Mathematica Bohemica

Ismael Calomino; Sergio A. Celani
Annihilator-preserving congruence relations in distributive nearlattices

Mathematica Bohemica, Vol. 143 (2018), No. 4, 391-407
Persistent URL: http://dml.cz/dmlcz/147476

Terms of use:

© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ANNIHILATOR-PRESERVING CONGRUENCE RELATIONS IN DISTRIBUTIVE NEARLATTICES

Ismael Calomino, Sergio Celani, Tandil
Received March 25, 2017. Published online January 24, 2018.
Communicated by Radomír Halaš

Abstract. In this note we give some new characterizations of distributivity of a nearlattice and we study annihilator-preserving congruence relations.

Keywords: distributive nearlattice; ideal; filter; congruence; annihilator
MSC 2010: 06A12, 03G10, 06D50

1. INTRODUCTION AND PRELIMINARIES

There exists a correspondence between the class of implication algebras and joinsemilattices with greatest element in which every principal filter is a Boolean lattice, given by Abbott in [1]. The nearlattices are a natural generalization of the implication algebras, i.e., join-semilattices with greatest element in which every principal filter is a bounded lattice. The class of nearlattices has been studied in [14] and [16] by Cornish and Hickman, and in [15], [8], [10], [9] and [11] by Chajda, Kolařík, Halaš and Kühr. An important class of nearlattices are the distributive nearlattices. Recently in [7] and [3], the authors develop a full duality for distributive nearlattices and propose a definition of relative annihilator different from that given in [10].

On the other hand, in [17], Janowitz defines the notion of annihilator-preserving congruence relation in a bounded distributive lattice \mathbf{A}, called AP-congruence, as a lattice-congruence θ such that for all $a, b \in A$, if $a \wedge b \equiv_{\theta} 0$, then there exists $c \in A$ such that $a \wedge c=0$ and $c \equiv_{\theta} b$. If \mathbf{A} is pseudocomplemented, then a latticecongruence θ is an AP-congruence if and only if it preserves pseudocomplements. A new characterization of the AP-congruences for bounded distributive lattices is given in [5] and in [6] this concept was extended to the bounded distributive semilattices.

This paper has two objectives: to give some new characterizations of distributivity of a nearlattice and to study the notion of annihilator-preserving congruence relations in the class of distributive nearlattices. In the rest of this section we shall give some necessary notation and definitions. We will recall the topological representation for distributive nearlattices developed in [7]. In Section 2 we will show some new characterizations of distributivity of a nearlattice using ideals, filters and relative annihilators. Finally, in Section 3, we study the AP-congruences in distributive nearlattices. We shall see that the AP-congruences in a distributive nearlattice \mathbf{A} are in a bijective correspondence to certain N -subspaces of the dual space of \mathbf{A}. This correspondence extends the results developed in [5] for distributive lattices.

Let $\mathbf{A}=\langle A, \vee, 1\rangle$ be a join-semilattice with greatest element. The set complement of a subset X of \mathbf{A} will be denoted by X^{c}. A filter is a subset F of \mathbf{A} such that $1 \in F$, if $a \leqslant b$ and $a \in F$ then $b \in F$, and if $a, b \in F$ then $a \wedge b \in F$, whenever $a \wedge b$ exists. If X is a subset of \mathbf{A}, the least filter containing X is called the filter generated by X and will be denoted by $F(X)$. A filter G is said to be finitely generated if $G=F(X)$ for some finite subset X of \mathbf{A}. If $X=a$, then $F(\{a\})=[a)$ is called the principal filter of a. We will denote by $\operatorname{Fi}(\mathbf{A})$ and $\operatorname{Fif}_{\mathrm{f}}(\mathbf{A})$ the set of all filters and finitely generated filters of \mathbf{A}, respectively. A proper filter F of \mathbf{A} is called prime if for all $a, b \in A, a \vee b \in F$ implies $a \in F$ or $b \in F$. An order filter is a subset F of \mathbf{A} such that $1 \in F$, if $a \leqslant b$ and $a \in F$ then $b \in F$, and for all $a, b \in F$, there exists $c \in F$ such that $c \leqslant a$ and $c \leqslant b$. A subset F of \mathbf{A} is a Frink filter if $1 \in F$ and for all $a_{1}, \ldots, a_{n} \in F$ and $b \in A$, whenever $\left(a_{1}\right] \cap \ldots \cap\left(a_{n}\right] \subseteq(b]$ we have $b \in F$. Denote the set of all order filters and Frink filters of \mathbf{A} by $\mathrm{Fi}_{\mathrm{Or}}(\mathbf{A})$ and $\mathrm{Fi}_{\mathrm{F}}(\mathbf{A})$, respectively. Note that every order filter and Frink filter is, in particular, a filter.

