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Abstract. We establish some new sufficient conditions which guarantee the boundedness
and square integrability of solutions of certain third order differential equation. Example
is included to illustrate the results. By this work, we extend and improve some results in
the literature.
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1. Introduction

In recent years, the qualitative theory of differential equations and their applica-

tions have received intensive attention. Many works have been written by several

authors on the properties of solutions of ordinary differential equations of the second,

third, fourth, fifth and higher order in which the unknown functions and its deriva-

tives are all evaluated at the same instant t, see for instance Reissig et. al. [11], a

survey book and Afuwape [1], [2], Graef [4], [5], Qian [9], [10], Omeike [6]–[8], Remili

[12]–[20], Sadek [21], Tunç [22]–[27], Zhu [28] and the references cited therein, to

mention few.

The purpose of this paper is to obtain criteria for boundedness and square inte-

grability of solutions of the equation

(1.1) (x′ + g(x))′′ + a(t)x′′ + b(t)x′ + c(t)h(x) = 0.

In the sequel we will assume that the functions a(t), b(t), c(t) ∈ C ([0,∞)) are pos-

itive. In addition, it is also supposed that g(x) is non-negative and the derivatives

g′(x), g′′(x), h′(x) exist and are continuous functions for all x.
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Equation (1.1) is equivalent to the following system

(1.2)











x′ = y − g(x),

y′ = z,

z′ = −a(t)z + a(t)θ(t) − b(t)U − c(t)h(x),

where

(1.3) y(t)− g(x(t)) = U(t),

and θ(t) = g′(x(t))x′(t). The continuity of the functions a, b, c, g, g′ and h guarantees

the existence of the solutions of (1.1) (see [3], page 15). It is assumed that the right-

hand side of system (1.2) satisfies a Lipschitz condition in x(t), y(t), and z(t). This

assumption guarantees the uniqueness of solutions of (1.1) (see [3], page 15).

Equation (1.1) can be rewritten as

(1.4) x′′′ + ψ(x, x′)x′′ + f(x, x′) = p(t, x, x′, x′′),

where

ψ(x, x′) = g′(x), f(x, x′) = g′′(x)x′2,

and

p(t, x, x′, x′′) = −a(t)x′′ − b(t)x′ − c(t)h(x).

Equations of these types are encountered in the control of a flying apparatus in cosmic

space. Particularly, the linear case of the above equation states the motion x(t) of a

steam supply control slide valve. In recent years, many results have been obtained on

boundedness of equation (1.4); we refer the reader to the papers Qian [10], Tunç [26]

and Omeike [7]. It should be noted that in [10] (Theorem 1, page 192) the author gave

some sufficient conditions for boundedness of all solutions of (1.4) under conditions:

∫ x

0

f(u, 0) du > 0 for x 6= 0,(1)

ψ(x, x′) > B(2)

with B positive number. Qian [10] obtained sufficient conditions for every solution

of equation (1.4) to be bounded, he also established criteria for every solution of

equation (1.4) to converge to zero. After that [26], Theorem 2.1 and [7], Theorem 1

proved the same result obtained in [10] under less restrictive conditions:

f(x, 0)

x
> δ0 > 0,(i)

∫ x

0

p(s, x(s), x′(s), x′′(s)) ds <∞.(ii)
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However, in our theorem this conditions are not true since we have f(x, 0) =

ψ(x, 0) = 0. This is a significant difference between our paper and the papers above.

The motivation for the present work has been inspired by the results established

in the above mentioned papers.

The paper is organized as follows. In Section 2 we establish sufficient conditions

under which all solutions of equation (1.1) are bounded. In Section 3 we establish

conditions for the square integrability of solutions of equation (1.1). Finally, we give

an example to illustrate the results.

2. Assumptions and main results

We shall state here some assumptions which will be used for the functions that

appeared in equation (1.1). Suppose that there are positive constants a0, b0, c0, d,

a1, b1, c1, δ0, δ1, ∆1 and ε, such that the following conditions are satisfied:

0 < a0 6 a(t) 6 a1; 0 < b0 6 b(t) 6 b1; 0 < c0 6 c(t) 6 c1;(i)

c(t) 6 b(t); b′(t) 6 c′(t) 6 0 ∀ t > 0;(ii)

h(x)

x
> δ0 > 0 (x 6= 0), and |h′(x)| 6 δ1 < a0 ∀x;(iii)

1

2
da′(t)− b0(d− δ1) 6 −ε < 0;(iv)

∫

∞

−∞

|g′(u)| du 6 ∆1 <∞.(v)

Theorem 2.1. Suppose that assumptions (i) through (v) hold. Then any solution

x(t) of (1.1) and its derivatives x′(t) and x′′(t) satisfy

(2.1) |x(t)| 6 D2, |x′(t)| 6 D2, |x′′(t)| 6 D2 ∀ t > 0,

where D2 > 0.

