicts to (9).

Choosing the second branch of (10), suppose that Fκ−1(Fj + 1)− 2 is congruent
to 0 modulo Fκ. Then

F
ϕ(Fκ)
κ−1 (Fj + 1) ≡ 2Fϕ(Fκ)−1

κ−1 (mod Fκ) .
Subsequently, by Lemma 4, it leads to

Fj + 1 ≡ Fκ−3 (mod Fκ) .
Since j = 0, 1, . . . , κ− 1, (κ ≥ 8) it follows that Fj = Fκ−3 − 1, a contradiction.

Case II: κ is odd. Now κ ≥ 9, and either Fn ≡ ±Fj (mod Fκ) or Fn ≡
±FjFκ−1 (mod Fκ) holds for some j = 0, 1, . . . , κ− 1. Hence

Fn + Fκ−1 − 2 ≡
{
±Fj + Fκ−1 − 2
±FjFκ−1 + Fκ−1 − 2

(mod Fκ).

First, obviously, if j 6= κ− 1, then

6 ≤ Fκ−3 − 2 ≤ ±Fj + Fκ−1 − 2 ≤ Fκ − 2 ,
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so dividing ±Fj + Fκ−1 − 2 by Fκ, the result is not an integer. If j = κ− 1, then
the treatment of the “+” case coincides the treatment when κ was even. The “−”
case leads to Fn + Fκ−1 − 2 ≡ −2 (mod Fκ), a contradiction.

Assume now that Fn + Fκ−1 − 2 ≡ ±FjFκ−1 + Fκ−1 − 2 (mod Fκ). Thus
Fκ−1(1± Fj) ≡ 2 (mod Fκ). Multiplying both sides by Fϕ(Fκ)−1

κ−1 , by Lemma 5 it
gives

1± Fj ≡ 2Fκ−2 (mod Fκ).
First let Fj = 2Fκ−2− 1, which leads immediately a contradiction via 0 < 2Fκ−2−
1 = Fκ−1 + Fκ−4 − 1 < Fκ. If Fκ − Fj + 1 = 2Fκ−2, then Fj = Fκ−3 + 1 follows, a
contradiction again. The proof of Theorem 1 is complete.

Proof of Theorem 2.
For the range k = 1, 2, . . . , 20 we checked (6) by hand. From now we assume

k ≥ 21. Based on Lemma 1 (1), we must distinguish two cases.

Case I: k is even. Consider the equation

Fk(kFk+1 − Fk) = F 2
n .

Trivially, n > k. Put ν = gcd(k, n).
If ν = k, then Fk | Fn by Lemma 1 (1). Consequently,(

Fn
Fk

)2
= kFk+1 − Fk

Fk
= kFk+1

Fk
− 1

is integer. But Fk and Fk+1 are coprime, hence Fk | k, and it results k ≤ 5, a
contradiction.

Examine the possibility ν = k/2. Put κ = k/2. Now FκLκ(kFk+1−FκLκ) = F 2
n

leads to
Lκ(kFk+1 − FκLκ)

Fκ
=
(
Fn
Fκ

)2
.

This is an equality of integers, which together with gcd(Fκ, Fk+1) and gcd(Fκ, Lκ) =
1, 2 (see Lemma 1 (1)) shows that 2k/Fκ is integer. Thus k ≤ 14, a contradiction.

Finally, we have 3 ≤ ν ≤ k/3. Since gcd(Fk/Fν , Fn/Fν) = 1, then from the
equation

Fk
Fν

(kFk+1 − Fk) = Fn
Fν
Fn

we conclude
Fk
Fν
| Fn and Fn

Fν
| kFk+1 − Fk .

Subsequently, Fk | FνFn and Fn | Fν(kFk+1−Fk). Thus Fk | F 2
ν (kFk+1−Fk), and

then Fk | kF 2
ν holds since gcd(Fk, Fk+1) = 1. Applying Corollary 5, we obtain

αk−2 ≤ Fk ≤ kF 2
ν ≤ kα2ν−2 ≤ kα2/3k−2 ,

which implies k < 19.
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Case II: k is odd. In this part, we follow the idea of the previous case. Recall
that k ≥ 21. Now

Fk(kFk+1 − Fk) = Fn−εFn+ε ,

where ε = 1 or 2 depending on the parity of n (see Lemma 3). Clearly, gcd(n −
ε, n+ ε) = 2 or 4. Thus gcd(Fn−ε, Fn+ε) = 1 or 3, respectively.

