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Abstract. We prove the existence of solutions to nonlinear parabolic problems of the
following type:



















∂b(u)

∂t
+A(u) = f + div(Θ(x; t;u)) in Q,

u(x; t) = 0 on ∂Ω× [0;T ],

b(u)(t = 0) = b(u0) on Ω,

where b : R → R is a strictly increasing function of class C1, the term

A(u) = −div (a(x, t, u,∇u))

is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions
of Musielak type, Θ: Ω × [0; T ] × R → R is a Carathéodory, noncoercive function which
satisfies the following condition: sup

|s|6k
|Θ(·, ·, s)| ∈ Eψ(Q) for all k > 0, where ψ is the

Musielak complementary function of Θ, and the second term f belongs to L1(Q).
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1. Introduction

Our aim is to prove the existence of solutions u to the following nonlinear parabolic

problem:

(1.1)















∂b(u)

∂t
+A(u) = f + div(Θ(x, t, u)) in Q,

u(x, t) = 0 on ∂Ω× [0, T ],

b(u)(t = 0) = b(u0) on Ω,

where Ω is an open subset RN which satisfies the segment property andQ = Ω×[0, T ],

T > 0, b : R → R is a strictly increasing function of class C1 with b(0) = 0 and

lim
t→±∞

b′(t) = l < ∞, A(u) = −div(a(x, t, u,∇u)) is a Leray-Lions operator de-

fined on D(A) ⊂ W 1,x
0 Lϕ(Q) into its dual satisfying some conditions in Section 3,

ϕ is Musielak function and W 1,x
0 Lϕ(Q) is the Musielak space defined in Section 2,

f ∈ L1(Q) and Θ: Ω× [0, T ]× R → R is a noncoercive function which satisfies the

following condition: sup
|s|6k

|Θ(·, ·, s)| ∈ Eψ(Q) for all k > 0, where ψ is the comple-

mentary function of ϕ and Eψ(Q) is a Musielak space defined in Section 2.

Under our assumptions, the above problem does not admit, in general, a weak

solution since the field a(x, t, u,∇u) does not belong to (L1
loc(Q))N in general. To

overcome this difficulty we use in this paper the framework of entropy solutions.

This notion was introduced by Benilan et al. [9] for the study of nonlinear elliptic

problems.

In the classical Sobolev spaces, Aberqi et al. in [1] have proved the existence of

renormalized solutions (1.1) in the case where b(u) ≡ b(x, u) and Θ satisfies a growth

condition (for the definition of this notion of solution see [1], [20]), Redwane in [19]

has proved the existence of renormalized solutions of (1.1), where Θ(x, t, u) = Θ(u).

In the Sobolev variable exponent setting, Azroul, Benboubker, Redwane, and Ya-

zough [6] have proved the existence result of renormalized solutions to a class of

nonlinear parabolic equations without sign condition involving nonstandard growth

in the particular case, where div(Θ(x, t, u)) = H(x, t, u,∇u) and in the elliptic case

(see [8]).

In Orlicz framework, Redwane in [20] has proved the existence of renormalized

solutions of (1.1), where b(u) ≡ b(x, u) and Θ(x, t, u) = Θ(u), Hadj Nassar, Moussa

and Rhoudaf in [16] have studied the existence of renormalized solutions of (1.1) in

W 1,xLM (Q), where b(u) ≡ b(x, u) and Θ satisfies |Θ(x, u)| 6 P
−1
P (|u|), where P

and P are two complementary Orlicz functions with P ≪ M . See also [7], [13],

and [14] for related topics. For some existing results for strongly nonlinear elliptic

and parablic equations in Musielak-Orlicz-Sobolev spaces see [2], [3], [4], [5], [21].
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This research is divided into several parts. In Section 2 we recall some important

definitions and results of Musielak-Orlicz-Sobolev spaces. We introduce the assump-

tions that allow us to demonstrate our result in Section 3. Section 4 contains some

important and useful lemmas to prove our main result. In Section 5 we prove the

main result of this paper (Theorem 5.1) concerning the existence of solutions.

2. Preliminary

2.1. Musielak-Orlicz-Sobolev spaces. Let Ω be an open set in R
N and let ϕ

be a real-valued function defined in Ω×R+, and satisfiying the following conditions:

(a) ϕ(x, ·) is an N-function
(

convex, increasing, continous, ϕ(x, 0) = 0, ϕ(x, t) > 0

for all t > 0, lim
t→0

sup
x∈Ω

ϕ(x, t)t−1 = 0, lim
t→∞

inf
x∈Ω

ϕ(x, t)t−1 = ∞
)

.

(b) ϕ(·, t) is a measurable function.

A function ϕ, which satisfies conditions (a) and (b) is called Musielak-Orlicz function.

For a Musielak-Orlicz function ϕ we put ϕx(t) = ϕ(x, t) and we associate its

nonnegative reciprocal function ϕ−1
x with respect to t, that is

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

The Musielak-Orlicz function ϕ is said to satisfy the ∆2-condition if for some k > 0

and a nonnegative function h integrable in Ω we have

(2.1) ϕ(x, 2t) 6 kϕ(x, t) + h(x) ∀x ∈ Ω and t > 0.

If (2.1) holds only for t > t0 > 0, then ϕ is said to satisfy ∆2 near infinity.

Let ϕ and γ be two Musielak-Orlicz functions. We say that ϕ dominates γ, and we

write γ ≺ ϕ, near infinity (or globally) if there exist two positive constants c and t0
such that for almost all x ∈ Ω

γ(x, t) 6 ϕ(x, ct) ∀ t > t0, (or ∀ t > 0, i.e. t0 = 0).

We say that γ grows essentially less rapidly than ϕ at 0 (or near infinity), and we

write γ ≺≺ ϕ, if for every positive constant c we have

lim
t→0

(

sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)

= 0 (or lim
t→∞

(

sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)

= 0).

