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Classification of spaces of continuous functions on ordinals

Leonid V. Genze, Sergei P. Gul’ko, Tat’ana E. Khmyleva

Abstract. We conclude the classification of spaces of continuous functions on or-
dinals carried out by Górak [Górak R., Function spaces on ordinals, Comment.
Math. Univ. Carolin. 46 (2005), no. 1, 93–103]. This gives a complete topo-
logical classification of the spaces Cp([0, α]) of all continuous real-valued func-
tions on compact segments of ordinals endowed with the topology of pointwise
convergence. Moreover, this topological classification of the spaces Cp([0, α])
completely coincides with their uniform classification.
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1. Introduction

Our terminology basically follows [4]. In particular, we understand cardinals as
initial ordinals, compare [4, page 6]. A segment of the ordinals [0, α] is endowed
with a standard order topology. The symbol Cp([0, α]) denotes the set of all
continuous real-valued functions defined on [0, α] and endowed with the topology
of pointwise convergence.

A complete linear topological classification of Banach spaces C([0, α]) was car-
ried out in [7] and independently in [8] (for the initial part of this classification,
see also [3] and [9]). Similar complete linear topological classification for Cp([0, α])
can be found in [6], [2].

The topological classification of the spaces Cp([0, α]) is carried out in the
R. Górak’s paper [5], in which the question whether the spaces Cp([0, α]) and
Cp([0, β]) are homeomorphic is solved for all ordinals α and β with except for the
case α = k+ · k, β = k+ · k+, where k is the initial ordinal, and k+ is the smallest
initial ordinal greater than k. We note that an ordinal of the form k+ is always
regular ordinal. In this paper we prove the following theorem.

Theorem 1. Let τ be an arbitrary initial regular ordinal, σ and λ be initial
ordinals satisfying the inequality ω ≤ σ < λ ≤ τ . Then the space Cp([0, τ · σ]) is
not homeomorphic to the space Cp([0, τ · λ]).
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If we combine this result with the results of [5], we get a complete topological
classification of the spaces Cp([0, α]) (which coincides with the uniform classifica-
tion). We can write it in the form of the following theorem.

Theorem 2. Let α and β be ordinals and α ≤ β.

(a) If |α| 6= |β|, then Cp([0, α]) and Cp([0, β]) are not homeomorphic.
(b) If τ is an initial ordinal, |α| = |β| = τ and either τ = ω or τ is a singular

ordinal or β ≥ α ≥ τ2, then the spaces Cp([0, α]) and Cp([0, β]) are
(uniformly) homeomorphic.

(c) If τ is a regular uncountable ordinal and α, β ∈ [τ, τ2], then the space
Cp([0, α]) is (uniformly) homeomorphic to the space Cp([0, β]) if and only
if τ · σ ≤ α ≤ β < τ · σ+, where σ is the initial ordinal, σ < τ , and σ+ is
the smallest initial ordinal, exceeding σ.

2. Proof of Theorem 1

We need some notation and auxiliary statements. For an arbitrary ordinal α
and the initial ordinal λ ≤ α we set

Aλ,α = {t ∈ [0, α] : χ(t) = |λ|},

where χ(t) is the character of the point t ∈ [0, α]. In particular, Aω,α is the set of
all limit points of t ∈ [0, α], having a countable base of neighborhoods.

Let α be a limit ordinal. The smallest order type of sets A ⊂ [0, α] cofinal in
[0, α), is called cofinality of the ordinal α and denoted by cf(α).

It is easy to see that |cf(α)| = χ(α) for the limit ordinal α. The initial ordinal
α is called regular if cf(α) = α. Otherwise, the initial ordinal is called singular.

The symbol D(x) denotes the set of points of discontinuity of the function x.
The proof of the following two lemmas is standard (see Example 3.1.27 in [4]).

Lemma 1. Let α be an arbitrary ordinal and let τ be an initial ordinal such that
ω < τ ≤ α, t0 ∈ Aτ,α and a function x : [0, α] → R is continuous at all points of
the set Aω,α. Then there is an ordinal γ < t0 such that x|(γ,t0) = const.

Lemma 2. If a function x : [0, α] → R is continuous at all points of the set Aω,α,
then the set D(x) is at most countable.

For the function x ∈ R
[0,α] and the initial ordinal λ ≤ α the symbol Gλ(x)

denotes the family

Gλ(x) =

{ ⋂

s∈S

Vs : Vs is standard neighborhoods of x in R
[0,α] and |S| = |λ|

}
.

The elements of the family Gλ(x) will be called λ-neighborhoods of the function x.
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For a regular ordinal τ ≥ ω1 and an initial ordinal σ ≤ τ we put

Mτσ = {x ∈ R
[0,τ ·σ] : x is continuous at those points

t ∈ [0, τ · σ] for which cf(t) < τ}.

