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1. Introduction and preliminaries

There exists a correspondence between the class of implication algebras and join-

semilattices with greatest element in which every principal filter is a Boolean lattice,

given by Abbott in [1]. The nearlattices are a natural generalization of the impli-

cation algebras, i.e., join-semilattices with greatest element in which every principal

filter is a bounded lattice. The class of nearlattices has been studied in [14] and [16]

by Cornish and Hickman, and in [15], [8], [10], [9] and [11] by Chajda, Kolařík, Ha-

laš and Kühr. An important class of nearlattices are the distributive nearlattices.

Recently in [7] and [3], the authors develop a full duality for distributive nearlattices

and propose a definition of relative annihilator different from that given in [10].

On the other hand, in [17], Janowitz defines the notion of annihilator-preserving

congruence relation in a bounded distributive lattice A, called AP-congruence, as

a lattice-congruence θ such that for all a, b ∈ A, if a ∧ b ≡θ 0, then there exists

c ∈ A such that a ∧ c = 0 and c ≡θ b. If A is pseudocomplemented, then a lattice-

congruence θ is an AP-congruence if and only if it preserves pseudocomplements. A

new characterization of the AP-congruences for bounded distributive lattices is given

in [5] and in [6] this concept was extended to the bounded distributive semilattices.
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This paper has two objectives: to give some new characterizations of distributivity

of a nearlattice and to study the notion of annihilator-preserving congruence relations

in the class of distributive nearlattices. In the rest of this section we shall give some

necessary notation and definitions. We will recall the topological representation

for distributive nearlattices developed in [7]. In Section 2 we will show some new

characterizations of distributivity of a nearlattice using ideals, filters and relative

annihilators. Finally, in Section 3, we study the AP-congruences in distributive

nearlattices. We shall see that the AP-congruences in a distributive nearlattice A

are in a bijective correspondence to certain N-subspaces of the dual space of A. This

correspondence extends the results developed in [5] for distributive lattices.

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element. The set complement

of a subset X ofA will be denoted by Xc. A filter is a subset F ofA such that 1 ∈ F ,

if a 6 b and a ∈ F then b ∈ F , and if a, b ∈ F then a ∧ b ∈ F , whenever a ∧ b exists.

If X is a subset of A, the least filter containing X is called the filter generated by X

and will be denoted by F (X). A filter G is said to be finitely generated if G = F (X)

for some finite subset X of A. If X = a, then F ({a}) = [a) is called the principal

filter of a. We will denote by Fi(A) and Fif(A) the set of all filters and finitely

generated filters of A, respectively. A proper filter F of A is called prime if for all

a, b ∈ A, a ∨ b ∈ F implies a ∈ F or b ∈ F . An order filter is a subset F of A such

that 1 ∈ F , if a 6 b and a ∈ F then b ∈ F , and for all a, b ∈ F , there exists c ∈ F

such that c 6 a and c 6 b. A subset F of A is a Frink filter if 1 ∈ F and for all

a1, . . . , an ∈ F and b ∈ A, whenever (a1] ∩ . . . ∩ (an] ⊆ (b] we have b ∈ F . Denote

the set of all order filters and Frink filters of A by FiOr(A) and FiF(A), respectively.

Note that every order filter and Frink filter is, in particular, a filter.

A subset I of A is called an ideal if a 6 b and b ∈ I imply a ∈ I, and a, b ∈ I

imply a ∨ b ∈ I. If X is a nonempty set, the least ideal containing X is called the

ideal generated by X and will be denoted by I(X). We shall say that a nonempty

proper ideal P is prime if for all a, b ∈ A, a ∧ b ∈ I implies a ∈ I or b ∈ I,

whenever a∧ b exists. We denote by Id(A) and X(A) the set of all ideals and prime

ideals of A, respectively. Let maxX(A) denote the maximal elements of X(A). For

each P ∈ X(A), let max [P ) = maxX(A) ∩ [P ). An ideal I of A is irreducible

if for all I1, I2 ∈ Id(A) such that I = I1 ∩ I2 we have I = I1 or I = I2. An

ideal I of A is optimal if Ic is a Frink filter, i.e., if for all a1, . . . , an /∈ I and

b ∈ A, whenever (a1] ∩ . . . ∩ (an] ⊆ (b] we have b /∈ I. Denote by Irr(A) and

IdOp(A) the set of all optimal and irreducible ideals of A, respectively. It follows

that IdOp(A) ⊆ X(A).

The following results were investigated for join-semilattices and will be useful later.
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Theorem 1.1 ([4]). Let A be a join-semilattice with greatest element. Let I ∈

Id(A) and F ∈ FiOr(A) such that I ∩ F = ∅. Then there exists P ∈ Irr(A) such

that I ⊆ P and P ∩ F = ∅.

Lemma 1.1 ([4]). Let A be a join-semilattice with greatest element and I ∈

Id(A). Then I is irreducible if and only if for each a1, . . . , an /∈ I there exists b /∈ I

and there exists c ∈ I such that b 6 ai ∨ c for all i = 1, . . . , n.

We introduce the class of algebras that are the objects of study in this paper.

Definition 1.1. Let A be a join-semilattice with greatest element. Then A is

called a nearlattice if each principal filter is a bounded lattice with respect to the

induced order.

The class of nearlattices can be regarded as pure algebras through a ternary oper-

ation. This fact was proved by Hickman in [16] and by Chajda and Kolařík in [11].

Araújo and Kinyon in [2] found a smaller equational base.

Proposition 1.1 ([2]). Let A be a nearlattice. Let m : A3 → A be a ternary

operation given by m(x, y, z) = (x ∨ z) ∧z (y ∨ z). The following identities are

satisfied:

(1) m(x, y, x) = x,

(2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)),

(3) m(x, x, 1) = 1.

Conversely, let A = 〈A,m, 1〉 be an algebra of type (3, 0) satisfying the identities

(1)–(3). If we define x ∨ y = m(x, x, y), then A is a semilattice. Moreover, for each

a ∈ A, [a) is a bounded lattice where for x, y ∈ [a) the infimum is x∧a y = m(x, y, a).

Hence A is a nearlattice.

Definition 1.2. Let A be a nearlattice. Then A is called distributive if each

principal filter is a bounded distributive lattice.