R em a r k 2.1 ([11]). If γ ≺≺ ϕ near infinity, then for all ε > 0 there exists

k(ε) > 0 such that for almost all x ∈ Ω we have

(2.2) γ(x, t) 6 k(ε)ϕ(x, εt) ∀ t > 0.
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We define the functional

̺ϕ,Ω(u) =

∫

Ω

ϕ(x, |u(x)|) dx,

where u : Ω → R is a Lebesgue measurable function. In the following, the measura-

bility of function u : Ω → R means the Lebesgue measurability. The set

Kϕ(Ω) = {u : Ω → R measurable : ̺ϕ,Ω(u) <∞},

is called the generalized Orlicz class.

The Musielak-Orlicz space (or the generalized Orlicz space) Lϕ(Ω) is the vector

space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing the

set Kϕ(Ω). Equivalently,

Lϕ(Ω) =
{

u : Ω → R measurable : ̺ϕ,Ω

( |u(x)|

λ

)

<∞ for some λ > 0
}

.

We define the Musielak-Orlicz function complementary to ϕ in the sense of Young

with respect to the variable s as

ψ(x, s) = sup
t>0

{st− ϕ(x, t)}.

We define in the space Lϕ(Ω) the two norms:

‖u‖ϕ,Ω = inf

{

λ > 0:

∫

Ω

ϕ
(

x,
|u(x)|

λ

)

dx 6 1

}

,

which is called the Luxemburg norm and the so called Orlicz norm defined as

|||u|||ϕ,Ω = sup
‖v‖ψ,Ω61

∫

Ω

|u(x)v(x)| dx,

where ψ is the Musielak-Orlicz function complementary to ϕ and ‖v‖ψ,Ω is the Lux-

emburg norm of v associate to the Musielak function ψ. These two norms are equiv-

alent (see [18]).

The closure in Lϕ(Ω) of the bounded measurable functions with compact support

in Ω is denoted by Eϕ(Ω). It is a separable space.

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to

u ∈ Lϕ(Ω) if there exists a constant λ > 0 such that

lim
n→∞

̺ϕ,Ω

(un − u

λ

)

= 0.
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For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω): ∀ |α| 6 m, Dαu ∈ Lϕ(Ω)}

and

WmEϕ(Ω) = {u ∈ Eϕ(Ω): ∀ |α| 6 m, Dαu ∈ Eϕ(Ω)},

where α = (α1, . . . , αn) with nonnegative integers αi, |α| = |α1|+ . . .+ |αn| and D
αu

denotes the distributional derivatives. The space WmLϕ(Ω) is called the Musielak-

Orlicz-Sobolev space. Let

̺ϕ,Ω(u) =
∑

|α|6m

̺ϕ,Ω(D
αu) and ‖u‖mϕ,Ω = inf

{

λ > 0: ̺ϕ,Ω

(u

λ

)

6 1
}

.

For u ∈WmLϕ(Ω), these functionals are a convex modular and a norm onW
mLϕ(Ω),

respectively, and the pair (WmLϕ(Ω), ‖·‖
m
ϕ,Ω) is a Banach space if ϕ satisfies the

following condition (see [18]):

(2.3) ∃ c > 0: inf
x∈Ω

ϕ(x, 1) > c.

The space WmLϕ(Ω) will always be identified to a subspace of the product
∏

|α|6m

Lϕ(Ω) = ΠLϕ; this subspace is σ(ΠLϕ,ΠEψ) closed.

We denote by D(Ω) the space of infinitely smooth functions with compact support

in Ω and by D(Ω) the restriction of D(RN ) on Ω.

Let Wm
0 Lϕ(Ω) be the σ(ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω).

Let WmEϕ(Ω) be the space of functions u such that u and its distributional

derivatives up to order m lie in Eϕ(Ω), andW
m
0 Eϕ(Ω) is the (norm) closure of D(Ω)

in WmLϕ(Ω).

The following spaces of distributions will also be used:

W−mLψ(Ω) =

{

f ∈ D′(Ω): f =
∑

|α|6m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)

}

and

W−mEψ(Ω) =

{

f ∈ D′(Ω): f =
∑

|α|6m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)

}

.

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to

u ∈WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω

(un − u

k

)

= 0.
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For ϕ and its complementary function ψ the following inequality is called the Young

inequality (see [18]):

(2.4) ts 6 ϕ(x, t) + ψ(x, s) ∀ t, s > 0, x ∈ Ω.

This inequality implies that

(2.5) |||u|||ϕ,Ω 6 ̺ϕ,Ω(u) + 1.

In Lϕ(Ω) we have the relation between the norm and the modular:

‖u‖ϕ,Ω 6 ̺ϕ,Ω(u) if ‖u‖ϕ,Ω > 1,(2.6)

‖u‖ϕ,Ω > ̺ϕ,Ω(u) if ‖u‖ϕ,Ω 6 1.(2.7)

For two complementary Musielak-Orlicz functions ϕ and ψ let u ∈ Lϕ(Ω) and

v ∈ Lψ(Ω). Then we have the Hölder inequality (see [18])

(2.8)

∣

∣

∣

∣

∫

Ω

u(x)v(x) dx

∣

∣

∣

∣

6 ‖u‖ϕ,Ω|||v|||ψ,Ω.

Definition 2.1. We say that Ω ⊂ R
N satisfies the segment propriety if there

exists a locally finite open covering {O} of ∂Ω and corresponding vectors {yi} such

that for x ∈ Ω ∩ O and 0 < t < 1 one has x+ tyi ∈ Ω.

2.2. Inhomogeneous Musielak-Orlicz-Sobolev spaces. Let Ω be a bounded

open subset of RN , T > 0 and set Q = Ω× [0, T ]. Let m > 1 be an integer and let ϕ

and ψ be two complementary Musielak-Orlicz functions. For each α ∈ N
N denote

by Dα
x the distributional derivative on Q of order α with respect to x ∈ R

N . The

inhomogeneous Musielak-Orlicz-Sobolev spaces are defined as

Wm,xLϕ(Q) = {u ∈ Lϕ(Q) : Dα
xu ∈ Lϕ(Q) ∀|α| 6 m}

and

Wm,xEϕ(Q) = {u ∈ Eϕ(Q) : Dα
xu ∈ Eϕ(Q) ∀|α| 6 m}.