A subset I of \mathbf{A} is called an ideal if $a \leqslant b$ and $b \in I$ imply $a \in I$, and $a, b \in I$ imply $a \vee b \in I$. If X is a nonempty set, the least ideal containing X is called the ideal generated by X and will be denoted by $I(X)$. We shall say that a nonempty proper ideal P is prime if for all $a, b \in A, a \wedge b \in I$ implies $a \in I$ or $b \in I$, whenever $a \wedge b$ exists. We denote by $\operatorname{Id}(\mathbf{A})$ and $X(\mathbf{A})$ the set of all ideals and prime ideals of \mathbf{A}, respectively. Let max $X(\mathbf{A})$ denote the maximal elements of $X(\mathbf{A})$. For each $P \in X(\mathbf{A})$, let $\max [P)=\max X(\mathbf{A}) \cap[P)$. An ideal I of \mathbf{A} is irreducible if for all $I_{1}, I_{2} \in \operatorname{Id}(\mathbf{A})$ such that $I=I_{1} \cap I_{2}$ we have $I=I_{1}$ or $I=I_{2}$. An ideal I of \mathbf{A} is optimal if I^{c} is a Frink filter, i.e., if for all $a_{1}, \ldots, a_{n} \notin I$ and $b \in A$, whenever $\left(a_{1}\right] \cap \ldots \cap\left(a_{n}\right] \subseteq(b]$ we have $b \notin I$. Denote by $\operatorname{Irr}(\mathbf{A})$ and $\operatorname{Id}_{\mathrm{Op}}(\mathbf{A})$ the set of all optimal and irreducible ideals of \mathbf{A}, respectively. It follows that $\mathrm{Id}_{\mathrm{Op}}(\mathbf{A}) \subseteq X(\mathbf{A})$.

The following results were investigated for join-semilattices and will be useful later.

Theorem 1.1 ([4]). Let A be a join-semilattice with greatest element. Let $I \in$ $\operatorname{Id}(\mathbf{A})$ and $F \in \mathrm{Fi}_{\mathrm{Or}}(\mathbf{A})$ such that $I \cap F=\emptyset$. Then there exists $P \in \operatorname{Irr}(\mathbf{A})$ such that $I \subseteq P$ and $P \cap F=\emptyset$.

Lemma 1.1 ([4]). Let A be a join-semilattice with greatest element and $I \in$ $\operatorname{Id}(\mathbf{A})$. Then I is irreducible if and only if for each $a_{1}, \ldots, a_{n} \notin I$ there exists $b \notin I$ and there exists $c \in I$ such that $b \leqslant a_{i} \vee c$ for all $i=1, \ldots, n$.

We introduce the class of algebras that are the objects of study in this paper.
Definition 1.1. Let \mathbf{A} be a join-semilattice with greatest element. Then \mathbf{A} is called a nearlattice if each principal filter is a bounded lattice with respect to the induced order.

The class of nearlattices can be regarded as pure algebras through a ternary operation. This fact was proved by Hickman in [16] and by Chajda and Kolařík in [11]. Araújo and Kinyon in [2] found a smaller equational base.

Proposition 1.1 ([2]). Let A be a nearlattice. Let $m: A^{3} \rightarrow A$ be a ternary operation given by $m(x, y, z)=(x \vee z) \wedge_{z}(y \vee z)$. The following identities are satisfied:
(1) $m(x, y, x)=x$,
(2) $m(m(x, y, z), m(y, m(u, x, z), z), w)=m(w, w, m(y, m(x, u, z), z))$,
(3) $m(x, x, 1)=1$.

Conversely, let $\mathbf{A}=\langle A, m, 1\rangle$ be an algebra of type $(3,0)$ satisfying the identities (1)-(3). If we define $x \vee y=m(x, x, y)$, then \mathbf{A} is a semilattice. Moreover, for each $a \in A,[a)$ is a bounded lattice where for $x, y \in[a)$ the infimum is $x \wedge_{a} y=m(x, y, a)$. Hence \mathbf{A} is a nearlattice.

Definition 1.2. Let \mathbf{A} be a nearlattice. Then \mathbf{A} is called distributive if each principal filter is a bounded distributive lattice.

Example 1.1 ([1]). An implication algebra is defined as a join-semilattice with greatest element such that each principal filter is a Boolean lattice with respect to the induced order. If $\mathbf{A}=\langle A, \rightarrow, 1\rangle$ is an implication algebra, then the join of two elements x and y is given by $x \vee y=(x \rightarrow y) \rightarrow y$ and for each $a \in A$, $[a)=\{x \in A: a \leqslant x\}$ is a Boolean lattice where for $x, y \in[a)$ the meet is given by $x \wedge_{a} y=(x \rightarrow(y \rightarrow a)) \rightarrow a$ and $x \rightarrow a$ is the complement of x in $[a)$. So, $\mathbf{A}=\langle A, \vee, 1\rangle$ is a distributive nearlattice.

Note that from the results given in [14] we have the following characterization of the filter generated by a subset X in a distributive nearlattice \mathbf{A} :

$$
F(X)=\left\{a \in A: \exists x_{1}, \ldots, x_{n} \in[X) \exists x_{1} \wedge \ldots \wedge x_{n}\left(a=x_{1} \wedge \ldots \wedge x_{n}\right)\right\}
$$

Theorem 1.2 ([15]). Let A be a distributive nearlattice. Let $I \in \operatorname{Id}(\mathbf{A})$ and let $F \in \operatorname{Fi}(\mathbf{A})$ such that $I \cap F=\emptyset$. Then there exists $P \in X(\mathbf{A})$ such that $I \subseteq P$ and $P \cap F=\emptyset$.