E x am p l e 1.1 ([1]). An implication algebra is defined as a join-semilattice with

greatest element such that each principal filter is a Boolean lattice with respect

to the induced order. If A = 〈A,→, 1〉 is an implication algebra, then the join

of two elements x and y is given by x ∨ y = (x → y) → y and for each a ∈ A,

[a) = {x ∈ A : a 6 x} is a Boolean lattice where for x, y ∈ [a) the meet is given

by x ∧a y = (x → (y → a)) → a and x → a is the complement of x in [a). So,

A = 〈A,∨, 1〉 is a distributive nearlattice.
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Note that from the results given in [14] we have the following characterization of

the filter generated by a subset X in a distributive nearlattice A:

F (X) = {a ∈ A : ∃x1, . . . , xn ∈ [X) ∃x1 ∧ . . . ∧ xn (a = x1 ∧ . . . ∧ xn)}.

Theorem 1.2 ([15]). Let A be a distributive nearlattice. Let I ∈ Id(A) and let

F ∈ Fi(A) such that I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P and

P ∩ F = ∅.

Recall some topological notions. A topological space with a base K will be denoted

by 〈X,K〉. We consider the set DK(X) = {U : U c ∈ K}. A subset Y ⊆ X is basic

saturated if it is an intersection of basic open sets, i.e., Y =
⋂
{Ui ∈ K : Y ⊆ Ui}. The

basic saturation Bs(Y ) of a subset Y is the smallest basic saturated set containing Y .

If Y = {y}, we write Bs({y}) = Bs(y). On X , a binary relation 6 is defined as x 6 y

if and only if y ∈ Bs(x). It is easy to see that the relation 6 is a partial order

if and only if 〈X,K〉 is T0. Let Y be a nonempty subset of X . We say that Y is

irreducible if for every U, V ∈ DK(X) such that U ∩V ∈ DK(X) and Y ∩ (U ∩Y ) = ∅

we have Y ∩ U = ∅ or Y ∩ V = ∅. We say that Y is dually compact if for every

family F = {Ui : i ∈ I} ⊆ K such that
⋂
{Ui : i ∈ I} ⊆ Y there exists a finite family

{U1, . . . , Un} ⊆ K such that U1∩ . . .∩Un ⊆ Y . Finally, remember that we can define

a topology on Y by taking as its base the family KY = {U ∩ Y : U ∈ K} such that

the pair 〈Y,KY 〉 is a topological space. For more details see [7].

Definition 1.3 ([7]). Let 〈X,K〉 be a topological space. Then 〈X,K〉 is an

N-space if:

(1) K is a basis of open, compact and dually compact subsets for the topology TK
on X .

(2) For every U, V,W ∈ K, (U ∩W ) ∪ (V ∩W ) ∈ K.

(3) For every irreducible basic saturated subset Y of X there exists a unique x ∈ X

such that Y = Bs(x).

Proposition 1.2 ([7]). Let 〈X,K〉 be a topological space where K is a basis of

open and compact subsets for the topology TK on X . Suppose that (U ∩ W ) ∪

(V ∩W ) ∈ K for all U, V,W ∈ K. The following conditions are equivalent:

(1) 〈X,K〉 is T0 and if A = {Ui : i ∈ I} and B = {Vj : j ∈ J} are nonempty

families of DK(X) such that
⋂
{Ui : i ∈ I} ⊆

⋃
{Vj : j ∈ J}, then there exist

U1, . . . , Un ∈ [A) and V1, . . . , Vk ∈ B such that U1 ∩ . . . ∩ Un ∈ DK(X) and

U1 ∩ . . . ∩ Un ⊆ V1 ∪ . . . ∪ Vk.
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(2) 〈X,K〉 is T0, every U ∈ K is dually compact and the assignment H : X →

X(DK(X)) defined by

H(x) = {U ∈ DK(X) : x /∈ U}

for each x ∈ X , is onto.

(3) Every U ∈ K is dually compact and for every irreducible basic saturated sub-

set Y of X there exists a unique x ∈ X such that Y = Bs(x).

If 〈X,K〉 is an N-space, then 〈DK(X),∪, X〉 is a distributive nearlattice. Note that

X ∈ K if and only if DK(X) is a bounded distributive lattice. Thus, K is the family

of all open and compact subsets of X and we obtain the topological representation

for bounded distributive lattices given by Stone in [18].

Let A be a distributive nearlattice. Let us consider the poset 〈X(A),⊆〉 and the

mapping ϕA : A → Pd(X(A)) defined by ϕA(a) = {P ∈ X(A) : a /∈ P}. Then A is

isomorphic to the subalgebra ϕA[A] = {ϕA(a) : a ∈ A} of Pd(X(A)) and the pair

〈X(A),KA〉 is an N-space, called the dual space of A, where the topology TA is

generated by taking as its base the family KA = {ϕA(a)c : a ∈ A}. Let A and B be

two distributive nearlattices. A mapping h : A → B is a homomorphism if h(1) = 1,

h(a ∨ b) = h(a) ∨ h(b) for all a, b ∈ A, and h(a ∧ b) = h(a) ∧ h(b) whenever a ∧ b

exists. For more details see [7].

2. Some equivalences of distributivity

In [3] the authors obtain new equivalences of distributivity of a nearlattice. In this

section we present some new characterizations of distributivity using ideals, filters

and the theory of relative annihilators.

Lemma 2.1. Let A be a distributive nearlattice and I ∈ Id(A). Then I is prime

if and only if it is optimal.

P r o o f. We need only to prove that every prime ideal is optimal. Let

a1, . . . , an, b ∈ A and P ∈ X(A) such that a1, . . . , an /∈ P and (a1] ∩ . . . ∩ (an] ⊆ (b].

Suppose that b ∈ P . As b 6 ai∨b for all i = 1, . . . , n and [b) is a bounded distributive

lattice, b 6 (a1 ∨ b) ∧ . . . ∧ (an ∨ b). Since (a1] ∩ . . . ∩ (an] ⊆ (b], it follows that

b = (a1 ∨ b)∧ . . .∧ (an ∨ b) ∈ P and due to primality of P there exists j ∈ {1, . . . , n}

such that aj ∨ b ∈ P . So, aj ∈ P which is a contradiction. Thus P is optimal. �

Theorem 1.2, proved by Halaš in [15], generalizes the well-known Prime Ideal

Theorem. In fact, this result is equivalent to the distributivity of nearlattices.
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Theorem 2.1. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.

(2) Let I ∈ Id(A) and let F ∈ Fi(A) such that I ∩ F = ∅. Then there exists

P ∈ X(A) such that I ⊆ P and P ∩ F = ∅.