P r o o f. We define the function V = V (t, x(t), y(t), z(t)) as

(2.2) V = dc(t)H(x) + c(t)h(x)U +
b(t)

2
U2 +

d

2
a(t)U2 +

1

2
z2 + dzU,

so that H(x) =
∫ x

0
h(u) du. Let d be a positive constant that will be specified later

in the proof. From (2.2) we have the following estimates

V > dc(t)

(
∫ x

0

h(u) du−
c(t)

2db(t)
h2(x)

)

+
b(t)

2

(

U +
c(t)

b(t)
h(x)

)2

+
d

2
(a0 − d)U2 +

1

2
(z + dU)2
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> dc(t)

(
∫ x

0

h(u) du−
c(t)

2db(t)
h2(x)

)

+
d

2
(a0 − d)U2 +

1

2
(z + dU)2.

In view of condition (iii) and after some rearrangements we have

dc(t)

(
∫ x

0

h(u) du−
c(t)

2db(t)
h2(x)

)

= dc(t)

∫ x

0

(

1−
h′(u)

d
h(u)

)

du

> dc0

(

1−
δ1

d

)

∫ x

0

h(u) du >
dc0δ0

2

(

1−
δ1

d

)

x2.

By the choice of

(2.3) δ1 < d < a0,

it follows that

V >
dc0δ0

2

(

1−
δ1

d

)

x2 +
d

2
(a0 − d)U2 +

1

2
(z + dU)2.

It is evident from the terms contained in the last inequality that there exists a

sufficiently small positive constant k such that

(2.4) V > k(x2 + U2 + z2).

For the time derivative of the function V along the trajectories of system (1.2), a

straightforward calculation yields

V ′

(1.2) = H1(t, x, y) +H2(t, x, y) +H3(t, x, y),

where

H1(t, x, y) = dc′(t)H(x) + c′(t)Uh(x) +
b′(t)

2
U2,

H2(t, x, y) =
(d

2
a′(t)− db(t) + c(t)h′(x)

)

U2 + (d− a(t))z2,

H3(t, x, y) = θ(t)((a(t) − d)z − c(t)h(x) − b(t)U).

Now, we verify that H1(t, x, y) 6 0. To show this, two cases are considered.

If c′(t) = 0, then from condition (ii) we get

H1(t, x, y) =
b′(t)

2
U2

6 0.

If c′(t) < 0, we can write H1(t, x, y) as

H1(t, x, y) = dc′(t)
(

H(x) +
1

d
Uh(x) +

b′(t)

2dc′(t)
U2

)

= dc′(t)
(

H(x) +
b′(t)

2dc′(t)

(

y +
c′(t)

b′(t)
h(x)

)2

−
c′(t)

2db′(t)
h2(x)

)

.

380



By the help of assumption (ii) it follows that

0 <
c′(t)

b′(t)
6 1 ∀ t > 0,

thus,

H1(t, x, y) 6 dc′(t)
(

H(x)−
1

2d
h2(x)

)

6 dc′(t)

∫ x

0

(

1−
δ1

d

)

h(u) du 6 c′(t)(d − δ1)H(x).

Now, from (2.3) we get

H1(t, x, y) 6 0.

Assumption (iv) with (2.3) yield

H2(t, x, y) 6
(d

2
a′(t)− b0(d− δ1)

)

U2 + (d− a0)z
2 6 −εU2 + (d− a0)z

2 6 0.

Since u 6 |u| 6 u2 + 1, we have

H3(t, x, y) 6 |θ(t)|((d + a(t))|z|+ c(t)|h(x)| + b(t)|U |)

6 |θ(t)|((d + a(t))(z2 + 1) + c(t)(h2(x) + 1) + b(t)(U2 + 1))

6 |θ(t)|MV + |θ(t)|(d + a(t) + b(t) + c(t)) 6 |θ(t)|(MV + α),

where

M =
1

k
(d+ a1 + c1δ

2
1 + b1) and α = d+ a1 + b1 + c1.

Thus

(2.5) V ′

(1.2) 6 −εU2 − (a0 − d)z2 + |θ(t)|(MV + α)

6 −L(U2 + z2) +M |θ(t)|V + α|θ(t)|,

where L = min{ε, (a0 − d)}. Let

(2.6) W = V∆(t),

where

∆(t) = exp
(

−
1

µ1

∫ t

0

|θ(s)| ds
)

,

and µ1 is a positive constant which will be determined later. It is straightforward to

verify that

1

µ1

∫ t

0

|θ(s)| ds =
1

µ1

∫ t

0

|g′(x(s)x′(s)| ds 6
1

µ1

∫ α2(t)

α1(t)

|g′(u)| du 6
1

µ1

∫

∞

−∞

|g′(u)| du,

381



where

α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}.