Put ν1 = gcd(k, n − ε) and ν2 = gcd(k, n + ε). Obviously, gcd(ν1, ν2) divides
gcd(n−ε, n+ε). Hence ν = gcd(ν1, ν2) = 1 or 2 or 4, and then Fν = gcd(Fν1 , Fν2) =
1 or 3. Thus Fν1Fν2 | FνFk. The terms of both the left and right sides of

Fk
Fν1

(kFk+1 − Fk) = Fn−ε
Fν1

Fn+ε and Fk
Fν2

(kFk+1 − Fk) = Fn−ε
Fn+ε

Fν2

are integers, and
Fn−ε
Fν1

| kFk+1 − Fk ,
Fk
Fν2

| Fn−ε .

Combining them, Fk | Fν1Fν2(kFk+1 − Fk) follows, and then Fk | kFν1Fν2 . The
remaining part of the proof consists of three cases.

Suppose first that ν1 = k, i.e. Fk | Fn−ε. Observe, that n− ε and n+ ε are even,
and k | (n − ε)/2. Thus k + 1 ≤ (n − ε)/2 + 1, which does not exceed (n+ ε)/2.
Then

kFk+1 >
Fn−ε
Fν1

Fn+ε =
F(n−ε)/2

Fν1

L(n−ε)/2Fn+ε ≥ L(n−ε)/2L(n+ε)/2F(n+ε)/2

≥ L(n−ε)/2L(n+ε)/2Fk+1 .

Simplifying by Fk+1 we conclude
n− ε

2 ≥ k > L(n−ε)/2L(n+ε)/2 ,

and we arrived at a contradiction since 21 ≤ k < n. Note that the same machinery
works when ν2 = k, i.e. Fk | Fn+ε.

If none of the two conditions above holds, we can assume ν1 ≤ k/3 and ν2 ≤ k/3.
Indeed, k is odd, so the largest non-trivial divisor of k is at most k/3. The application
of Corollary 5 gives

αk−2 ≤ Fk ≤ kFν1Fν2 ≤ kαν1−1αν2−1 ≤ kα2k/3−2 ,

and then k < 19.
The proof of the theorem is complete.

Proof of Theorem 3.
The proof partially follows the proof of Theorem 1. The small cases of (7) can

be verified by hand. Suppose κ = k + 2 ≥ 9. Similarly to (9), we have

(11) k = F 2
n + Fκ+1 − 2

Fκ
= F 2

n + Fκ−1 − 2
Fκ

+ 1 ∈ N .

Now we study the sequence (F 2
u)∞u=0 modulo Fκ, and we again indicate the most

suitable values by modulo Fκ, not always the smallest non-negative remainders.
Lemma 1 (1), together with Lemma 1(1) implies

F 2
2κ±j ≡ F 2

j (mod Fκ) ,
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where j = 0, 1, . . . , κ− 1. Hence the period having length 2κ can be given by
κ︷ ︸︸ ︷

0, 1, 1, 22, . . . , F 2
κ−2, F

2
κ−1,

κ︷ ︸︸ ︷
0, F 2

κ−1, F
2
κ−2, . . . , 22, 1, 1 .

Let us distinguish two cases according to the parity of κ.
Case I: κ is even. Put κ = 2`. Again by Lemma 1 (1), together with κ− i =

2`− i = `+ (`− i) and i = `− (`− i) admits F 2
κ−i ≡ F 2

i (mod Fκ). It reduces the
possibilities to j = 0, 1, . . . , `.

If j ≤ `− 1 = (κ− 2)/2, then
0 < F 2

j + Fκ−1 − 2 ≤ F 2
(κ−2)/2 + Fκ−1 − 2 ≤ Fκ−2 + Fκ−1 − 2 < Fκ

hold since F 2
(κ−2)/2 ≤ F(κ−2)/2L(κ−2)/2 = Fκ−2.

Suppose now that j = ` = κ/2. Repeating the previous idea we find F 2
κ/2 +

Fκ−1 − 2 ≤ Fκ + Fκ−1 − 2 < 2Fκ. Consequently, F 2
κ/2 + Fκ−1 − 2 = Fκ might be

fulfilled. Thus F 2
κ/2 − 2 = Fκ−2. Recalling κ = 2` we equivalently obtain

F 2
` − 1 = F2`−2 + 1 .