(3) If x � y, then there exists P ∈ X(A) such that y ∈ P and x /∈ P .

P r o o f. (1) ⇒ (2) It follows from [15].

(2) ⇒ (3) It is immediate.

(3) ⇒ (1) Let a ∈ A and x, y, z ∈ [a). We know that the inequality x ∨ (y ∧ z) 6

(x∨y)∧(x∨z) always holds. We prove the other inequality. We suppose the contrary,

i.e., (x ∨ y) ∧ (x ∨ z) � x ∨ (y ∧ z). Then, by hypothesis, there exists P ∈ X(A)

such that x ∨ (y ∧ z) ∈ P and (x ∨ y) ∧ (x ∨ z) /∈ P . So, x, y ∧ z ∈ P and since P is

prime, y ∈ P or z ∈ P . It follows that x∨y ∈ P or x∨ z ∈ P . On the other hand, as

(x ∨ y) ∧ (x ∨ z) /∈ P , x ∨ y /∈ P and x ∨ z /∈ P , which is a contradiction. Therefore,

A is distributive. �

Let A be a semilattice. Let a1, . . . , an ∈ A and I ∈ Id(A). We consider the

following property:

(∗) (a1] ∩ . . . ∩ (an] ⊆ I implies ai ∈ I

for some i ∈ {1, . . . , n}. It follows that every ideal satisfying the property (∗) is

irreducible. Indeed, let I, I1, I2 ∈ Id(A) such that I = I1 ∩ I2. Suppose that I ⊂ I1
and I ⊂ I2. Then there exist a, b ∈ A such that a ∈ I1 − I and b ∈ I2 − I. As

(a] ∩ (b] ⊆ I1 ∩ I2 = I and I satisfies (∗), a ∈ I or b ∈ I, which is a contradiction.

Theorem 2.2. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.

(2) Every irreducible ideal satisfies the property (∗).

P r o o f. (1) ⇒ (2) Let a1, . . . , an ∈ A and I ∈ Irr(A) such that (a1] ∩ . . . ∩

(an] ⊆ I. Suppose that a1, . . . , an /∈ I. Since I is irreducible, by Lemma 1.1, there

exists b /∈ I and there exists c ∈ I such that b 6 ai ∨ c, i.e., ai ∨ c ∈ [b) for all

i = 1, . . . , n. As [b) is a bounded distributive lattice, b 6 (a1 ∨ c) ∧ . . . ∧ (an ∨ c) =

(a1 ∧ . . .∧an)∨ c. Then (b] ⊆ (a1 ∧ . . .∧an]∨ (c] ⊆ ((a1]∩ . . .∩ (an])∨ (c] ⊆ I. Thus,

b ∈ I, which is a contradiction. Therefore I satisfies the property (∗).

(2) ⇒ (1) Let a ∈ A and x, y, z ∈ [a). We prove that (x∨y)∧ (x∨ z) 6 x∨ (y ∧ z).

Suppose the contrary. Then, by Theorem 1.1, there exists P ∈ Irr(A) such that

x ∨ (y ∧ z) ∈ P and (x ∨ y) ∧ (x ∨ z) /∈ P . So, x, y ∧ z ∈ P and x ∨ y, x ∨ z /∈ P .

Since (y] ∩ (z] ⊆ P and P satisfies the property (∗), y ∈ P or z ∈ P . So, x ∨ y ∈ P

or x ∨ z ∈ P , which is a contradiction. Thus, A is distributive. �
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E x am p l e 2.1. Not every irreducible ideal is optimal in a nearlattice. We con-

sider the following configuration:

d e

a b c

1

It is easy to prove that I = {a, d, e} is an irreducible ideal but not optimal, i.e.,

Ic = {1, b, c} is not Frink filter because (b] ∩ (c] ⊆ (a] and a /∈ Ic.

In the class of distributive nearlattices every irreducible ideal is optimal.

Theorem 2.3. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.

(2) Irr(A) ⊆ IdOp(A).

P r o o f. (1) ⇒ (2) Let I ∈ Irr(A). Since A is distributive, it follows by the

results developed in [7] that I is prime. Thus, by Lemma 2.1, I is optimal.

(2) ⇒ (1) Let x, y ∈ A such that x � y. By Theorem 1.1 there exists P ∈ Irr(A)

such that y ∈ P and x /∈ P . As Irr(A) ⊆ IdOp(A) and IdOp(A) ⊆ X(A) we have

that P ∈ X(A). Then, by Theorem 2.1, A is distributive. �

The following definition given in [3] is an alternative definition of relative annihi-

lators in distributive nearlattices different from that given in [10].

Definition 2.1. Let A be a semilattice and a, b ∈ A. The set

a ◦ b = {x ∈ A : b 6 x ∨ a}

is called annihilator of a relative to b. In particular, the relative annihilator a⊤ =

a ◦ 1 = {x ∈ A : x ∨ a = 1} is called the annihilator of a.

Let a ∈ A and F ∈ Fi(A). We consider the set

a ◦ F = {x ∈ A : ∃f ∈ F (f 6 x ∨ a)}.

By the results developed in [3] we have that a nearlattice A is distributive if and

only if a ◦ b ∈ Fi(A) if and only if a ◦ F ∈ Fi(A) for all a, b ∈ A and all F ∈ Fi(A).

Lemma 2.2 ([3]). Let A be a distributive nearlattice. Let a ∈ A and I ∈ Id(A).

Then I ∩ a⊤ = ∅ if and only if there exists Q ∈ maxX(A) such that I ⊆ Q and

a ∈ Q.
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Lemma 2.3. Let A be a semilattice and F ∈ FiF(A). Then F is prime if and

only if a ◦ F = F for all a /∈ F .

P r o o f. Let a ∈ A such that a /∈ F . It is easy to see that F ⊆ a ◦ F . Let

x ∈ a ◦ F . Then there exists f ∈ F such that f 6 x ∨ a. So, x ∨ a ∈ F . Since F is

prime, x ∈ F or a ∈ F . Therefore, it should be x ∈ F and a ◦ F = F for all a /∈ F .

Conversely, let x, y ∈ A such that x ∨ y ∈ F and suppose that x /∈ F and y /∈ F . As

a ◦ F = F for all a /∈ F , in particular, x ◦ F = F . Thus, y /∈ x ◦ F . On the other

hand, if we take f = x∨y ∈ F , f 6 y∨x and y ∈ x◦F , which is a contradiction. �

Theorem 2.4. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.