This second space is a subspace of the first one, and both are Banach spaces with

the norm
‖u‖m,x =

∑

|α|6m

‖Dα
xu‖ϕ,Q.

These spaces constitute a complementary system since Ω satisfies the segment prop-

erty. These spaces are considered subspaces of the product space ΠLϕ(Q), which
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have as many copies as there is α order derivatives, |α| 6 m. We shall also consider

the weak topologies σ(ΠLϕ,ΠEψ) and σ(ΠLϕ,ΠLψ).

If u ∈ Wm,xLϕ(Q), then the function t → u(t) = u(·, t) is defined on [0, T ] with

values in WmLϕ(Ω). If u ∈ Wm,xEϕ(Q), then u ∈ WmEϕ(Ω) and it is strongly

measurable.

Furthermore, the imbeddingWm,xEϕ(Q) ⊂ L1(0, T,WmEϕ(Ω)) holds. The space

Wm,xLϕ(Q) is not in general separable, for u ∈ Wm,xLϕ(Q) we cannot conclude

that the function u(t) is measurable on [0, T ].

However, the scalar function t→ ‖u(t)‖ϕ,Ω ∈ L1(0, T ). The space Wm,x
0 Eϕ(Q) is

defined as the norm closure of D(Q) in Wm,xEϕ(Q). We can easily show as in [15]

that when Ω has the segment property, then each element u of the closure of D(Q)

with respect to the weak* topology σ(ΠLϕ,ΠEψ) is a limit in W
m,xLϕ(Q) of some

subsequence (vj) ∈ D(Q) for the modular convergence, i.e. there exists λ > 0 such

that for all |α| 6 m

∫

Q

ϕ
(

x,
Dα
xvj −Dα

xu

λ

)

dxdt→ 0, as j → ∞,

which gives that (vj) converges to u in W
m,xLϕ(Q) for the weak topology σ(ΠLϕ,

ΠLψ).

Consequently,

D(Q)
σ(ΠLϕ,ΠEψ)

= D(Q)
σ(ΠLϕ,ΠLψ)

.

The space of functions satisfying such a property will be denoted by Wm,x
0 Lϕ(Q).

Furthermore, Wm,x
0 Eϕ(Q) = Wm,x

0 Lϕ(Q) ∩ ΠEϕ(Q). Thus, both sides of the last

inequality are equivalent norms on Wm,x
0 Lϕ(Q). We then have the following com-

plementary system:
(

Wm,x
0 Lϕ(Q) F

Wm,x
0 Eϕ(Q) F0,

)

,

where F states for the dual space of Wm,x
0 Eϕ(Q) and can be defined, except for

an isomorphism, as the quotient of ΠLψ by the polar set W
m,x
0 Eϕ(Q)⊥. It will be

denoted by F =W−m,x
0 Lψ(Q), where

W−m,xLψ(Q) =

{

f =
∑

|α|6m

Dα
x fα with fα ∈ Lψ(Q)

}

.

This space will be equipped with the usual quotient norm

‖u‖F = inf
∑

|α|6m

‖fα‖ψ,Q,
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where the infimum is taken over all possible decompositions

f =
∑

|α|6m

Dα
xfα, fα ∈ Lψ(Q).

The space F0 is then given by

F0 =

{

f : f =
∑

|α|6m

Dα
xfα, fα ∈ Eψ(Q)

}

,

and is denoted by W−m,xEψ(Q), see [4].

3. Essential assumptions

Let ϕ be a Musielak-Orlicz function which decreases with respect to one of the co-

ordinates of x. We denote by ψ the Musielak complementary function of ϕ. Through-

out this paper, we assume that the following assumptions hold true:

(3.1) b : R 7→ R is strictly increasing C1 function

with b(0) = 0 and lim
t→±∞

b′(t) = l <∞,

a : Ω × ]0, T [ × R × R
N 7→ R

N is a Carathéodory function satisfying the following

conditions:

for almost every (x, t) ∈ Ω× ]0, T [ and all s ∈ R, ξ 6= ξ∗ ∈ R
N ,

|a(x, t, s, ξ)| 6 β(h1(x, t) + ψ−1
x γ(x, ν|s|) + ψ−1

x ϕ(x, ν|ξ|)),(3.2)

(a(x, t, s, ξ) − a(x, t, s, ξ∗))(ξ − ξ∗) > 0,(3.3)

a(x, t, s, ξ)ξ > αϕ
(

x,
|ξ|

λ

)

(3.4)

with h1(x, t) ∈ EΨ(Q), h1 > 0, α, β and ν > 0.

Furthermore, let Θ: Ω× [0, T ]× R 7→ R
N be a Carathéodory function such that

(3.5) sup
|s|6k

|Θ(·, ·, s)| ∈ Eψ(Q) ∀ k > 0

and

(3.6) f ∈ L1(Q).
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We consider the following parabolic initial-boundary problem:

(P )















∂b(u)

∂t
+A(u) = f + div(Θ(x, t, u)) in Q,

u(x, t) = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x) on Ω,

where u0 is a given function in L
1(Ω).

4. Some technical lemmas

Lemma 4.1 ([10]). Let Ω be a bounded Lipschitz domain in RN and let ϕ and ψ

be two complementary Musielak-Orlicz functions which satisfy the following condi-

tions:

(i) There exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) > c.

(ii) There exists a constant A > 0 such that for all x, y ∈ Ω with |x − y| 6 1
2 we

have

(4.1)
ϕ(x, t)

ϕ(y, t)
6 tA/(− log |x−y|) ∀ t > 1.

(iii)

(4.2) If D ⊂ Ω is a bounded measurable set, then

∫

D

ϕ(x, 1) dx <∞.

(iv) There exists a constant C > 0 such that ψ(x, 1) 6 C a.e. in Ω. Under these

assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular topology,

D(Ω) is dense in W 1
0Lϕ(Ω) for the modular convergence, and D(Ω) is dense in

W 1Lϕ(Ω) for the modular convergence.

Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u of

W 1
0Lϕ(Ω) is well defined. It will be denoted by 〈S, u〉.

Truncation operator. For k > 0 we define the truncation at height k as

(4.3) Tk(s) =







s if |s| 6 k,

k
s

|s|
if |s| > k.