Both sides have decomposition described in Lemma 3 and Lemma 2, respectively,
providing

F`−1F`+1 = F`−2L` or F`−2F`+2 = F`L`−2

if ` is odd or even, respectively. Firstly, F`−2 | F`−1F`+1, and then F`−2 | F`+1
holds only for small ` values. Secondly, F` | F`−2F`+2 contradicts to ` ≥ 5.

Case II: κ is odd. Now we have F 2
κ−i ≡ −F 2

i (mod Fκ). Indeed, Lemma 1 (1)
admits

F 2
κ−i = (FκF−i+1 + Fκ−1F−i)2 ≡ F 2

κ−1F
2
i (mod Fκ) ,

and then Lemma 3 justifies the statement. It makes possible to split the proof into
a few parts.

If j = (κ− 1)/2, then F 2
(κ−1)/2 + Fκ−1 − 2 < 2Fκ−1 − 2 < 2Fκ. Thus F 2

(κ−1)/2 +
Fκ−1 − 2 = Fκ is the only one chance to fulfill (11). Then we apply Lemma 6 with
k0 = 4 ≤ (κ− 1)/2 for Fκ−2 < F 2

(κ−1)/2 to reach a contradiction.
If j ≤ (κ− 3)/2, then

0 < F 2
j + Fκ−1 − 2 ≤ F 2

(κ−3)/2 + Fκ−1 − 2 ≤ Fκ−3 + Fκ−1 − 2 < Fκ

holds since F 2
(κ−3)/2 ≤ F(κ−3)/2L(κ−3)/2 = Fκ−3.

Finally, if (κ+ 1)/2 ≤ j ≤ κ− 1, then
F 2
j + Fκ−1 − 2 ≡ −F 2

κ−j + Fκ−1 − 2 (mod Fκ) ,
where 1 ≤ J = κ−j ≤ (κ−1)/2. Thus we need to check the equation F 2

J +2 = Fκ−1,
since −2 ≤ −F 2

J + Fκ−1 − 2 < Fκ−1 < Fκ. When J ≤ (κ − 3)/2 holds then
F 2
J + 2 < Fκ−3 + 2 < Fκ−1. Lastly, J = (κ−1)/2 leads to F 2

(κ−1)/2 + 2 = Fκ−1, and
then to 2 = FJ (LJ − FJ). Obviously, it gives J ≤ 3. Thus κ ≤ 7, a contradiction.
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Proof of Theorem 4.
The statement for (8) is obviously true if k ≤ 12. So we may assume k ≥ 13. Let

τ ∈ {0, 1}. The formula of the summation, together with Corollary 5 implies
αn−2 ≤ Fn = Fk(kFk+1 − Fk) + τ < kFkFk+1 ≤ αlogα k+k−1+(k+1)−1,

and then
n− k < k + 1 + logα k <

3
2k .

Similarly,
αn−1 ≥ Fn = Fk(kFk+1 − Fk) + τ > Fk(kFk+1 − Fk+1) = (k − 1)FkFk+1

> αlogα(k−1)+k−2+(k+1)−2 ,

subsequently
n− k > k − 2 + logα(k − 1) > k + 3 ,

that is n− k ≥ k + 4. Putting together the two estimates it gives

(12) 2k + 4 ≤ n < 5
2k.

Case I: k is even. Clearly, k + 2 < n − k − 1 ≤ 3k/2 − 2 holds. By Lemma
1 (1), we conclude

Fn = Fk+1Fn−k + FkFn−k−1 = kFkFk+1 − F 2
k ,

and equivalently
Fk(Fk + Fn−k−1) = Fk+1(kFk − Fn−k) .

Thus gcd(Fk, Fk+1) = 1 admits Fk+1 | Fk + Fn−k−1. The periodicity of (Fu)∞u=0
modulo Fk+1 guarantees, together with the bounds on n− k − 1 that

Fk + Fn−k−1 ≡ Fk + FjFk = Fk(Fj + 1) (mod Fk+1)
holds for some j = 1, 2, . . . , k/2− 3. Consequently, Fk+1 | Fj + 1, a contradiction.

Case II: k is odd. Again k + 2 < n− k − 1 ≤ 3k/2− 2 holds. Lemma 2 and
Lemma 1 (1) imply
Fk(kFk+1−Fk) = F(n−ε)/2L(n+ε)/2 = (Fk+1F(n−ε)/2−k+FkF(n−ε)/2−k−1)L(n+ε)/2 ,

where ε ∈ {±1,±2} according to the modular property of n. It leads to
Fk+1(kFk − F(n−ε)/2−kL(n+ε)/2) = Fk(Fk + F(n−ε)/2−k−1L(n+ε)/2) .