(2) If x ◦ F ⊆ y ◦ F for every prime Frink filter F , then x 6 y.

P r o o f. (1) ⇒ (2) Let x, y ∈ A such that x ◦ F ⊆ y ◦ F for every prime Frink

filter F . Suppose that x � y. Then, by Theorem 1.2, there exists P ∈ X(A) such

that y ∈ P and x /∈ P . By Lemma 2.1, X(A) = IdOp(A) and P is optimal. So,

F = P c is a prime Frink filter. It follows that x◦F = A and therefore y ◦F = A. On

the other hand, by Lemma 2.3, y ∈ y ◦ F = F and y /∈ F , which is a contradiction.

(2) ⇒ (1) Let x, y ∈ A such that x � y. Then there exists F ∈ FiF(A) such that F

is prime and x ◦F * y ◦F . So, there exists z ∈ x ◦F such that z /∈ y ◦F . Note that

z /∈ F . Since F is a Frink filter and z /∈ F , by Lemma 2.3 we have z ◦ F = F . It

follows that x ∈ F and y /∈ F . As P = F c is an optimal ideal, and therefore prime,

x /∈ P and y ∈ P . Then, by Theorem 2.1, A is distributive. �

3. Annihilator-preserving congruence relations

In the present section, following the results developed in [3] and [7], we study

the concept of annihilator-preserving congruence relations in the class of distribu-

tive nearlattices. We shall prove that there exists a dual isomorphism between

annihilator-preserving congruence relations of a distributive nearlattice A and cer-

tain N-subspaces of the dual space of A satisfying an aditional condition.

LetA be a distributive nearlattice. We denote byCon(A) the set of all congruences

of A. If θ ∈ Con(A), then we will write (a, b) ∈ θ or a ≡θ b. The equivalence class

of an element a ∈ A is denoted by |a|θ = {b ∈ A : a ≡θ b}. Recall that Con(A) is a

distributive lattice where for any θ1, θ2 ∈ Con(A), θ1 ∧ θ2 = θ1 ∩ θ2 and

(a, b) ∈ θ1 ∨ θ2 if and only if there exist c0 = a, c1, . . . , cn = b ∈ A such that

(ci, ci+1) ∈ θ1 ∪ θ2 for all i = 0, . . . , n− 1.
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The canonical or natural map with respect to θ is the function qθ : A → A/θ defined

by qθ(a) = |a|θ. For a subset S ⊆ A we will write |S|θ = {|a|θ : a ∈ S}.

Definition 3.1. Let A be a distributive nearlattice and θ ∈ Con(A). We say

that θ is an annihilator-preserving congruence, or AP-congruence, if for each a, b ∈ A,

a ≡θ b implies that for each x ∈ a⊤ there exists y ∈ b⊤ such that x ≡θ y.

If A is a distributive nearlattice and θ is an AP-congruence, we will use the

notation a⊤ ≡θ̃ b⊤ to indicate that θ satisfies the condition of Definition 3.1. So, a

congruence is an AP-congruence if for each a, b ∈ A, a⊤ ≡θ̃ b⊤ whenever a ≡θ b. We

denote by ConAP(A) the set of all AP-congruences of A.

E x am p l e 3.1. Let h : A → B be a homomorphism such that h(a) = 1 implies

a = 1. Then Kerh = {(a, b) : h(a) = h(b)} is an AP-congruence. Let (a, b) ∈ Kerh.

If x ∈ a⊤, then x ∨ a = 1 and h(x ∨ a) = h(x) ∨ h(a) = h(x) ∨ h(b) = h(x ∨ b) = 1.

Thus, by the assumption, x ∨ b = 1 and x ∈ b⊤. It follows that Kerh ∈ ConAP(A).

R em a r k 3.1. If A = 〈A,→, 1〉 is an implication algebra, then every congruence

is an AP-congruence, that is, both concepts coincide. Let θ ∈ Con(A). Let a, b ∈ A

such that a ≡θ b and x ∈ a⊤. Then a∨ x = 1, or equivalently, (a → x) → x = 1 and

a → x 6 x. On the other hand, it always holds that x 6 a → x in A. So, x = a → x.

Let y = b → x. Since a ≡θ b,

x = a → x ≡θ b → x = y,

i.e., x ≡θ y. We prove that y ∈ b⊤. If 1 � b∨y, then there exists a maximal deductive

system P such that b ∨ y = (b → y) → y /∈ P . Since P is maximal, b → y ∈ P and

y = b → x /∈ P . Again, since P is maximal, b ∈ P and x /∈ P . Then b, b → y ∈ P

and y ∈ P , which is a contradiction. Therefore, y ∈ b⊤ and θ ∈ ConAP(A).

Lemma 3.1. Let A be a distributive nearlattice. Then ConAP(A) is a sublattice

of Con(A).

P r o o f. Let θ1, θ2 ∈ ConAP(A). We prove that θ1 ∧ θ2, θ1 ∨ θ2 ∈ ConAP(A).

Let (a, b) ∈ θ1 ∧ θ2 and x ∈ a⊤. Since θ1 is an AP-congruence, there exists y ∈ b⊤

such that x ≡θ1 y. Similarly, as (a, b) ∈ θ2, there exists y ∈ b⊤ such that x ≡θ2 y.

Then x ≡θ1 y ∨ x and x ≡θ2 y ∨ x. Since [x) is a distributive lattice, there exist

(y ∨ x) ∧ (y ∨ x), x ∧ (y ∨ x) and x ∧ (y ∨ x). It follows that

x = x ∧ (y ∨ x) ≡θ1 (y ∨ x) ∧ (y ∨ x)

and

x = x ∧ (y ∨ x) ≡θ2 (y ∨ x) ∧ (y ∨ x).
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Then x ≡θ1∧θ2 (y ∨ x) ∧ (y ∨ x). On the other hand, y ∨ x, y ∨ x ∈ b⊤ and since b⊤

is a filter, we have (y ∨ x) ∧ (y ∨ x) ∈ b⊤. Thus, θ1 ∧ θ2 is an AP-congruence.

Let (a, b) ∈ θ1 ∨ θ2 and x ∈ a⊤. Then there exist c0 = a, c1, . . . , cn = b ∈ A such

that (ci, ci+1) ∈ θ1∪θ2 for all i = 0, . . . , n−1. So, x ∈ a⊤ = c⊤0 and (c0, c1) ∈ θ1∪θ2.