In the following lemma we give the modular Poincaré’s inequality in Musielak-

Orlicz spaces.
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Lemma 4.2 ([12]). Under the assumptions of Lemma 4.1 and by assuming that

ϕ(x, t) decreases with respect to one of the coordinates of x, there exists a constant

c > 0, which depends only on Ω, such that

(4.4)

∫

Ω

ϕ(x, |u(x)|) dx 6

∫

Ω

ϕ(x, c|∇u(x)|) dx ∀u ∈W 1
0Lϕ(Ω).

R em a r k 4.1. The following function is an example of a function that satisfies

the previous lemma:

ϕ(x, t) = t‖x‖
2

2
−x2

1 log(1 + t).

Lemma 4.3 (The Nemytskii operator [5]). Let Ω be an open subset of RN with

finite measure and let ϕ and ψ be two Musielak-Orlicz functions. Let f : Ω×R
p → R

q

be a Carathéodory function such that for a.e. x ∈ Ω and all s ∈ R
p

(4.5) |f(x, s)| 6 c(x) + k1ψ
−1
x ϕ(x, k2|s|),

where k1 and k2 are real positive constants and c(·) ∈ Eψ(Ω). Then the Nemytskii

operator Nf defined by Nf(u)(x) = f(x, u(x)) is continuous from

(

P
(

Eϕ(Ω),
1

k2

))p

=
∏

{

u ∈ Lϕ(Ω): d(u,Eϕ(Ω)) <
1

k2

}

into (Lψ(Ω))
q for the modular convergence.

Furthermore, if c(·) ∈ Eγ(Ω) and γ ≺≺ ψ, then Nf is strongly continuous from

(P(Eϕ(Ω), k
−1
2 ))p to (Eγ(Ω))

q.

Lemma 4.4 ([12]). Assume that (3.2)–(3.4) are satisfied and let (zn)n be a se-

quence in W 1,x
0 Lϕ(Ω) such that

(i) zn ⇀ z in W 1,x
0 Lϕ(Ω) for σ(ΠLϕ,ΠEψ),

(ii) (a(·, t, zn,∇zn))n is bounded in (Lψ(Ω))
N ,

(iii)
∫

Ω
(a(x, t, zn,∇zn) − a(x, t, zn,∇zχs))(∇zn − ∇zχs) dx → 0 as n, s → ∞,

where χs is the characteristic function of Ωs = {x ∈ Ω: |∇z| 6 s}.

Then we have

zn → z for the modular convergence in W 1
0Lϕ(Ω).
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5. Main result

We shall prove the following existence theorem.

Theorem 5.1. Let ϕ and ψ be two complementary Musielak-Orlicz functions

satisfying the assumptions of Lemma 4.2, we assume that (3.1)–(3.6) hold true.

Then problem (P ) has at least one entropy solution u ∈ D(A) ∩ W 1,x
0 Lϕ(Q) ∩

C([0, T ], L2(Ω)) in the following sense:

(5.1)







































Tk(u) ∈ W 1,x
0 Lϕ(Q) ∀ k > 0,

〈∂b(u)

∂t
, Tk(u− v)

〉

+

∫

Q

a(x, t, u,∇u)∇Tk(u− v) dxdt

6

∫

Q

fTk(u− v) dxdt+

∫

Q

Θ(x, t, u)∇Tk(u − v) dxdt

∀ v ∈ W 1,x
0 Lϕ(Q) ∩ L∞(Q) such that

∂v

∂t
∈W−1,xLψ(Q) + L1(Q).

P r o o f. We will use the Galerkin method due to Landes and Mustonen (see [17]),

we choose a sequence {w1, w2, . . .} in D(Ω) such that
∞
⋃

p=0
Vp with Vp = {w1, . . . , wp}

is dense in Hm
0 (Ω) with m large enough so that Hm

0 (Ω) is continuously embedded

in C1(Ω). For every v ∈ Hm
0 (Ω) there exists a sequence (vj) ⊂

⋃

p=0
Vp such that

vn → v in Hm
0 (Ω) and in C1(Ω).

We denote further Vp = C([0, T ], Vp). It is easy to see that the closure of
∞
⋃

p=0
Vp

with respect to the norm

‖v‖C1,0(Q) = sup
|α|61

{|Dα
xv(x, t)| : (x, t) ∈ Q}

contains D(Q). This implies that for any f ∈ W−1,xEψ(Q) there exists a sequence

(fn) ⊂
∞
⋃

p=0
Vp such that fn → f strongly in W−1,xEψ(Q).

Indeed, let ε > 0 be given. Write f =
∑

|α|61

Dα
x fα. There exists gα ∈ D(Q) such

that ‖fα− gα‖ψ,Q 6 ε(2N +2)−1. Moreover, by setting g =
∑

|α|61

Dα
xgα, we see that

g ∈ D(Q), and so there exists v ∈
∞
⋃

p=0
Vp such that ‖g − v‖∞,Q 6 ε(2meas(Q))−1.

We deduce that

‖f − v‖W−1,xLψ(Q) 6
∑

|α|61

‖fα − gα‖ψ,Q + ‖g − v‖ψ,Q 6 ε.
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We devide the proof into six steps.

Step 1: Approximate problem. For n ∈ N we define the following approximations:

bn(r) = Tn(b(r)) +
r

n
∀ r ∈ R,(5.2)

Θn(x, t, s) = Θ(x, t, Tn(s)),(5.3)

(fn)n is a sequence in W
−1Eψ(Q) ∩ L1(Q) such that

(5.4) fn → f in L1(Q) with ‖fn‖L1(Q) 6 ‖f‖L1(Q),

and u0n is a sequence of D(Ω) such that

(5.5) bn(u0n) → b(u0) strongly in L
1(Ω) with ‖bn(u0n)‖L1(Ω) 6 ‖b(u0)‖L1(Ω).

We consider the approximate problem

(Pn)











un ∈ Vn,
∂b(un)

∂t
∈ L1(0, T, Vn), un(·, 0) = u0n a.e. in Ω,

∂bn(un)

∂t
− div(a(x, t, un,∇un)) = fn + div(Θn(x, t, un)).