Recall some topological notions. A topological space with a base \mathcal{K} will be denoted by $\langle X, \mathcal{K}\rangle$. We consider the set $D_{\mathcal{K}}(X)=\left\{U: U^{\text {c }} \in \mathcal{K}\right\}$. A subset $Y \subseteq X$ is basic saturated if it is an intersection of basic open sets, i.e., $Y=\bigcap\left\{U_{i} \in \mathcal{K}: Y \subseteq U_{i}\right\}$. The basic saturation $\operatorname{Bs}(Y)$ of a subset Y is the smallest basic saturated set containing Y. If $Y=\{y\}$, we write $\operatorname{Bs}(\{y\})=\operatorname{Bs}(y)$. On X, a binary relation \leqslant is defined as $x \leqslant y$ if and only if $y \in \operatorname{Bs}(x)$. It is easy to see that the relation \leqslant is a partial order if and only if $\langle X, \mathcal{K}\rangle$ is T_{0}. Let Y be a nonempty subset of X. We say that Y is irreducible if for every $U, V \in D_{\mathcal{K}}(X)$ such that $U \cap V \in D_{\mathcal{K}}(X)$ and $Y \cap(U \cap Y)=\emptyset$ we have $Y \cap U=\emptyset$ or $Y \cap V=\emptyset$. We say that Y is dually compact if for every family $\mathcal{F}=\left\{U_{i}: i \in I\right\} \subseteq \mathcal{K}$ such that $\bigcap\left\{U_{i}: i \in I\right\} \subseteq Y$ there exists a finite family $\left\{U_{1}, \ldots, U_{n}\right\} \subseteq \mathcal{K}$ such that $U_{1} \cap \ldots \cap U_{n} \subseteq Y$. Finally, remember that we can define a topology on Y by taking as its base the family $\mathcal{K}_{Y}=\{U \cap Y: U \in \mathcal{K}\}$ such that the pair $\left\langle Y, \mathcal{K}_{Y}\right\rangle$ is a topological space. For more details see [7].

Definition 1.3 ([7]). Let $\langle X, \mathcal{K}\rangle$ be a topological space. Then $\langle X, \mathcal{K}\rangle$ is an N -space if:
(1) \mathcal{K} is a basis of open, compact and dually compact subsets for the topology $\mathcal{T}_{\mathcal{K}}$ on X.
(2) For every $U, V, W \in \mathcal{K},(U \cap W) \cup(V \cap W) \in \mathcal{K}$.
(3) For every irreducible basic saturated subset Y of X there exists a unique $x \in X$ such that $Y=\operatorname{Bs}(x)$.

Proposition $1.2([7])$. Let $\langle X, \mathcal{K}\rangle$ be a topological space where \mathcal{K} is a basis of open and compact subsets for the topology $\mathcal{T}_{\mathcal{K}}$ on X. Suppose that $(U \cap W) \cup$ $(V \cap W) \in \mathcal{K}$ for all $U, V, W \in \mathcal{K}$. The following conditions are equivalent:
(1) $\langle X, \mathcal{K}\rangle$ is T_{0} and if $A=\left\{U_{i}: i \in I\right\}$ and $B=\left\{V_{j}: j \in J\right\}$ are nonempty families of $D_{\mathcal{K}}(X)$ such that $\bigcap\left\{U_{i}: i \in I\right\} \subseteq \bigcup\left\{V_{j}: j \in J\right\}$, then there exist $U_{1}, \ldots, U_{n} \in[A)$ and $V_{1}, \ldots, V_{k} \in B$ such that $U_{1} \cap \ldots \cap U_{n} \in D_{\mathcal{K}}(X)$ and $U_{1} \cap \ldots \cap U_{n} \subseteq V_{1} \cup \ldots \cup V_{k}$.
(2) $\langle X, \mathcal{K}\rangle$ is T_{0}, every $U \in \mathcal{K}$ is dually compact and the assignment $H: X \rightarrow$ $X\left(D_{\mathcal{K}}(X)\right)$ defined by

$$
H(x)=\left\{U \in D_{\mathcal{K}}(X): x \notin U\right\}
$$

for each $x \in X$, is onto.
(3) Every $U \in \mathcal{K}$ is dually compact and for every irreducible basic saturated subset Y of X there exists a unique $x \in X$ such that $Y=\operatorname{Bs}(x)$.

If $\langle X, \mathcal{K}\rangle$ is an N -space, then $\left\langle D_{\mathcal{K}}(X), \cup, X\right\rangle$ is a distributive nearlattice. Note that $X \in \mathcal{K}$ if and only if $D_{\mathcal{K}}(X)$ is a bounded distributive lattice. Thus, \mathcal{K} is the family of all open and compact subsets of X and we obtain the topological representation for bounded distributive lattices given by Stone in [18].