Thus Fk | F(n−ε)/2−kL(n+ε)/2.
By (12) it is obvious that

k < k + 1 ≤ n− 2
2 ≤ n+ ε

2 ≤ n+ 2
2 ≤ 5

4k + 1 < 2k ,

which exclude gcd(k, (n+ ε)/2) = k. Thus gcd(k, (n+ ε)/2) ≤ k/3 since k is odd,
subsequently gcd(Fk, L(n+ε)/2) ≤ Lk/3. On the other hand

n− ε
2 − k ≤ n+ 2

2 − k ≤ 1
4k + 1 ,

which implies gcd(Fk, F(n−ε)/2−k) ≤ Fk/4+1.



ON THE DIOPHANTINE EQUATION
∑k

j=1
jFp
j

= F qn 187

Thus, Fk | F(n−ε)/2−kL(n+ε)/2, together with the previous arguments entails
Fk ≤ Fk/4+1Lk/3, but it leads to a contradiction since Lk/3 = Fk/3−1 + Fk/3+1 <
2Fk/3+1, and the application of Corollary 5 on Fk ≤ 2Fk/4+1Fk/3+1 returns with
k < 9.
Acknowledgement. This paper was partially written when the third author
visited the Department of Mathematics of Uludağ University in Bursa. He would
like to thank the Turkish colleagues of the department for the kind hospitality.
The first author was supported by the Research Fund of Uludağ University under
project numbers: 2015/23, 2016/9.

References
[1] Alvarado, S.D., Dujella, A., Luca, F., On a conjecture regarding balancing with powers of

Fibonacci numbers, Integers 12 (2012), 1127–1158.
[2] Andreescu, T., Andrica, D., Quadratic Diophantine Equations, 2015, 124–126.
[3] Behera, A., Liptai, K., Panda, G.K., L.Szalay, Balancing with Fibonacci powers, Fibonacci

Quart. 49 (2011), 28–33.
[4] Chaves, A.P., Marques, D., Togbé, A., On the sum of powers of terms of a linear recurrence

sequence, Bull. Braz. Math. Soc. New Series 43 (2012), 397–406.
[5] Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2011.
[6] Luca, F., Oyono, R., An exponential Diophantine equation related to powers of two consecutive

Fibonacci numbers, Proc. Japan Acad. Ser. A 87 (2011), 45–50.
[7] Luca, F., Szalay, L., Fibonacci diophantine triples, Glas. Mat. Ser. III 43 (63) (2008),

253–264.
[8] Marques, D., Togbé, A., On the sum of powers of two consecutive Fibonacci numbers, Proc.

Japan Acad. Ser. A 86 (2010), 174–176.
[9] Panda, G.K., Sequence balancing and cobalancing numbers, Fibonacci Quart. 45 (2007),

265–271.
[10] Pongsriiam, P., Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation,

Commun. Korean Math. Soc. 91 (3) (2017), 511–522.
[11] Pongsriiam, P., Fibonacci and Lucas numbers which are one away from their products,

Fibonacci Quart. 55 (2017), 29–40.
[12] Soydan, G., On the Diophantine equation (x+ 1)k + (x+ 2)k + · · ·+ (lx)k = yn, Publ. Math.

Debrecen 91 (3–4) (2017), 369–382.
[13] Vorob’ev, N.N., Fibonacci Numbers, Blaisdell Pub. Co. New York, 1961.
[14] Wulczyn, G., Problem E2158, Amer. Math. Monthly 76 (1969), 1144–1146.



188 G. SOYDAN, L. NÉMETH AND L. SZALAY

Bursa Uludağ University,
Görükle Campus, 16059 Bursa, Turkey
E-mail: gsoydan@uludag.edu.tr

University of Sopron, Institute of Mathematics,
H-9400, Sopron, Bajcsy-Zs. utca 4, Hungary
E-mail: nemeth.laszlo@uni-sopron.hu

University of Sopron, Institute of Mathematics,
H-9400, Sopron, Bajcsy-Zs. utca 4, Hungary,

J. Selye University,
Institute of Mathematics and Informatics,
94501, Komárno, Bratislavska cesta 3322, Slovakia
E-mail: szalay.laszlo@uni-sopron.hu

mailto:gsoydan@uludag.edu.tr
mailto:nemeth.laszlo@uni-sopron.hu
mailto:szalay.laszlo@uni-sopron.hu

		webmaster@dml.cz
	2018-12-07T07:36:07+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