There exists at least one solution un of (Pn) (this solution un can be obtained from

Galerkin solution (see [17]).

Step 2: A priori estimates. In this section we denote by ci, i = 1, 2, . . . constants

not depending on k and n.

For τ ∈ [0, T ], taking Tk(un)χ[0,τ ] as test function in (Pn), we obtain

∫

Qτ

∂bn(un)

∂t
Tk(un) dxdt+

∫

Qτ

a(x, t, un,∇un)∇Tk(un) dxdt

=

∫

Qτ

fnTk(un) dxdt+

∫

Qτ

Θn(x, t, un)∇Tk(un) dxdt.

We set

Skn(σ) =

∫ σ

0

b′n(r)Tk(r) dr.

Then we have

∫

Qτ

∂bn(un)

∂t
Tk(un) dxdt =

∫

Qτ

∂un
∂t

b′n(un)Tk(un) dxdt

=

∫

Ω

Skn(un(τ)) dx−

∫

Ω

Skn(u0n) dx.
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Hence, we have

∫

Ω

Skn(un(τ)) dx−

∫

Ω

Skn(u0n) dx+

∫

Q

a(x, t, un,∇un)∇Tk(un) dxdt

=

∫

Q

fnTk(un) dxdt+

∫

Qτ

Θn(x, t, un)∇Tk(un) dxdt.

Due to the definition of Skn, (3.1) and (5.5), one has

(5.6)

∫

Ω

Skn(u0n) dx 6 k

∫

Ω

|bn(u0n)| dx 6 ‖b(u0)‖L1(Ω).

Using (5.4) and (5.6), we obtain

∫

Ω

Skn(un(τ)) dx+

∫

Q

a(x, t, un,∇un)∇Tk(un) dxdt(5.7)

6 k(‖f‖L1(Q) + ‖b(u0)‖L1(Ω)) +

∫

Qτ

Θn(x, t, un)∇Tk(un) dxdt

6 c1k +

∫

Qτ

Θn(x, t, un)∇Tk(un) dxdt.

For n > k, condition (3.5) and Young’s inequality gives

(5.8)

∫

Qτ

Θn(x, t, un)∇Tk(un) dxdt 6

∫

Qτ

|Θn(x, t, un)||∇Tk(un)| dxdt

=

∫

Qτ

|Θn(x, t, Tk(un))||∇Tk(un)| dxdt

=

∫

Qτ

|Θ(x, t, Tk(un))||∇Tk(un)| dxdt

6

∫

Qτ

sup
|s|6k

|Θ(x, t, s)||∇Tk(un)| dxdt

6

∫

Qτ

ψ
(

x, cα sup
|s|6k

|Θ(x, t, s)|
)

dxdt

+
α

2(α+ 1)

∫

Qτ

ϕ(x, |∇Tk(un)|) dxdt

6 r(k) +
α

2(α+ 1)

∫

Qτ

ϕ(x, |∇Tk(un)|) dxdt

where r(k) =
∫

Qτ
ψ
(

x, cα sup
|s|6k

|Θ(x, t, s)|
)

dxdt. Then by condition (3.4) and by

combining (5.7) and (5.8), we get

(5.9)

∫

Ω

Skn(un(τ)) dx+
2α+ 1

2(α+ 1)

∫

Q

a(x, t, un,∇un)∇Tk(un) dxdt 6 c1k + r(k).
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Now, using the fact that Skn(un(τ)) > 0, one has

(5.10)

∫

Q

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dxdt 6
2(α+ 1)

2α+ 1
(c1k + r(k)).

Then using (3.4), we have

(5.11)

∫

Q

ϕ
(

x,
|∇Tk(un)|

λ

)

dxdt 6
2(α+ 1)(c1k + r(k))

α(2α+ 1)
.

Using Lemma 4.2, we have that (Tk(un)) is bounded in W
1,x
0 Lϕ(Q), then there

exists vk such that

(5.12)

{

Tk(un)⇀ vk in W 1,x
0 Lϕ(Q) for σ(ΠLϕ,ΠEψ),

Tk(un) → vk strongly in Eϕ(Q).

Therefore, we can assume that (Tk(un))n is a Cauchy sequence in measure in Ω.

Then for all k > 0 and δ, ε > 0 there exists n0 = n0(k, δ, ε) such that

(5.13) meas{|Tk(un)− Tk(um)| > δ} 6
ε

3
∀m,n > n0.

It is easy to show that

inf
x∈Ω

ϕ
(

x,
k

λc

)

meas{|un| > k} =

∫

{|un|>k}

inf
x∈Ω

ϕ
(

x,
k

λc

)

dxdt

6

∫

Q

ϕ
(

x,
|Tk(un)|

λc

)

dxdt

6

∫

Q

ϕ
(

x,
|∇Tk(un)|

λ

)

dxdt (using Lemma 4.2)

6
2(α+ 1)(c1k + r(k))

α(2α+ 1)
(using (5.11)),

where this c is the constant of Lemma 4.2. Then, by using the definition of ϕ,

(5.14) meas{|un| > k} 6
2(α+ 1)(c1k + r(k))

α(2α+ 1) inf
x∈Ω

ϕ(x, k/λc)
→ 0, as k → ∞.

Since for all δ > 0,

meas{|un − um| > δ} 6 meas{|un| > k}+meas{|um| > k}(5.15)

+meas{|Tk(un)− Tk(um)| > δ}.
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Using (5.14), we get for all ε > 0 there exists k0 > 0 such that

(5.16) meas{|un| > k} 6
ε

3
, meas{|um| > k} 6

ε

3
∀ k > k0(ε).

Combining (5.13), (5.15) and (5.16), we obtain that for all δ, ε > 0 there exists

n0 = n0(δ, ε) such that

meas{|um − um| > δ} 6 ε ∀n,m > n0.

It follows that (un)n is a Cauchy sequence in measure. Then the there exists a func-

tion u such that

(5.17)

{

Tk(un)⇀ Tk(u) in W 1
0Lϕ(Ω) for σ(ΠLϕ,ΠEψ),

Tk(un) → Tk(u) strongly in Eϕ(Ω).