Let \mathbf{A} be a distributive nearlattice. Let us consider the poset $\langle X(\mathbf{A}), \subseteq\rangle$ and the mapping $\varphi_{\mathbf{A}}: A \rightarrow \mathcal{P}_{\mathrm{d}}(X(\mathbf{A}))$ defined by $\varphi_{\mathbf{A}}(a)=\{P \in X(\mathbf{A}): a \notin P\}$. Then \mathbf{A} is isomorphic to the subalgebra $\varphi_{\mathbf{A}}[\mathbf{A}]=\left\{\varphi_{\mathbf{A}}(a): a \in A\right\}$ of $\mathcal{P}_{\mathrm{d}}(X(\mathbf{A}))$ and the pair $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ is an N -space, called the dual space of \mathbf{A}, where the topology $\mathcal{T}_{\mathbf{A}}$ is generated by taking as its base the family $\mathcal{K}_{\mathbf{A}}=\left\{\varphi_{\mathbf{A}}(a)^{\mathrm{c}}: a \in A\right\}$. Let \mathbf{A} and \mathbf{B} be two distributive nearlattices. A mapping $h: A \rightarrow B$ is a homomorphism if $h(1)=1$, $h(a \vee b)=h(a) \vee h(b)$ for all $a, b \in A$, and $h(a \wedge b)=h(a) \wedge h(b)$ whenever $a \wedge b$ exists. For more details see [7].

2. Some equivalences of distributivity

In [3] the authors obtain new equivalences of distributivity of a nearlattice. In this section we present some new characterizations of distributivity using ideals, filters and the theory of relative annihilators.

Lemma 2.1. Let A be a distributive nearlattice and $I \in \operatorname{Id}(\mathbf{A})$. Then I is prime if and only if it is optimal.

Proof. We need only to prove that every prime ideal is optimal. Let $a_{1}, \ldots, a_{n}, b \in A$ and $P \in X(\mathbf{A})$ such that $a_{1}, \ldots, a_{n} \notin P$ and $\left(a_{1}\right] \cap \ldots \cap\left(a_{n}\right] \subseteq(b]$. Suppose that $b \in P$. As $b \leqslant a_{i} \vee b$ for all $i=1, \ldots, n$ and $[b)$ is a bounded distributive lattice, $b \leqslant\left(a_{1} \vee b\right) \wedge \ldots \wedge\left(a_{n} \vee b\right)$. Since $\left(a_{1}\right] \cap \ldots \cap\left(a_{n}\right] \subseteq$ (b], it follows that $b=\left(a_{1} \vee b\right) \wedge \ldots \wedge\left(a_{n} \vee b\right) \in P$ and due to primality of P there exists $j \in\{1, \ldots, n\}$ such that $a_{j} \vee b \in P$. So, $a_{j} \in P$ which is a contradiction. Thus P is optimal.

Theorem 1.2, proved by Halaš in [15], generalizes the well-known Prime Ideal Theorem. In fact, this result is equivalent to the distributivity of nearlattices.

Theorem 2.1. Let A be a nearlattice. The following conditions are equivalent:
(1) \mathbf{A} is distributive.
(2) Let $I \in \operatorname{Id}(\mathbf{A})$ and let $F \in \operatorname{Fi}(\mathbf{A})$ such that $I \cap F=\emptyset$. Then there exists $P \in X(\mathbf{A})$ such that $I \subseteq P$ and $P \cap F=\emptyset$.
(3) If $x \not \leq y$, then there exists $P \in X(\mathbf{A})$ such that $y \in P$ and $x \notin P$.

Proof. (1) $\Rightarrow(2)$ It follows from [15].
$(2) \Rightarrow(3)$ It is immediate.
(3) \Rightarrow (1) Let $a \in A$ and $x, y, z \in[a)$. We know that the inequality $x \vee(y \wedge z) \leqslant$ $(x \vee y) \wedge(x \vee z)$ always holds. We prove the other inequality. We suppose the contrary, i.e., $(x \vee y) \wedge(x \vee z) \nsubseteq x \vee(y \wedge z)$. Then, by hypothesis, there exists $P \in X(\mathbf{A})$ such that $x \vee(y \wedge z) \in P$ and $(x \vee y) \wedge(x \vee z) \notin P$. So, $x, y \wedge z \in P$ and since P is prime, $y \in P$ or $z \in P$. It follows that $x \vee y \in P$ or $x \vee z \in P$. On the other hand, as $(x \vee y) \wedge(x \vee z) \notin P, x \vee y \notin P$ and $x \vee z \notin P$, which is a contradiction. Therefore, \mathbf{A} is distributive.

Let \mathbf{A} be a semilattice. Let $a_{1}, \ldots, a_{n} \in A$ and $I \in \operatorname{Id}(\mathbf{A})$. We consider the following property:

$$
\begin{equation*}
\left(a_{1}\right] \cap \ldots \cap\left(a_{n}\right] \subseteq I \quad \text { implies } \quad a_{i} \in I \tag{*}
\end{equation*}
$$

for some $i \in\{1, \ldots, n\}$. It follows that every ideal satisfying the property $(*)$ is irreducible. Indeed, let $I, I_{1}, I_{2} \in \operatorname{Id}(\mathbf{A})$ such that $I=I_{1} \cap I_{2}$. Suppose that $I \subset I_{1}$ and $I \subset I_{2}$. Then there exist $a, b \in A$ such that $a \in I_{1}-I$ and $b \in I_{2}-I$. As $(a] \cap(b] \subseteq I_{1} \cap I_{2}=I$ and I satisfies $(*), a \in I$ or $b \in I$, which is a contradiction.