Since θ1 and θ2 are AP-congruences, there exists y1 ∈ c⊤1 such that (x, y1) ∈ θ1 ∪ θ2.

By induction, there exist y1, . . . , yn ∈ A such that yj ∈ c⊤j and (x, y1), (yj , yj+1) ∈

θ1∪θ2 for all j = 1, . . . , n−1. Therefore, there exists yn ∈ c⊤n = b⊤ and x ≡θ1∨θ2 yn.

So, θ1 ∨ θ2 is an AP-congruence. �

R em a r k 3.2. Note that not every congruence is an AP-congruence. We con-

sider the following distributive nearlattice A:

d e

a b c

1

Let θ(c, 1) be the congruence generated by the pair (c, 1). Let e ∈ 1⊤ = A. Thus,

1 ≡θ c but there does not exist y ∈ c⊤ such that e ≡θ y. So, θ(c, 1) /∈ ConAP(A).

It was proved in [7] that the congruences lattice of a distributive nearlattice A is

dually isomorphic to the lattice of certain subspaces, called N-subspaces, of the dual

space 〈X(A),KA〉.

Definition 3.2 ([7]). Let 〈X,K〉 be an N-space and let Y be a subset of X . We

say that Y is an N-subspace if 〈Y,KY 〉 is an N-space.

The set of all N-subspaces of an N-space 〈X,K〉 will be denoted by S(X).

Let A be a distributive nearlattice and θ ∈ Con(A). We consider

Yθ = {q−1
θ (P ) : P ∈ X(A/θ)}.

Since qθ is a homomorphism, q
−1
θ (P ) ∈ X(A) and Yθ ⊆ X(A). It follows that

the pair 〈Yθ,KYθ
〉 is an N-space and therefore Yθ is an N-subspace. Reciprocally, if

Y ⊆ X(A), then the binary relation θ(Y ) ⊆ A×A given by

θ(Y ) = {(a, b) ∈ A×A : ϕA(a)c ∩ Y = ϕA(b)c ∩ Y }

is a congruence relation of A such that θ = θ(Yθ). For more details see [7].

400



For each F ∈ Fi(A) we consider the set γ(F ) = {P ∈ X(A) : P ∩ F 6= ∅}. We

have that γ(F ) =
⋃
{ϕA(a)c : a ∈ F} and in particular γ([a)) = ϕA(a)c.

Corollary 3.1. Let A be a distributive nearlattice and Y ∈ S(X(A)). Let

a, b ∈ A such that a ≡θ(Y ) b. The following conditions are equivalent:

(1) a⊤ ≡θ̃(Y ) b
⊤.

(2) γ(a⊤) ∩ Y = γ(b⊤) ∩ Y .

P r o o f. (1) ⇒ (2) We prove that γ(a⊤) ∩ Y ⊆ γ(b⊤) ∩ Y . Let P ∈ γ(a⊤) ∩ Y .

Then P ∈
⋃
{ϕA(x)c : x ∈ a⊤} ∩ Y . So, there exists e ∈ a⊤ such that P ∈ ϕA(e)c

and as a⊤ ≡θ̃(Y ) b⊤, there exists f ∈ b⊤ such that e ≡θ(Y ) f , i.e., ϕA(e)c ∩ Y =

ϕA(f)c ∩ Y . It follows that

P ∈ ϕA(e)c ∩ Y = ϕA(f)c ∩ Y ⊆
⋃

{ϕA(y)c : y ∈ b⊤} ∩ Y = γ(b⊤) ∩ Y.

Thus, P ∈ γ(b⊤) ∩ Y . The other inclusion can be shown similarly.

(2) ⇒ (1) By hypothesis, γ(a⊤) ∩ Y = γ(b⊤) ∩ Y , i.e.,

⋃
{ϕA(x)c : x ∈ a⊤} ∩ Y =

⋃
{ϕA(y)c : y ∈ b⊤} ∩ Y.

Let e ∈ a⊤. We prove that there exists f ∈ b⊤ such that (e, f) ∈ θ(Y ). Note that

ϕA(e)c ∩ Y ⊆
⋃
{ϕA(x)c : x ∈ a⊤} ∩ Y =

⋃
{ϕA(y)c : y ∈ b⊤} ∩ Y . Thus,

ϕA(e)c ∩ Y ⊆
⋃

{ϕA(y)c ∩ Y : y ∈ b⊤}

or equivalently, ⋂
{ϕA(y) ∩ Y : y ∈ b⊤} ⊆ ϕA(e) ∩ Y.

Since Y is an N-subspace, by Proposition 1.2, there exist y1, . . . , yn ∈ [b⊤) = b⊤

such that y1 ∧ . . . ∧ yn exists and [ϕA(y1) ∩ Y ] ∩ . . . ∩ [ϕA(yn) ∩ Y ] ⊆ ϕA(e) ∩ Y . If

y = y1∧. . .∧yn, then ϕA(y)∩Y ⊆ ϕA(e)∩Y and ϕA(e∨y)c∩Y = ϕA(e)c∩Y . Since

b⊤ ∈ Fi(A) and y ∈ b⊤, it follows that f = e∨ y ∈ b⊤. So, ϕA(e)c ∩Y = ϕA(f)c ∩Y

and (e, f) ∈ θ(Y ). Therefore, a⊤ ≡θ̃(Y ) b
⊤. �

Theorem 3.1. Let A be a distributive nearlattice and θ ∈ Con(A). Let Yθ ∈

S(X(A)) such that θ = θ(Yθ). The following conditions are equivalent:

(1) If a ≡θ 1, then a⊤ ≡θ̃ A.

(2) θ is an AP-congruence.

(3) |a⊤|θ = |a|⊤θ for all a ∈ A.

(4) If a ∨ b ≡θ 1, then there exists c ∈ a⊤ such that c ≡θ b.
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P r o o f. (1) ⇒ (2) Let a, b ∈ A such that a ≡θ b. By Corollary 3.1, we only

need to prove that γ(a⊤)∩ Yθ = γ(b⊤)∩Yθ. If P ∈ γ(a⊤)∩Yθ, then P ∩ a⊤ 6= ∅ and

P ∈ Yθ. So, there exists c ∈ P such that a ∨ c = 1. As a ≡θ b, we have b ∨ c ≡θ 1

and by hypothesis (b ∨ c)⊤ ≡θ̃ A, i.e.,

γ((b ∨ c)⊤) ∩ Yθ = γ(A) ∩ Yθ = X(A) ∩ Yθ = Yθ.