Step 3: Boundness of (a(x, t, Tk(un),∇Tk(un)))n in (Lψ(Q))N . Let w ∈ (Eϕ(Q))N

be arbitrary such that ‖w‖ϕ,Q = 1. By (3.3) we have
(

a(x, t, Tk(un),∇Tk(un))− a
(

x, t, Tk(un),
w

ν

))(

∇Tk(un)−
w

ν

)

> 0.

Hence,
∫

Q

a(x, t, Tk(un),∇Tk(un))
w

ν
dxdt(5.18)

6

∫

Q

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dxdt

−

∫

Q

a
(

x, t, Tk(un),
w

ν

)(

∇Tk(un)−
w

ν

)

dxdt,

and hence, using (5.10),

(5.19)

∫

Q

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dxdt 6
2(α+ 1)(c1k + r(k))

α(2α+ 1)
.

For µ large enough (µ > β), using (3.2) we have

∫

Q

ψx

(a(x, t, Tk(un), wν
−1)

3µ

)

dxdt

6

∫

Q

ψx

(β(h1(x, t) + ψ−1
x (γ(x, ν|Tk(un)|)) + ψ−1

x (ϕ(x, |w|)))

3µ

)

dxdt

6
β

µ

∫

Q

ψx

(h1(x, t) + ψ−1
x (γ(x, ν|Tk(un)|)) + ψ−1

x (ϕ(x, |w|))

3

)

dxdt

6
β

3µ

(
∫

Q

ψx(h1(x, t)) dxdt+

∫

Q

γ(x, ν|Tk(un)|) dxdt+

∫

Q

ϕ(x, |w|) dxdt

)

6 c2(k).
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Now, since γ grows essentially less rapidly than ϕ near infinity and by using Re-

mark 2.1, there exists r′(k) > 0 such that γ(x, νk) 6 r′(k)ϕ(x, 1) and so we have

∫

Q

ψx

(a(x, t, Tk(un), wν
−1)

3µ

)

dxdt

6
β

3µ

(
∫

Q

ψx(h1(x, t)) dxdt+ r′(k)

∫

Q

ϕ(x, 1) dxdt+

∫

Q

ϕ(x, |w|) dxdt

)

.

Hence a(x, t, Tk(un), wν
−1) is bounded in (Lψ(Q))N . This implies that the second

term of the right-hand side of (5.18) is bounded, consequently, we obtain
∫

Q

a(x, t, Tk(un),∇Tk(un))w dxdt 6 c2(k) ∀w ∈ (Lϕ(Q))N with ‖w‖ϕ,Q 6 1.

Hence, by the theorem of Banach Steinhaus, the sequence (a(x, t, Tk(un),∇Tk(un)))n

remains bounded in (Lψ(Q))N , which implies that for all k > 0 there exists a function

lk ∈ (Lψ(Q))N such that

(5.20) a(x, t, Tk(un),∇Tk(un))⇀ lk weak star in (Lψ(Q))N for σ(ΠLψ,ΠEϕ).

Step 4: Modular convergence of the truncations. Since Tk(u) ∈ W 1,xLϕ(Q), there

exists a sequence (vkj ) ⊂ D(Ω) such that vkj → Tk(u). For the sake of simplicity, we

denote by ε(n, j, µ, s) any quantity (possible different) such that

lim
s→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, s) = 0.

If the quantity we consider does not depend on one of the parameters n, j, µ and s,

we will omit the dependence on the corresponding parameter: as an example, ε(n, j)

is any quantity such that
lim
j→∞

lim
n→∞

ε(n, j) = 0.

We denote also by χj,s (or χs) the characteristic functions of the set

Qj,s = {(x, t) ∈ Q : |∇Tk(v
k
j )| 6 s} or Qs = {(x, t) ∈ Q : |∇Tk(u)| 6 s}.

For k > 0, taking Tk(un)− Tk(v
k
j )µ as a test function in (Pn), we get

∫

Q

∂bn(un)

∂t
(Tk(un)− Tk(v

k
j )µ) dxdt(5.21)

+

∫

Q

a(x, t, un,∇un)∇(Tk(un)− Tk(v
k
j )µ) dxdt

=

∫

Q

fn(Tk(un)− Tk(v
k
j )µ) dxdt

+

∫

Q

Θn(x, t, un)∇(Tk(un)− Tk(v
k
j )µ) dxdt.
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Firstly, for the first term of the left-hand side of (5.21) we get

∫

Q

∂bn(un)

∂t
(Tk(un)− Tk(v

k
j )µ) dxdt

=

∫

Q

∂bn(un)

∂t
Tk(un) dxdt−

∫

Q

∂bn(un)

∂t
Tk(v

k
j )µ dxdt = I1 + I2.

For I1 we have

I1 =

∫

Ω

Bkn(un(T )) dx−

∫

Ω

Bkn(u0n) dx,

where Bkn(s) =
∫ s

0 b
′
n(r)Tk(r) dr. Then, by passing to the limit as n→ ∞, we get

(5.22) I1 =

∫

Ω

Bk(u(T )) dx−

∫

Ω

Bk(u0) dx+ ε(n),

where Bk(s) =
∫ s

0 b
′(r)Tk(r) dr. For I2, by integration by parts with respect to t, we

find

I2 =

∫

Ω

bn(u0n)Tk(v
k
j )µ(0) dx−

∫

Ω

bn(un(T ))Tk(v
k
j )µ(T ) dx

+ µ

∫

Q

(Tk(v
k
j )− Tk(v

k
j )µ)bn(un) dxdt.

Passing to the limit as n, j → ∞ and since un → u a.e. in Q and by Lebesgue

dominated convergence theorem, we get

I2 =

∫

Ω

b(u0)Tk(u)µ(0) dx−

∫

Ω

b(u(T ))Tk(u)µ(T ) dx(5.23)

+ µ

∫

Q

(Tk(u)− Tk(u)µ)b(u) dxdt+ ε(n, j)

= J1 + J2 + ε(n, j).