Theorem 2.2. Let A be a nearlattice. The following conditions are equivalent:
(1) \mathbf{A} is distributive.
(2) Every irreducible ideal satisfies the property (*).

Proof. (1) \Rightarrow (2) Let $a_{1}, \ldots, a_{n} \in A$ and $I \in \operatorname{Irr}(\mathbf{A})$ such that $\left(a_{1}\right] \cap \ldots \cap$ $\left(a_{n}\right] \subseteq I$. Suppose that $a_{1}, \ldots, a_{n} \notin I$. Since I is irreducible, by Lemma 1.1, there exists $b \notin I$ and there exists $c \in I$ such that $b \leqslant a_{i} \vee c$, i.e., $a_{i} \vee c \in[b)$ for all $i=1, \ldots, n$. As $[b)$ is a bounded distributive lattice, $b \leqslant\left(a_{1} \vee c\right) \wedge \ldots \wedge\left(a_{n} \vee c\right)=$ $\left(a_{1} \wedge \ldots \wedge a_{n}\right) \vee c$. Then $(b] \subseteq\left(a_{1} \wedge \ldots \wedge a_{n}\right] \vee(c] \subseteq\left(\left(a_{1}\right] \cap \ldots \cap\left(a_{n}\right]\right) \vee(c] \subseteq I$. Thus, $b \in I$, which is a contradiction. Therefore I satisfies the property $(*)$.
$(2) \Rightarrow(1)$ Let $a \in A$ and $x, y, z \in[a)$. We prove that $(x \vee y) \wedge(x \vee z) \leqslant x \vee(y \wedge z)$. Suppose the contrary. Then, by Theorem 1.1, there exists $P \in \operatorname{Irr}(\mathbf{A})$ such that $x \vee(y \wedge z) \in P$ and $(x \vee y) \wedge(x \vee z) \notin P$. So, $x, y \wedge z \in P$ and $x \vee y, x \vee z \notin P$. Since $(y] \cap(z] \subseteq P$ and P satisfies the property $(*), y \in P$ or $z \in P$. So, $x \vee y \in P$ or $x \vee z \in P$, which is a contradiction. Thus, \mathbf{A} is distributive.

Example 2.1. Not every irreducible ideal is optimal in a nearlattice. We consider the following configuration:

It is easy to prove that $I=\{a, d, e\}$ is an irreducible ideal but not optimal, i.e., $I^{\mathrm{c}}=\{1, b, c\}$ is not Frink filter because $(b] \cap(c] \subseteq(a]$ and $a \notin I^{\mathrm{c}}$.

In the class of distributive nearlattices every irreducible ideal is optimal.
Theorem 2.3. Let A be a nearlattice. The following conditions are equivalent:
(1) \mathbf{A} is distributive.
(2) $\operatorname{Irr}(\mathbf{A}) \subseteq \operatorname{Id}_{\mathrm{Op}}(\mathbf{A})$.

Proof. (1) $\Rightarrow(2)$ Let $I \in \operatorname{Irr}(\mathbf{A})$. Since \mathbf{A} is distributive, it follows by the results developed in $[7]$ that I is prime. Thus, by Lemma 2.1, I is optimal.
$(2) \Rightarrow(1)$ Let $x, y \in A$ such that $x \not \leq y$. By Theorem 1.1 there exists $P \in \operatorname{Irr}(\mathbf{A})$ such that $y \in P$ and $x \notin P$. As $\operatorname{Irr}(\mathbf{A}) \subseteq \operatorname{Id}_{\mathrm{Op}}(\mathbf{A})$ and $\operatorname{Id}_{\mathrm{Op}}(\mathbf{A}) \subseteq X(\mathbf{A})$ we have that $P \in X(\mathbf{A})$. Then, by Theorem 2.1, \mathbf{A} is distributive.

The following definition given in [3] is an alternative definition of relative annihilators in distributive nearlattices different from that given in [10].

Definition 2.1. Let \mathbf{A} be a semilattice and $a, b \in A$. The set

$$
a \circ b=\{x \in A: b \leqslant x \vee a\}
$$

is called annihilator of a relative to b. In particular, the relative annihilator $a^{\top}=$ $a \circ 1=\{x \in A: x \vee a=1\}$ is called the annihilator of a.

Let $a \in A$ and $F \in \operatorname{Fi}(\mathbf{A})$. We consider the set

$$
a \circ F=\{x \in A: \exists f \in F(f \leqslant x \vee a)\} .
$$

By the results developed in [3] we have that a nearlattice \mathbf{A} is distributive if and only if $a \circ b \in \operatorname{Fi}(\mathbf{A})$ if and only if $a \circ F \in \operatorname{Fi}(\mathbf{A})$ for all $a, b \in A$ and all $F \in \operatorname{Fi}(\mathbf{A})$.