On the other hand, ϕA(c)c ∩ γ(b⊤) = ϕA(c)c ∩ γ((b ∨ c)⊤). Indeed, if P ∈ ϕA(c)c ∩

γ(b⊤), then c ∈ P and P ∩ b⊤ 6= ∅. Since P ∩ b⊤ 6= ∅, there exists z ∈ P such that

b∨ z = 1. It follows that z ∈ (b∨ c)⊤ and P ∩ (b∨ c)⊤ 6= ∅, i.e., P ∈ γ((b∨ c)⊤). So,

P ∈ ϕA(c)c∩γ((b∨c)⊤). The other inclusion is similar. Therefore, ϕA(c)c∩γ(b⊤) =

ϕA(c)c ∩ γ((b ∨ c)⊤) and

ϕA(c)c ∩ γ(b⊤) ∩ Yθ = ϕA(c)c ∩ γ((b ∨ c)⊤) ∩ Yθ = ϕA(c)c ∩ Yθ.

As c ∈ P , P ∈ ϕA(c)c ∩Yθ. Thus, P ∈ γ(b⊤)∩Yθ and γ(a
⊤)∩Yθ ⊆ γ(b⊤)∩Yθ. The

inclusion γ(b⊤) ∩ Yθ ⊆ γ(a⊤) ∩ Yθ is analogous.

(2) ⇒ (3) Let a ∈ A. We see that |a⊤|θ = |a|⊤θ . If |x| ∈ |a⊤|θ, then there exists

x̄ ∈ a⊤ such that |x|θ = |x̄|θ. Thus, |x|θ ∨ |a|θ = |x̄|θ ∨ |a|θ = |x̄ ∨ a|θ = |1|θ and

|x|θ ∈ |a|⊤θ . Therefore, |a
⊤|θ ⊆ |a|⊤θ .

For the other inclusion, suppose there exists |x|θ ∈ |a|⊤θ such that |x|θ /∈ |a⊤|θ.

Then x ∨ a ≡θ 1 and we consider the filter F (|a⊤|θ). Note that |x|θ /∈ F (|a⊤|θ).

Indeed, if |x|θ ∈ F (|a⊤|θ), then there exist |x1|θ, . . . , |xn|θ ∈ [|a⊤|θ) such that

|x1|θ ∧ . . . ∧ |xn|θ exists and |x|θ = |x1|θ ∧ . . . ∧ |xn|θ. It is easy to see that |a⊤|θ
is increasing. So, |x1|θ, . . . , |xn|θ ∈ |a⊤|θ and there exist x̄1, . . . , x̄n ∈ a⊤ such that

|x̄i|θ = |xi|θ for all i = 1, . . . , n. Then |x̄1|θ, . . . , |x̄n|θ ∈ |a⊤|θ and since a⊤ ∈ Fi(A),

|x|θ = |x1|θ ∧ . . . ∧ |xn|θ = |x̄1|θ ∧ . . . ∧ |x̄n|θ = |x̄1 ∧ . . . ∧ x̄n|θ ∈ |a⊤|θ,

which is a contradiction. Then |x|θ /∈ F (|a⊤|θ) and by Theorem 1.2 there exists

Pθ ∈ X(A/θ) such that |x|θ ∈ Pθ and Pθ ∩ |a⊤|θ = ∅. Since qθ : A → A/θ is a

homomorphism onto, q−1
θ (Pθ) = P ∈ X(A) and P ∈ Yθ. Then P ∩ a⊤ = ∅ and by

Lemma 2.2 there exists Q ∈ maxX(A) such that P ⊆ Q and a ∈ Q.

On the other hand, x ∨ a ≡θ 1 and as θ is an AP-congruence, (x ∨ a)⊤ ≡θ̃ 1⊤

and γ((x ∨ a)⊤) ∩ Yθ = γ(1⊤) ∩ Yθ = X(A) ∩ Yθ = Yθ, i.e., Yθ ⊆ γ((x ∨ a)⊤). As

P ∈ Yθ, P ∈ γ((x ∨ a)⊤) and P ∩ (x ∨ a)⊤ 6= ∅. Then there exists w ∈ P such that

(x ∨ a) ∨ w = 1. Since |x|θ ∈ Pθ, x ∈ q−1
θ (Pθ) = P . So, w, x ∈ P ⊆ Q. Also, a ∈ Q

and (x ∨ a) ∨w = 1 ∈ Q, which is a contradiction because Q is maximal. Therefore,

|a⊤|θ = |a|⊤θ .

402



(3) ⇒ (4) Let a, b ∈ A such that a ∨ b ≡θ 1. Then |a ∨ b|θ = |a|θ ∨ |b|θ = |1|θ. It

follows that |b|θ ∈ |a|⊤θ = |a⊤|θ. Then there exists c ∈ a⊤ such that c ≡θ b.

(4) ⇒ (1) Let a ∈ A such that a ≡θ 1. If b ∈ A, then a∨ b ≡θ 1 and by hypothesis

there exists c ∈ a⊤ such that c ≡θ b, i.e., a⊤ ≡θ̃ A. �

In [3] we introduce and study a particular class of homomorphisms, called ⊤-

homomorphisms. We say that a homomorphism h : A → B between distributive

nearlattices is a ⊤-homomorphism if F (h(a⊤)) = h(a)⊤ for all a ∈ A. The following

result will be useful later.

Lemma 3.2 ([3]). Let A,B be two distributive nearlattices and h : A → B be a

⊤-homomorphism. Then h−1(P ) ∈ maxX(A) for all P ∈ maxX(B).

Theorem 3.2. Let A be a distributive nearlattice and θ ∈ Con(A). Let Yθ ∈

S(X(A)) such that θ = θ(Yθ). The following conditions are equivalent:

(1) θ is an AP-congruence.

(2) qθ is a ⊤-homomorphism.

P r o o f. (1) ⇒ (2) By Theorem 3.1 we have that F (|a⊤|θ) = F (|a|⊤θ ) = |a|⊤θ . It

follows that F (|qθ(a)⊤|) = qθ(a)
⊤ and qθ is a ⊤-homomorphism.