For J2 we have

J2 = µ

∫

Q

(Tk(u)− Tk(u)µ)b(u) dxdt

= µ

∫

Q

(Tk(u)− Tk(u)µ)(b(u)− b(Tk(u))) dxdt

+ µ

∫

Q

(Tk(u)− Tk(u)µ)(b(Tk(u))− b(Tk(u)µ)) dxdt

+ µ

∫

Q

(Tk(u)− Tk(u)µ)b(Tk(u)µ) dxdt.
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Since b is increasing, we get

J2 > µ

∫

Q

(Tk(u)− Tk(u)µ)(b(u)− b(Tk(u))) dxdt

+ µ

∫

Q

(Tk(u)− Tk(u)µ)b(Tk(u)µ) dxdt

> µ

∫

u>k

(k − Tk(u)µ)(b(u)− b(k)) dxdt

+ µ

∫

u<−k

(−k − Tk(u)µ)(b(u)− b(−k)) dxdt

+

∫

Q

∂Tk(u)µ
∂t

b(Tk(u)µ) dxdt.

Since b is increasing and −k 6 Tk(u)µ 6 k, we get

(5.24) J2 >

∫

Ω

B(Tk(u(T ))µ) dx−

∫

Ω

B(Tk(u0)µ) dx,

where B(s) =
∫ s

0
b(τ) dτ.

Combining (5.22), (5.23) and (5.24), we get

∫

Q

∂bn(un)

∂t
(Tk(un)− Tk(v

k
j )µ) dxdt(5.25)

>

∫

Ω

Bk(u(T )) dx−

∫

Ω

Bk(u0) dx+

∫

Ω

b(u0)Tk(u)µ(0) dx

−

∫

Ω

b(u(T ))Tk(u)µ(T ) dx+

∫

Ω

B(Tk(u(T ))µ) dx

−

∫

Ω

B(Tk(u0)µ) dx+ ε(n, j).

Passing now to the limit for µ→ ∞, we obtain

∫

Q

∂bn(un)

∂t
(Tk(un)− Tk(v

k
j )µ) dxdt(5.26)

>

∫

Ω

Bk(u(T )) dx−

∫

Ω

Bk(u0) dx+

∫

Ω

b(u0)Tk(u0) dx

−

∫

Ω

b(u(T ))Tk(u(T )) dx+

∫

Ω

B(Tk(u(T ))) dx

−

∫

Ω

B(Tk(u0)) dx+ ε(n, j, µ).

Observe that for all z ∈ R we have

B(Tk(z)) = b(z)Tk(z)−Bk(z).
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Then, we deduce that

(5.27)

∫

Q

∂bn(un)

∂t
(Tk(un)− Tk(v

k
j )µ) dxdt > ε(n, j, µ).

Secondly, since fn → f strongly in L1(Q) and Tk(un)−Tk(v
k
j )µ converges to Tk(u)−

Tk(v
k
j )µ weakly star in L

∞(Q), the first term of the right-hand side can be written

as
∫

Q

fn(Tk(un)− Tk(v
k
j )µ) dxdt =

∫

Q

f(Tk(u)− Tk(v
k
j )µ) dxdt+ ε(n).

Hence, by letting j and µ to infinity, one has

(5.28)

∫

Q

fn(Tk(un)− Tk(v
k
j )µ) dxdt = ε(n, j, µ).

Thirdly, for the last term of the right-hand side, one has for n > 2k

∫

Q

Θn(x, t, un)(∇Tk(un)−∇Tk(v
k
j )µ) dxdt

=

∫

Q

Θn(x, t, T2k(un))(∇Tk(un)−∇Tk(v
k
j )µ) dxdt

=

∫

Q

Θ(x, t, Tk(un))(∇Tk(un)−∇Tk(v
k
j )µ) dxdt,

and as Θ(x, t, T2k(un)) converges strongly to Θ(x, t, T2k(u)) in Eψ(Q) and ∇Tk(un)−

∇Tk(v
k
j )µ converges weakly to ∇Tk(u)−∇Tk(v

k
j )µ in (Lϕ(Q))N , we get

∫

Q

Θn(x, t, un)(∇Tk(un)−∇Tk(v
k
j )µ) dxdt

=

∫

Q

Θ(x, t, T2k(u))(∇Tk(u)−∇Tk(v
k
j )µ) dxdt+ ε(n).

Then by letting j and µ to infinity, we get

(5.29)

∫

Q

Θn(x, t, un)(∇Tk(un)−∇Tk(v
k
j )µ) dxdt = ε(n, j, µ).

Thus, by combining (5.21), (5.27), (5.28) and (5.29), we obtain

(5.30)

∫

Q

a(x, t, un,∇un)(∇Tk(un)−∇Tk(v
k
j )µ) dxdt 6 ε(n, j, µ).
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Splitting the first term of the last inequality on {|un| 6 k} and {|un| > k} and

observing that ∇(Tk(un)− Tk(v
k
j )µ) = 0 on {|un| > 2k}, we get

∫

Q

a(x, t, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(v
k
j )µ) dxdt(5.31)

6

∫

{|un|>k}

a(x, t, T2k(un),∇T2k(un))∇Tk(v
k
j )µ dxdt+ ε(n, j, µ).

For the first term of the right-hand side of the last inequality we have

∫

{|un|>k}

a(x, t, T2k(un),∇T2k(un))∇Tk(v
k
j )µ dxdt

=

∫

{|u|>k}

l2k∇Tk(v
k
j )µ dxdt+ ε(n).

Then by letting j and µ to infinity, we get

∫

{|un|>k}

a(x, t, T2k(un),∇T2k(un))∇Tk(v
k
j )µ dxdt = ε(n, j, µ).

Then (5.31) becomes

(5.32)

∫

Q

a(x, t, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(v
k
j )µ) dxdt 6 ε(n, j, µ).