Lemma 2.2 ([3]). Let A be a distributive nearlattice. Let $a \in A$ and $I \in \operatorname{Id}(\mathbf{A})$. Then $I \cap a^{\top}=\emptyset$ if and only if there exists $Q \in \max X(\mathbf{A})$ such that $I \subseteq Q$ and $a \in Q$.

Lemma 2.3. Let \mathbf{A} be a semilattice and $F \in \operatorname{Fi}_{F}(\mathbf{A})$. Then F is prime if and only if $a \circ F=F$ for all $a \notin F$.

Proof. Let $a \in A$ such that $a \notin F$. It is easy to see that $F \subseteq a \circ F$. Let $x \in a \circ F$. Then there exists $f \in F$ such that $f \leqslant x \vee a$. So, $x \vee a \in F$. Since F is prime, $x \in F$ or $a \in F$. Therefore, it should be $x \in F$ and $a \circ F=F$ for all $a \notin F$. Conversely, let $x, y \in A$ such that $x \vee y \in F$ and suppose that $x \notin F$ and $y \notin F$. As $a \circ F=F$ for all $a \notin F$, in particular, $x \circ F=F$. Thus, $y \notin x \circ F$. On the other hand, if we take $f=x \vee y \in F, f \leqslant y \vee x$ and $y \in x \circ F$, which is a contradiction.

Theorem 2.4. Let A be a nearlattice. The following conditions are equivalent:
(1) \mathbf{A} is distributive.
(2) If $x \circ F \subseteq y \circ F$ for every prime Frink filter F, then $x \leqslant y$.

Proof. (1) $\Rightarrow(2)$ Let $x, y \in A$ such that $x \circ F \subseteq y \circ F$ for every prime Frink filter F. Suppose that $x \not \leq y$. Then, by Theorem 1.2, there exists $P \in X(\mathbf{A})$ such that $y \in P$ and $x \notin P$. By Lemma 2.1, $X(\mathbf{A})=\operatorname{Id}_{\mathrm{Op}}(\mathbf{A})$ and P is optimal. So, $F=P^{\mathrm{c}}$ is a prime Frink filter. It follows that $x \circ F=A$ and therefore $y \circ F=A$. On the other hand, by Lemma 2.3, $y \in y \circ F=F$ and $y \notin F$, which is a contradiction.
$(2) \Rightarrow(1)$ Let $x, y \in A$ such that $x \not \leq y$. Then there exists $F \in \operatorname{Fi}_{\mathrm{F}}(\mathbf{A})$ such that F is prime and $x \circ F \nsubseteq y \circ F$. So, there exists $z \in x \circ F$ such that $z \notin y \circ F$. Note that $z \notin F$. Since F is a Frink filter and $z \notin F$, by Lemma 2.3 we have $z \circ F=F$. It follows that $x \in F$ and $y \notin F$. As $P=F^{c}$ is an optimal ideal, and therefore prime, $x \notin P$ and $y \in P$. Then, by Theorem 2.1, \mathbf{A} is distributive.

3. Annihilator-Preserving congruence relations

In the present section, following the results developed in [3] and [7], we study the concept of annihilator-preserving congruence relations in the class of distributive nearlattices. We shall prove that there exists a dual isomorphism between annihilator-preserving congruence relations of a distributive nearlattice \mathbf{A} and certain N -subspaces of the dual space of \mathbf{A} satisfying an aditional condition.

Let \mathbf{A} be a distributive nearlattice. We denote by $\operatorname{Con}(\mathbf{A})$ the set of all congruences of \mathbf{A}. If $\theta \in \operatorname{Con}(\mathbf{A})$, then we will write $(a, b) \in \theta$ or $a \equiv_{\theta} b$. The equivalence class of an element $a \in A$ is denoted by $|a|_{\theta}=\left\{b \in A: a \equiv_{\theta} b\right\}$. Recall that $\operatorname{Con}(\mathbf{A})$ is a distributive lattice where for any $\theta_{1}, \theta_{2} \in \operatorname{Con}(\mathbf{A}), \theta_{1} \wedge \theta_{2}=\theta_{1} \cap \theta_{2}$ and

$$
\begin{aligned}
& (a, b) \in \theta_{1} \vee \theta_{2} \text { if and only if there exist } c_{0}=a, c_{1}, \ldots, c_{n}=b \in A \text { such that } \\
& \qquad\left(c_{i}, c_{i+1}\right) \in \theta_{1} \cup \theta_{2} \text { for all } i=0, \ldots, n-1 .
\end{aligned}
$$

The canonical or natural map with respect to θ is the function $q_{\theta}: A \rightarrow A / \theta$ defined by $q_{\theta}(a)=|a|_{\theta}$. For a subset $S \subseteq A$ we will write $|S|_{\theta}=\left\{|a|_{\theta}: a \in S\right\}$.