(2) ⇒ (1) Let a, b ∈ A such that a ≡θ b. We see that a⊤ ≡θ̃(Yθ)
b⊤, or equivalently

by Corollary 3.1, that γ(a⊤) ∩ Yθ = γ(b⊤) ∩ Yθ. Let P ∈ γ(a⊤) ∩ Yθ. Then P ∈⋃
{ϕA(x)c : x ∈ a⊤} and P ∈ Yθ, i.e., there exists e ∈ a⊤ such that P ∈ ϕA(e)c and

P = q−1
θ (Pθ) for some Pθ ∈ X(A/θ). So, e ∈ P and |e|θ ∈ Pθ. Since e ∈ a⊤, |e|θ ∈

|a⊤|θ ⊆ F (|a⊤|θ) = |a|⊤θ = |b|⊤θ . By hypothesis, qθ is a ⊤-homomorphism and |b|
⊤

θ =

F (|b⊤|θ). Then |e|θ ∈ F (|b⊤|θ) and there exist |y1|θ, . . . , |yn|θ ∈ [|b⊤|θ) = |b⊤|θ such

that |y1|θ∧ . . .∧|yn|θ exists and |e|θ = |y1|θ∧ . . .∧|yn|θ. Thus, there exist t1, . . . , tn ∈

b⊤ such that |ti|θ = |yi|θ for all i = 1, . . . , n. Since |e|θ = |y1|θ ∧ . . . ∧ |yn|θ ∈ Pθ

and Pθ ∈ X(A/θ), there exists j ∈ {1, . . . , n} such that |yj |θ ∈ Pθ. So, |tj |θ ∈ Pθ

and tj ∈ q−1
θ (Pθ) = P , i.e., P ∈ ϕA(tj)

c and as tj ∈ b⊤, P ∈
⋃
{ϕA(y)c : y ∈ b⊤}.

Therefore, P ∈ γ(b⊤) ∩ Yθ and γ(a⊤) ∩ Yθ ⊆ γ(b⊤) ∩ Yθ. The other inclusion can be

shown similarly. �

Now, we study the structure of the quotient algebra A/θ of a distributive near-

lattice A when θ is an AP-congruence. In the following definition we generalize the

normal and quasicomplemented lattices studied by Cornish in [12] and [13].

Definition 3.3. Let A be a distributive nearlattice.

(1) We say that A is normal if each prime ideal is contained in a unique maximal

ideal.
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(2) We say that A is quasicomplemented if for each a ∈ A there exists b ∈ A such

that a⊤⊤ = b⊤, where

a⊤⊤ = {c ∈ A : (∀ e ∈ a⊤) (c ∨ e = 1)}.

Theorem 3.3. Let A be a distributive nearlattice and θ ∈ ConAP(A).

(1) If A is normal, then A/θ is normal.

(2) If A is quasicomplemented, then A/θ is quasicomplemented.

P r o o f. (1) Let P ∈ X(A/θ) and U1, U2 ∈ maxX(A/θ) such that P ⊆ U1

and P ⊆ U2. By Lemma 3.2, q
−1
θ (U1), q

−1
θ (U2) ∈ maxX(A). As q−1

θ (P ) ⊆

q−1
θ (U1) ∩ q−1

θ (U2) and A is normal, q−1
θ (U1) = q−1

θ (U2). Thus, U1 = qθ(q
−1
θ (U1)) =

qθ(q
−1
θ (U2)) = U2 and A/θ is normal.

(2) Let |a|θ ∈ X(A/θ). Then a ∈ A and as A is quasicomplemented, there

exists b ∈ A such that a⊤⊤ = b⊤. We prove that |a|⊤⊤

θ = |b|⊤θ , or equivalently by

Theorem 3.1, |a|⊤⊤

θ = |a⊤⊤|θ. If |x|θ ∈ |a⊤⊤|θ, then there exists x̄ ∈ a⊤⊤ such that

|x̄|θ = |x|θ. Let |y|θ ∈ |a|⊤θ . By Theorem 3.1, |a|
⊤

θ = |a⊤|θ. So, there exists y ∈ a⊤

such that |y|θ = |y|θ. Since y ∈ a⊤ and x̄ ∈ a⊤⊤, x̄ ∨ y = 1. So,

|x|θ ∨ |y|θ = |x̄|θ ∨ |y|θ = |x̄ ∨ y|θ = |1|θ,

i.e., |x|θ ∈ |a|⊤⊤

θ and |a⊤⊤|θ ⊆ |a|⊤⊤

θ .

Let us prove the other inclusion. Let |x|θ ∈ |a|⊤⊤

θ . As a
⊤⊤ = b⊤, it follows that

a⊤ = a⊤⊤⊤ = b⊤⊤. Since b ∈ b⊤⊤, b ∈ a⊤ and b∨a = 1. Then |b∨a|θ = |b|θ ∨|a|θ =

|1|θ and |b|θ ∈ |a|⊤θ . So, as |x|θ ∈ |a|⊤⊤

θ and |b|θ ∈ |a|⊤θ , |x|θ∨|b|θ = |1|θ, which implies

that |x|θ ∈ |b|⊤θ . By hypothesis, θ is an AP-congruence and |b|⊤θ = |b⊤|θ = |a⊤⊤|θ.

Thus, |x|θ ∈ |a⊤⊤|θ and |a|⊤⊤

θ ⊆ |a⊤⊤|θ. Therefore |a|⊤⊤

θ = |b|⊤θ . �

R em a r k 3.3. Note that for everyQ ∈ X(A) the set Q⊤ = {a ∈ A : Q∩a⊤ 6= ∅}

is a filter of A. Since 1⊤ = A, 1 ∈ Q⊤. Let x ∈ Q⊤ and x 6 y. Then Q ∩ x⊤ 6= ∅

and x⊤ ⊆ y⊤. So, Q ∩ y⊤ 6= ∅ and y ∈ Q⊤. Finally, let x, y ∈ Q⊤ such that x ∧ y

exists. Then Q ∩ x⊤ 6= ∅ and Q ∩ y⊤ 6= ∅. It follows that there exists q1, q2 ∈ Q

such that x ∨ q1 = 1 and y ∨ q2 = 1. Let q = q1 ∨ q2 ∈ Q. So, x ∨ q = 1, y ∨ q = 1

and as [q) is a bounded distributive lattice, (x ∧ y) ∨ q = (x ∨ q) ∧ (y ∨ q) = 1, i.e.,

q ∈ Q ∩ (x ∧ y)⊤ and x ∧ y ∈ Q⊤. Therefore, Q⊤ ∈ Fi(A).