It is clear that C([0, τ · σ]) ⊂ Mτσ.

Lemma 3. Let τ ≥ ω1 be an initial regular ordinal and let σ be an initial ordinal
such that σ ≤ τ . Then

Mτσ = {x ∈ R
[0,τ ·σ] : V ∩Cp([0, τ ·σ]) 6= ∅ for every V ∈ Gλ(x) and each λ < τ}.

Proof: We denote by Lτσ the right-hand side of the equality and assume that
x /∈ Mτσ, that is, x is discontinuous at some point t0 for which cf(t0) < τ . Since
|cf(t0)| = χ(t0), there exists a base {Uj(t0)}j∈J of neighborhoods of the point t0
such that |J | < τ . Since x is discontinuous at t0, there exists a number ε0 > 0
such that for each j ∈ J there is a point tj ∈ Uj(t0) such that |x(tj)−x(t0)| ≥ ε0.
Let V =

⋂
{V (x, tj , t0, 1/n) : j ∈ J, n ∈ N}, where V (x, tj , t0, 1/n) is the standard

neighborhood of the function x in the space R
[0,τ ·σ]. If y ∈ V , then y(tj) = x(tj)

and y(t0) = x(t0). Hence, the function y is discontinuous at the point t0 and then
y /∈ Cp([0, τ · σ]). Thus, V ∩ Cp([0, τ · σ]) = ∅, that is, x /∈ Lτσ.

Now let x ∈ Mτσ, i.e. the function x can be discontinuous only at the points
of the set Aτ,τ ·σ. It is easy to see that the set Aτ,τ ·σ has the form

Aτ,τ ·σ = {τ · (ξ + 1): 0 ≤ ξ < σ}, or

Aτ,τ ·σ = {τ · (ξ + 1): 0 ≤ ξ < τ} ∪ {τ · τ} if σ = τ.

By Lemma 2, the set D(x) is at most countable and therefore

Aτ,τ ·σ ∩D(x) = {τ · (ξn + 1): ξn < σ, n ∈ N}, or

Aτ,τ ·σ ∩D(x) = {τ · (ξn + 1): ξn < τ, n ∈ N} ∪ {τ · τ} if σ = τ.

Let λ < τ and V (x) =
⋂
{U(x, η, 1/n) : η ∈ S, n ∈ N} be a λ-neighbourhood

of the point x. Then |S| < |τ |.
Since the countable set Aτ,τ ·σ∩D(x) is not cofinal in the regular ordinal τ ≥ ω1,

for each n ∈ N there is an ordinal γn such that τξn < γn < τ(ξn + 1) and
(γn, τ(ξn + 1)) ∩ S = ∅. In the case σ = τ there is also an ordinal γ0 < τ2, such
that (γ0, τ

2) ∩ S = ∅ and (γ0, τ
2) ∩ {τ(ξn + 1)}∞n=1 = ∅.

Consider the function

x̃(t) =





x(τ(ξn + 1)) if t ∈ (γn, τ(ξn + 1));
x(τ2) if t ∈ (γ0, τ

2);
x(t) otherwise.

It is not difficult to see that the function x̃ is continuous at all points t ∈ [0, τ ·σ],
and since x̃|S = x|S , x̃ ∈ V (x), that is, V (x) ∩ Cp([0, τ · σ]) 6= ∅ and therefore
x ∈ Lτσ. �
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If X is a Tychonoff space, then the symbol νX denotes the Hewitt completion
of the space X . The proof of the following lemma can be found in [4, page 218].

Lemma 4. If ϕ : X → Y is a homeomorphism of Tychonoff spaces, then there
exists a homeomorphism ϕ̃ : νX → νY such that ϕ̃(x) = ϕ(x) for each x ∈ X .

Lemma 5. Let α be an arbitrary ordinal. Then

ν(Cp([0, α])) = {x ∈ R
[0,α] : x is continuous at all points of the set Aω,α}.

Proof: It is known (see [10, page 382]) that for an arbitrary Tychonoff space X
the space ν(Cp(X)) coincides with the set of all strictly ℵ0-continuous functions
from X to R. In this case, the function f ∈ R

X is called strictly ℵ0-continuous
(see [1]) if for any countable set A ⊂ X there is a continuous function g ∈ R

X

such that f |A = g|A.
Since for each countable set A ⊂ [0, α], its closure Ā is also countable, by the

Tietze-Urysohn theorem we obtain that the set of all strictly ℵ0-continuous func-
tions in [0, α] in R coincides with the set of all those functions that are continuous
on each countable subset A ⊂ [0, α]. It is easy to see that these are precisely all
those functions that are continuous at all points of the set Aω,α. �

Corollary 6. If τ ≥ ω1 is the initial regular ordinal and σ ≤ τ is the initial
ordinal, then Mτσ ⊂ ν(Cp([0, τ · σ])).