Definition 3.1. Let \mathbf{A} be a distributive nearlattice and $\theta \in \operatorname{Con}(\mathbf{A})$. We say that θ is an annihilator-preserving congruence, or AP-congruence, if for each $a, b \in A$, $a \equiv_{\theta} b$ implies that for each $x \in a^{\top}$ there exists $y \in b^{\top}$ such that $x \equiv_{\theta} y$.

If \mathbf{A} is a distributive nearlattice and θ is an AP-congruence, we will use the notation $a^{\top} \equiv_{\tilde{\theta}} b^{\top}$ to indicate that θ satisfies the condition of Definition 3.1. So, a congruence is an AP-congruence if for each $a, b \in A, a^{\top} \equiv_{\tilde{\theta}} b^{\top}$ whenever $a \equiv_{\theta} b$. We denote by $\operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$ the set of all AP-congruences of \mathbf{A}.

Example 3.1. Let $h: A \rightarrow B$ be a homomorphism such that $h(a)=1$ implies $a=1$. Then $\operatorname{Ker} h=\{(a, b): h(a)=h(b)\}$ is an AP-congruence. Let $(a, b) \in \operatorname{Ker} h$. If $x \in a^{\top}$, then $x \vee a=1$ and $h(x \vee a)=h(x) \vee h(a)=h(x) \vee h(b)=h(x \vee b)=1$. Thus, by the assumption, $x \vee b=1$ and $x \in b^{\top}$. It follows that $\operatorname{Ker} h \in \operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$.

Remark 3.1. If $\mathbf{A}=\langle A, \rightarrow, 1\rangle$ is an implication algebra, then every congruence is an AP-congruence, that is, both concepts coincide. Let $\theta \in \operatorname{Con}(\mathbf{A})$. Let $a, b \in A$ such that $a \equiv_{\theta} b$ and $x \in a^{\top}$. Then $a \vee x=1$, or equivalently, $(a \rightarrow x) \rightarrow x=1$ and $a \rightarrow x \leqslant x$. On the other hand, it always holds that $x \leqslant a \rightarrow x$ in A. So, $x=a \rightarrow x$. Let $y=b \rightarrow x$. Since $a \equiv_{\theta} b$,

$$
x=a \rightarrow x \equiv_{\theta} b \rightarrow x=y
$$

i.e., $x \equiv_{\theta} y$. We prove that $y \in b^{\top}$. If $1 \not \leq b \vee y$, then there exists a maximal deductive system P such that $b \vee y=(b \rightarrow y) \rightarrow y \notin P$. Since P is maximal, $b \rightarrow y \in P$ and $y=b \rightarrow x \notin P$. Again, since P is maximal, $b \in P$ and $x \notin P$. Then $b, b \rightarrow y \in P$ and $y \in P$, which is a contradiction. Therefore, $y \in b^{\top}$ and $\theta \in \operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$.

Lemma 3.1. Let A be a distributive nearlattice. Then $\operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$ is a sublattice of $\operatorname{Con}(\mathbf{A})$.

Proof. Let $\theta_{1}, \theta_{2} \in \operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$. We prove that $\theta_{1} \wedge \theta_{2}, \theta_{1} \vee \theta_{2} \in \operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$. Let $(a, b) \in \theta_{1} \wedge \theta_{2}$ and $x \in a^{\top}$. Since θ_{1} is an AP-congruence, there exists $y \in b^{\top}$ such that $x \equiv_{\theta_{1}} y$. Similarly, as $(a, b) \in \theta_{2}$, there exists $\bar{y} \in b^{\top}$ such that $x \equiv_{\theta_{2}} \bar{y}$. Then $x \equiv_{\theta_{1}} y \vee x$ and $x \equiv_{\theta_{2}} \bar{y} \vee x$. Since $[x)$ is a distributive lattice, there exist $(y \vee x) \wedge(\bar{y} \vee x), x \wedge(\bar{y} \vee x)$ and $x \wedge(y \vee x)$. It follows that

$$
x=x \wedge(\bar{y} \vee x) \equiv_{\theta_{1}}(y \vee x) \wedge(\bar{y} \vee x)
$$

and

$$
x=x \wedge(y \vee x) \equiv_{\theta_{2}}(y \vee x) \wedge(\bar{y} \vee x)
$$

Then $x \equiv_{\theta_{1} \wedge \theta_{2}}(y \vee x) \wedge(\bar{y} \vee x)$. On the other hand, $y \vee x, \bar{y} \vee x \in b^{\top}$ and since b^{\top} is a filter, we have $(y \vee x) \wedge(\bar{y} \vee x) \in b^{\top}$. Thus, $\theta_{1} \wedge \theta_{2}$ is an AP-congruence.