We characterize the N-subspaces of X(A) corresponding to AP-congruences.

Theorem 3.4. Let A be a distributive nearlattice and Y ∈ S(X(A)). The fol-

lowing conditions are equivalent:

(1) θ(Y ) is an AP-congruence.

(2) max[Q) ⊆ Y for all Q ∈ Y .
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P r o o f. (1) ⇒ (2) Let Q ∈ Y and P ∈ max[Q). Suppose that P /∈ Y . We

consider the family

F =
⋂

{ϕA(b) ∩ Y : ϕA(b) /∈ H(P )} ∩
⋂

{ϕc
A
(c) ∩ Y : ϕA(c) ∈ H(P )}.

If F 6= ∅, then there exists R ∈ F such that H(P ) = H(R). Since H is 1-1, we have

P = R and P ∈ Y , which is a contradiction. So, F = ∅ and

⋂
{ϕA(b) ∩ Y : ϕA(b) /∈ H(P )} ⊆

⋃
{ϕA(c) ∩ Y : ϕA(c) ∈ H(P )}.

Let B = {b : ϕA(b) /∈ H(P )} and C = {c : ϕA(c) ∈ H(P )}. As Y is an N-subspace,

there exist b1, . . . , bn ∈ [B) and c1, . . . , cm ∈ C such that b1 ∧ . . . ∧ bn exists and

[ϕA(b1) ∩ Y ] ∩ . . . ∩ [ϕA(bn) ∩ Y ] ⊆ [ϕA(c1) ∩ Y ] ∪ . . . ∪ [ϕA(cm) ∩ Y ].

Since b1, . . . , bn ∈ [B), it follows that there exist b̄1, . . . , b̄n ∈ B such that b̄i 6 bi for

all i = 1, . . . , n. Let b = b1∧. . .∧bn and c = c1∨. . .∨cm. Then ϕA(b)∩Y ⊆ ϕA(c)∩Y

and ϕA(b ∨ c)c ∩ Y = ϕA(c)c ∩ Y . So, (b ∨ c, c) ∈ θ(Y ). As c1, . . . , cm ∈ C, then

ϕA(cj) ∈ H(P ), i.e., P /∈ ϕA(cj) and cj ∈ P for all j = 1, . . . ,m. Thus, c ∈ P .

On the other hand, if b ∈ P , then b1 ∧ . . . ∧ bn ∈ P and since P is prime, there

exists k ∈ {1, . . . , n} such that bk ∈ P . As b̄k 6 bk, then b̄k ∈ P . But b̄k ∈ B and

ϕA(b̄k) /∈ H(P ), i.e., P ∈ ϕA(b̄k) and b̄k /∈ P , which is a contradiction. Then b /∈ P .

We consider the set Q⊤ = {a ∈ A : Q ∩ a⊤ 6= ∅}. By Remark 3.3, Q⊤ ∈ Fi(A).

Since P is maximal, I(P ∪ {b}) ∩ Q⊤ 6= ∅. Otherwise, if I(P ∪ {b}) ∩ Q⊤ = ∅ then

there exists R ∈ X(A) such that P ⊆ R, b ∈ R and R ∩ Q⊤ = ∅. So, b ∈ R and

b /∈ P , which is a contradiction because P is maximal. Then I(P ∪ {b}) ∩ Q⊤ 6= ∅

and there exists p ∈ P such that p ∨ b ∈ Q⊤, i.e., Q ∩ (p ∨ b)⊤ 6= ∅. Thus, there

exists d ∈ A such that d ∈ Q ∩ (p ∨ b)⊤. On the other hand, since θ(Y ) is a

congruence and (b ∨ c, c) ∈ θ(Y ), then (b ∨ c ∨ p, c ∨ p) ∈ θ(Y ). By hypothesis,

θ(Y ) is an AP-congruence and (b ∨ c ∨ p)⊤ ≡θ̃(Y ) (c ∨ p)⊤. As p ∨ b 6 b ∨ c ∨ p,

(p∨ b)⊤ ⊆ (b∨ c∨ p)⊤ and d ∈ (b∨ c∨ p)⊤ . Thus, there exists f ∈ (c∨ p)⊤ such that

d ≡θ(Y ) f , i.e., ϕA(d)c∩Y = ϕA(f)c∩Y . Moreover, Q ∈ ϕA(d)c∩Y . Consequently,

Q ∈ ϕA(f)c ∩ Y and f ∈ Q. Since P ∈ max[Q), it follows that Q ⊆ P and f ∈ P .

Also, c, p ∈ P and f ∨ c∨ p = 1 ∈ P , which is a contradiction. Therefore P ∈ Y and

max[Q) ⊆ Y for all Q ∈ Y .

(2) ⇒ (1) Let a, b ∈ A such that a ≡θ(Y ) b. Then ϕA(a)c ∩ Y = ϕA(b)c ∩ Y . We

prove that a⊤ ≡θ̃(Y ) b
⊤, or equivalently by Corollary 3.1, γ(a⊤) ∩ Y = γ(b⊤) ∩ Y .

Let Q ∈ γ(a⊤) ∩ Y =
⋃
{ϕA(x)c : x ∈ a⊤} ∩ Y . Then there exists c ∈ a⊤ such that

Q ∈ ϕA(c)c. So, c∨ a = 1 and c ∈ Q. Suppose that Q /∈ γ(b⊤)∩ Y , i.e., Q∩ b⊤ = ∅.

Thus, by Lemma 2.2, there exists P ∈ maxX(A) such that Q ⊆ P and b ∈ P . So,
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P ∈ ϕA(b)c. Since P ∈ max[Q) ⊆ Y , P ∈ ϕA(b)c ∩ Y = ϕA(a)c ∩ Y and a ∈ P .

Moreover, c ∈ Q ⊆ P and c ∨ a = 1 ∈ P , which is a contradiction. Therefore,

a⊤ ≡θ̃(Y ) b
⊤ and θ(Y ) is an AP-congruence. �

Definition 3.4. Let A be a distributive nearlattice and Y ∈ S(X(A)). We say

that Y is an APN-subspace if max[Q) ⊆ Y for all Q ∈ Y .

Theorem 3.5. Let A be a distributive nearlattice and 〈X(A),KA〉 be the dual

space of A. Then there exists a dual isomorphism between the lattice of APN-

subspaces of X(A) and the lattice of AP-congruences of A.
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