By a simple calculus, we get

∫

Q

(a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs))

× (∇Tk(un)−∇Tk(u)χs) dxdt

=

∫

Q

a(x, t, Tk(un),∇Tk(un))(∇Tk(un)−∇Tk(v
k
j )µ) dxdt

−

∫

Q

(a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs))

× (∇Tk(u)χs −∇Tk(v
k
j )µ) dxdt

−

∫

Q

a(x, t, Tk(un),∇Tk(u)χs)(∇Tk(un)−∇Tk(v
k
j )µ) dxdt

6 −

∫

Q

(a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs))

× (∇Tk(u)χs −∇Tk(v
k
j )µ) dxdt

−

∫

Q

a(x, t, Tk(un),∇Tk(u)χs)(∇Tk(un)−∇Tk(v
k
j )µ) dxdt+ ε(n, j, µ)

= L1 + L2 + ε(n, j, µ).
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For L1, since a(x, t, Tk(un),∇Tk(un)) weakly star converges to lk in (Lψ(Q))N and

a(x, t, Tk(un),∇Tk(u)χs) strongly converges to a(x, t, Tk(u),∇Tk(u)χs) in (Lψ(Q))N ,

we get

L1 = −

∫

Q

(lk − a(x, t, Tk(u),∇Tk(u)χs))(∇Tk(u)χs −∇Tk(v
k
j )µ) dxdt+ ε(n).

Then by letting j and µ to infinity, we obtain

L1 = ε(n, j, µ, s).

Similarly,

L2 = ε(n, j, µ).

Consequently, we deduce that

∫

Q

(a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs))(5.33)

× (∇Tk(un)−∇Tk(u)χs) dxdt→ 0, as n→ ∞.

Using Lemma 4.4, we get

(5.34) Tk(un) → Tk(u) for the modular convergence in W
1,x
0 Lϕ(Q).

Step 5: Passage to the limit. Since the sequence Tk(un) converges for the modular

convergence in W 1,x
0 Lϕ(Q), there exists a subsequence, which is also denoted by

(un)n, such that

(5.35) ∇un → ∇u a.e. in Q.

Let v ∈ W 1
0Lϕ(Ω) ∩ L

∞(Ω) and λ = k + ‖v‖∞ with k > 0. Taking Tk(un − v) as a

test function in (Pn), we get

∫

Q

∂bn(un)

∂t
Tk(un − v) dxdt(5.36)

+

∫

Q

a(x, t, un,∇un)∇Tk(un − v) dxdt

=

∫

Q

fnTk(un − v) dxdt+

∫

Q

Θn(x, t, un)∇Tk(un − v) dxdt.
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For the first term of the left-hand side of (5.36), by using the fact that bn(un)⇀ b(u)

weakly in Lϕ(Q), we get

(5.37)

∫

Q

∂bn(un)

∂t
Tk(un − v) dxdt =

[
∫

Ω

Bkn(un) dt

]T

0

=

[
∫

Ω

Bk(u) dt

]T

0

+ ε(n)

=

∫

Q

∂b(u)

∂t
Tk(u − v) dxdt+ ε(n),

where Bkn(s) =
∫ s

0 b
′
n(τ)Tk(τ − v) dτ and Bk(s) =

∫ s

0 b
′(τ)Tk(τ − v) dτ .

For the second term of the left-hand side of (5.36) we have

lim inf
n→∞

∫

Q

a(x, un,∇un)∇Tk(un − v) dxdt >

∫

Q

a(x, u,∇u)∇Tk(u− v) dxdt.

Indeed, if |un| > λ, then |un − v| > |un| − ‖v‖∞ > k. Let Dn = {|un − v| 6 k},

therefore Dn ⊆ {|un| 6 λ}, which implies that

(5.38) a(x, t, un,∇un)∇Tk(un − v)

= a(x, t, un,∇un)∇(un − v)χDn

= a(x, t, Tλ(un),∇Tλ(un))(∇Tλ(un)−∇v)χDn .

Then

(5.39)

∫

Q

a(x, t, un,∇un)∇Tk(un − v) dxdt

=

∫

Q

a(x, t, Tλ(un)∇Tλ(un))(∇Tλ(un)−∇v)χDn dxdt

=

∫

Q

(a(x, t, Tλ(un),∇Tλ(un))− a(x, t, Tλ(un),∇v))

× (∇Tλ(un)−∇v)χDn dxdt

+

∫

Q

a(x, t, Tλ(un),∇v)(∇Tλ(un)−∇v)χDn dxdt.

Let D = {|u− v| 6 k}, then we obtain

(5.40) lim inf
n→∞

∫

Q

a(x, t, un,∇un)∇Tk(un − v) dxdt

>

∫

Q

(a(x, t, Tλ(u),∇Tλ(u))− a(x, t, Tλ(u),∇v))

× (∇Tλ(u)−∇v)χD dxdt

+ lim
n→∞

∫

Q

a(x, t, Tλ(un),∇v)(∇Tλ(un)−∇v)χDn dxdt.
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The second term on the right-hand side of (5.40) is equal to

∫

Q

a(x, Tλ(u),∇v)(∇Tλ(u)−∇v)χD dxdt.

Finally, we get

(5.41) lim inf
n→∞

∫

Q

a(x, t, un,∇un)∇Tk(un − v) dxdt

>

∫

Q

a(x, t, Tλ(u),∇Tλ(u))(∇Tλ(u)−∇v)χD dxdt

=

∫

Q

a(x, t, u,∇u)(∇u−∇v)χD dxdt

=

∫

Q

a(x, t, u,∇u)∇Tk(u− v) dxdt.

For the first term on the right-hand side of (5.36), using the strong convergence

of (fn)n, we get

(5.42)

∫

Q

fnTk(un − v) dxdt =

∫

Q

fTk(un − v) dxdt+ ε(n).

For the second term on the right-hand side of (5.36), for n > λ = k+ ‖v‖∞, we have

(5.43)

∫

Q

Θn(x, t, un)∇Tk(un − v) dxdt =

∫

Q

Θ(x, t, Tλ(un))∇Tk(un − v) dxdt

=

∫

Q

Θ(x, t, u)∇Tk(u− v) dxdt+ ε(n).

Combining (5.36)–(5.43), one has

∫

Q

∂b(u)

∂t
Tk(u − v) dxdt+

∫

Q

a(x, t, u,∇u)∇Tk(u− v) dxdt

6

∫

Q

fTk(u − v) dxdt+

∫

Q

Θ(x, t, u)∇Tk(u− v) dxdt.

Consequently, via all steps, the proof of Theorem 5.1 is completed. �
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