Observe that by condition (v) we have

1

µ1

∫ t

0

|θ(s)| ds 6
∆1

µ1
.(2.7)

Thus, we can deduce that

(2.8) e−∆1/µ1 6 ∆(t) 6 1.

Now, the time derivative of the functional W along the system (1.2) leads to

W ′

(1.2) =
(

V ′

(1.2) −
1

µ1
|θ(t)|V

)

∆(t)

6

(

−L(U2 + z2) +M |θ(t)|V + α|θ(t)| −
1

µ1
|θ(t)|V

)

∆(t).

Let µ1 =M−1, hence

W ′

(1.2) 6 α|θ(t)|∆(t) − L(U2 + z2)∆(t).

Combining (2.8) and the last inequality, we get

(2.9) W ′

(1.2) 6 α|θ(t)| − γ(U2 + z2),

where γ = Le−∆1/µ1 . Integrating (2.9) from 0 to t, we obtain

W (t) 6W (0) + α

∫ t

0

|θ(s)| ds.

Hence

(2.10) W (t) 6W (0) + ∆2,

where ∆2 = α∆1. Therefore W is bounded. From (2.6) we get

V =W∆−1(t).

From (2.8) and (2.10) we obtain

(2.11) V 6 (W (0) + ∆2)e
∆1/µ1 .
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So V is bounded. Hence, from (2.4) we conclude that there exists a positive con-

stant D1 such that

(2.12) |x(t)| 6 D1, |U(t)| 6 D1, |z(t)| 6 D1.

In view of (1.2) and (2.12) it follows that

|x′| = |y − g(x)| 6 D1.

Observe that the boundedness of x(t) and the continuity of g′ imply that there exists

a positive constant g1 such that

(2.13) g′(x) 6 g1.

By an analogous reasoning it can be shown that x′′ is also bounded. Indeed,

|x′′| = |z − g′(x)x′| 6 |z|+ |g′(x)||x′| 6 D2,

where D2 = D1

(

1 + g1
)

.

So,

(2.14) |x(t)| 6 D2, |x′(t)| 6 D2, |x′′(t)| 6 D2 ∀ t > 0.

�

3. Square integrability of solutins

Our next result concerns the square integrability of solutions of equation (1.1).

Theorem 3.1. In addition to the assumptions of Theorem 2.1, if we assume that

c0δ0 −
a1

2
> 0,(vi)

then for any solution x(t) of equation (1.1),

(3.1)

∫ t

0

(x′′2(s) + x′2(s) + x2(s)) ds <∞.
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P r o o f. Let x(t) be a solution of (1.1). Define

(3.2) P (t) =W (t) + λ

∫ t

0

(U2 + z2) ds,

where λ > 0 is a constant which will be specified later and W (t) is given in (2.6).

We have

P ′(t) =W ′(t) + λ(U2 + z2).

Inequality (2.9) implies

P ′(t) 6 α|θ(t)| + (λ − γ)(U2 + z2).

If we choose λ 6 γ, we obtain

P ′(t) 6 α|θ(t)|.

Integrating the last inequality from 0 to t, we obtain

P (t) = P (0) +

∫ t

0

P ′(s) ds 6 P (0) + α

∫ t

0

|θ(s)| ds 6 P (0) + ∆2.

Hence, using (3.2) we get

(3.3)

∫ t

0

(U2 + z2) ds 6
1

λ
P (t) 6

1

λ
(P (0) + ∆2).

We conclude the existence of positive constants η1 and η2 such that

(3.4)

∫ t

0

x′2(s) ds =

∫ t

0

U2(s) ds 6 η1 and

∫ t

0

z2(s) ds 6 η2.

Now, we will prove that
∫ t

0
x′′2(s) ds <∞.

From (1.2) we have

z2(t) = y′2(t) = (x′′(t) + θ(t))2 = x′′2(t) + g′2(t)x′2(t) + 2x′′(t)θ(t).

Thus
∫ t

0

x′′2(s) ds 6

∫ t

0

z2(s) ds+ 2

∫ t

0

|x′′(s)||θ(s)| ds.

Taking into account (2.7), (2.14) and (3.4), we get

∫ t

0

x′′2(s) ds 6 l0,
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where l0 = η2 + 2D2∆1. Next, multiplying (1.1) by x(t), we get

(3.5) (x′ + g(x))′′x+ a(t)x′′x+ b(t)x′x+ c(t)h(x)x = 0.