For the initial ordinal σ we denote by Γσ the discrete space of cardinality |σ|
and consider the space

c0(Γσ) =
{
x ∈ R

Γσ : {t ∈ Γσ : |x(t)| ≥ ε} is finite for any ε > 0
}
.

Lemma 7. Let τ ≥ ω1 be an initial regular ordinal, σ ≤ τ be an initial ordi-
nal. Then there exists a homeomorphic embedding f : c0(Γσ) → Mτσ such that
f(0) = 0 and f(x) ∈ Mτσ \ Cp([0, τ · σ]) if x 6= 0.

Proof: We enumerate the points of the set Γσ by the ordinals ξ ∈ [0, σ).
Then Γσ = {tξ}ξ∈[0,σ). For each characteristic function χ{tξ} ∈ c0(Γσ) we put
f(χ{tξ}) = χ{τ(ξ+1)}. It is obvious that χ{τ(ξ+1)} ∈ Mτσ \Cp([0, τ ·σ]). It remains
to extend the map f in the standard way to the space c0(Γσ). �

Lemma 8. Let τ ≥ ω1 be an initial regular ordinal, σ, λ be an initial ordinals and
ω ≤ λ < σ ≤ τ . If f : c0(Γσ) → Mτλ is an injective mapping such that f(0) = 0
and f(x) ∈ Mτλ \ Cp([0, τ · λ]) for x 6= 0, then the map f is not continuous.

Proof: Suppose that there exists a continuous map f : c0(Γσ) → Mτλ with the
above-mentioned properties. As in Lemma 7, let Γσ = {tξ}ξ∈[1,σ). Since the
space c0(Γσ) is considered in the topology of pointwise convergence, any sequence
of the form χ{tξn} converges to zero in this space. Consequently, at each point
γ ∈ [0, τ ·λ] only a countable number of functions f(χ{tξ}) is nonzero. Since by the
condition f(χ{tξ}) ∈ Mτλ \ Cp([0, τ · λ]), each function f(χ{tξ}) is discontinuous
at some point of the set Aτ,τλ ⊂ [0, τ · λ].
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Let us take

Bγ = {f(χ{tξ}) : f(χ{tξ}) is discontinuous at a point τ(γ + 1) ∈ Aτ,τλ}.

Since
⋃

γ<λBγ = f
(
{χ{tξ} : ξ < σ}

)
and |λ| = |Aτ,τλ| < |σ|, there is a point

γ0 < λ, such that |Bγ0
| = |σ|. Since at the point τ(γ0 + 1) only a countable

number of functions from Bγ0
are nonzero, without loss of generality we can

assume that all functions from Bγ0
at the point τ(γ0 + 1) are equal to zero. By

Lemma 1, for each function f(χ{tξ}) ∈ Bγ0
there exists an ordinal γξ < τ(γ0 + 1)

such that f(χ{tξ})|[γξ,τ(γξ+1)) = const = Cξ. Since |Bγ0
| = |σ| > ω, in Bγ0

there is an uncountable family of functions for which |Cξ| ≥ ε0. Consider the
sequence {f(χ{tξn})}

∞
n=1 of such functions and put γ0 = sup{γξn : n = 1, 2, . . .}.

Since cf(τ(γ0 + 1)) > ω, γ0 < τ(γ0 + 1) and therefore |f(χ{tξn})(t)| ≥ ε0 for each
t ∈ (γ0, τ(γ0+1)). But this contradicts the fact that the sequence {f(χ{tξn})}

∞
n=1

converges pointwise to zero. �

Proof of Theorem 1: Suppose that there exists a homeomorphism ϕ : Cp([0,
τ · σ]) → Cp([0, τ · λ]). We can assume that ϕ(0) = 0. By Lemma 4, there
exists a homeomorphism ϕ̃ : ν(Cp([0, τ ·σ])) → ν(Cp([0, τ ·λ])) such that ϕ̃(Cp([0,
τ · σ])) = Cp([0, τ · λ]). By Corollary 6, Mτσ ⊂ ν(Cp([0, τ · σ])), and by Lemma 3
ϕ̃(Mτσ) = Mτλ. By Lemma 7 the mapping ϕ̃ · f : c0(Γσ) → Mτλ is continuous,
(ϕ̃ · f)(0) = 0 and (ϕ̃ · f)(Mτσ) ⊂ Mτλ \ Cp([0, τ · λ]) for x 6= 0. In this case, the
map ϕ̃|c0(Γσ) is a homeomorphism of the space c0(Γσ) ⊂ Mτσ onto the subspace
Mτλ such that ϕ̃(0) = 0 and ϕ̃(x) ⊂ Mτλ \ Cp([0, τ · λ]) for x 6= 0. But this is
impossible by Lemma 8. �
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