Integrating by parts from 0 to t all the terms on the left-hand side of (3.5), we obtain

(3.6)

∫ t

0

c(s)x(s)h(x(s)) ds = I1(t) + I2(t) + I3(t),

where

I1(t) = −

∫ t

0

b(s)x(s)x′(s) ds,

I2(t) = −

∫ t

0

a(s)x(s)x′′(s) ds,

I3(t) = −

∫ t

0

x(s)(x′(s) + g(x(s)))′′ ds.

Note that (2.14) is a crucial step for our estimates of I1(t), I2(t), and I3(t). Inte-

grating I1 by parts and using conditions (i)–(ii), we get

I1(t) = −
1

2
b(t)x2(t) +

1

2

∫ t

0

b′(s)x2(s) ds+ l1 6 l1,

where

l1 =
1

2
b(0)x2(0).

Next, it is clear from (i) and Cauchy Schwartz inequality that

I2(t) 6

∫ t

0

a(s)|x(s)x′′(s)| ds 6
a1

2

∫ t

0

(x2(s) + x′′2(s)) ds.

Integrating I3 by parts and using condition assumption (v), we obtain

I3(t) = − x(t)(x′(t) + g(x(t)))′ +

∫ t

0

(x′(s) + g(x(s)))′x′(s) ds+ l2

= − x(t)(x′(t) + g(x(t)))′ + x′(t)(x′(t) + g(x(t)))

+

∫ t

0

(x′(s) + g(x(s)))x′′(s) ds+ l2 + l3

= − x(t)(x′′(t) + θ(t)) + x′(t)(x′(t) + g(x(t)))

−
1

2
x′2(t)− x′(t)g(x(t)) +

∫ t

0

θ(s)(s) ds+ l2 + l3 + l4

6 |x(t)|(|x′′(t)|+ |θ(t)|) + |x′(t)|(|x′(t)|+ |g(x(t))|)

+
1

2
|x′(t)|2 + |x′(t)||g(x(t))| +

∫ t

0

|θ(s)| ds+ l2 + l3 + l4
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such that

l2 = x(0)(x′′(0) + g′(x(0))x′(0)),

l3 = −x′(0)(x′(0) + g(x(0))),

l4 =
1

2
x2(0) + x′(0)g(x(0)).

Hence, from (2.13) and (2.14) we get

I3(t) 6 l5,

where

l5 = D2
2

(5

2
+ g0

)

+D2g0 +∆1 + l2 + l3 + l4.

Gathering aforementioned estimates into (3.6), we obtain

(3.7)

∫ t

0

c(s)x(s)h(x(s)) ds−
a1

2

∫ t

0

x2(s) ds < l6,

where

l6 =
a1

2
l0 + l1 + l5.

From condition (iii) it follows that

c0δ0

∫ t

0

x2(s) ds 6

∫ t

0

c(s)x(s)h(x(s)) ds.

Combining estimate (3.7) and condition (vi) we obtain

∫ t

0

x2(s) ds <
l6

c0δ0 −
1
2a1

.

This completes the proof of the theorem. �

E x am p l e 3.1. We consider the following third order differential equation

(

x′ +
( sinx

1 + x2
+ 2

))

′′

+
(21

2
−

1

2
e−t/2

)

x′′ +
( 1

1 + t
+ 3

)

x′(3.8)

+
7

2

( 1

1 + t
+ 2

)(

x+
x

1 + x2

)

= 0.
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Now it is easy to see that for all t > 0,

10 = a0 6 a(t) =
21

2
−

1

2
e−t/2 6

21

2
= a1, a′(t) =

1

4
e−t/2 6

1

4
,

3 = b0 6 b(t) =
1

1 + t
+ 3 6 4 = b1, 2 6 c(t) =

1

1 + t
+ 2 6 3 = c1,

7

2
6
h(x)

x
=

7

2

(

1 +
1

1 + x2

)

with x 6= 0, and |h′(x)| 6 7 = δ1,

7 = δ1 < d = 9 < a0 = 10,
1

2
da′(t)− b0(d− δ1) = −

9

2
< 0,

c0δ0 −
1

2
a1 =

7

4
> 0,

and

g(x) =
sinx

1 + x2
+ 2.

A simple calculation shows

∫

∞

−∞

|g′(u)| du 6

∫

∞

−∞

(∣

∣

∣

cosu

1 + u2

∣

∣

∣
+
∣

∣

∣

2u sinu

(1 + u2)2

∣

∣

∣

)

du 6 π + 2.

All the assumptions (i) through (vi) are satisfied, so every solution x of equation (3.8)

and their derivatives satisfies (3.1).
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[25] C.Tunç: Some stability and boundedness conditions for non-autonomous differential
equations with deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2010 (2010),
paper No. 1, 12 pages. zbl MR
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