Let $(a, b) \in \theta_{1} \vee \theta_{2}$ and $x \in a^{\top}$. Then there exist $c_{0}=a, c_{1}, \ldots, c_{n}=b \in A$ such that $\left(c_{i}, c_{i+1}\right) \in \theta_{1} \cup \theta_{2}$ for all $i=0, \ldots, n-1$. So, $x \in a^{\top}=c_{0}^{\top}$ and $\left(c_{0}, c_{1}\right) \in \theta_{1} \cup \theta_{2}$. Since θ_{1} and θ_{2} are AP-congruences, there exists $y_{1} \in c_{1}^{\top}$ such that $\left(x, y_{1}\right) \in \theta_{1} \cup \theta_{2}$. By induction, there exist $y_{1}, \ldots, y_{n} \in A$ such that $y_{j} \in c_{j}^{\top}$ and $\left(x, y_{1}\right),\left(y_{j}, y_{j+1}\right) \in$ $\theta_{1} \cup \theta_{2}$ for all $j=1, \ldots, n-1$. Therefore, there exists $y_{n} \in c_{n}^{\top}=b^{\top}$ and $x \equiv_{\theta_{1} \vee \theta_{2}} y_{n}$. So, $\theta_{1} \vee \theta_{2}$ is an AP-congruence.

Remark 3.2. Note that not every congruence is an AP-congruence. We consider the following distributive nearlattice \mathbf{A} :

Let $\theta(c, 1)$ be the congruence generated by the pair $(c, 1)$. Let $e \in 1^{\top}=A$. Thus, $1 \equiv_{\theta} c$ but there does not exist $y \in c^{\top}$ such that $e \equiv_{\theta} y$. So, $\theta(c, 1) \notin \operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$.

It was proved in [7] that the congruences lattice of a distributive nearlattice \mathbf{A} is dually isomorphic to the lattice of certain subspaces, called N -subspaces, of the dual space $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$.

Definition 3.2 ([7]). Let $\langle X, \mathcal{K}\rangle$ be an N-space and let Y be a subset of X. We say that Y is an N -subspace if $\left\langle Y, \mathcal{K}_{Y}\right\rangle$ is an N -space.

The set of all N -subspaces of an N -space $\langle X, \mathcal{K}\rangle$ will be denoted by $\mathcal{S}(X)$.
Let \mathbf{A} be a distributive nearlattice and $\theta \in \operatorname{Con}(\mathbf{A})$. We consider

$$
Y_{\theta}=\left\{q_{\theta}^{-1}(P): P \in X(\mathbf{A} / \theta)\right\} .
$$

Since q_{θ} is a homomorphism, $q_{\theta}^{-1}(P) \in X(\mathbf{A})$ and $Y_{\theta} \subseteq X(\mathbf{A})$. It follows that the pair $\left\langle Y_{\theta}, \mathcal{K}_{Y_{\theta}}\right\rangle$ is an N -space and therefore Y_{θ} is an N -subspace. Reciprocally, if $Y \subseteq X(\mathbf{A})$, then the binary relation $\theta(Y) \subseteq A \times A$ given by

$$
\theta(Y)=\left\{(a, b) \in A \times A: \varphi_{\mathbf{A}}(a)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(b)^{\mathrm{c}} \cap Y\right\}
$$

is a congruence relation of \mathbf{A} such that $\theta=\theta\left(Y_{\theta}\right)$. For more details see [7].

For each $F \in \operatorname{Fi}(\mathbf{A})$ we consider the set $\gamma(F)=\{P \in X(\mathbf{A}): P \cap F \neq \emptyset\}$. We have that $\gamma(F)=\bigcup\left\{\varphi_{\mathbf{A}}(a)^{\mathrm{c}}: a \in F\right\}$ and in particular $\gamma([a))=\varphi_{\mathbf{A}}(a)^{\mathrm{c}}$.

Corollary 3.1. Let A be a distributive nearlattice and $Y \in \mathcal{S}(X(\mathbf{A}))$. Let $a, b \in A$ such that $a \equiv_{\theta(Y)} b$. The following conditions are equivalent:
(1) $a^{\top} \equiv_{\tilde{\theta}(Y)} b^{\top}$.
(2) $\gamma\left(a^{\top}\right) \cap Y=\gamma\left(b^{\top}\right) \cap Y$.

Proof. (1) \Rightarrow (2) We prove that $\gamma\left(a^{\top}\right) \cap Y \subseteq \gamma\left(b^{\top}\right) \cap Y$. Let $P \in \gamma\left(a^{\top}\right) \cap Y$. Then $P \in \bigcup\left\{\varphi_{\mathbf{A}}(x)^{\mathrm{c}}: x \in a^{\top}\right\} \cap Y$. So, there exists $e \in a^{\top}$ such that $P \in \varphi_{\mathbf{A}}(e)^{\mathrm{c}}$ and as $a^{\top} \equiv_{\tilde{\theta}(Y)} b^{\top}$, there exists $f \in b^{\top}$ such that $e \equiv_{\theta(Y)} f$, i.e., $\varphi_{\mathbf{A}}(e)^{\mathrm{c}} \cap Y=$ $\varphi_{\mathbf{A}}(f)^{\mathrm{c}} \cap Y$. It follows that

$$
P \in \varphi_{\mathbf{A}}(e)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(f)^{\mathrm{c}} \cap Y \subseteq \bigcup\left\{\varphi_{\mathbf{A}}(y)^{\mathrm{c}}: y \in b^{\top}\right\} \cap Y=\gamma\left(b^{\top}\right) \cap Y
$$

Thus, $P \in \gamma\left(b^{\top}\right) \cap Y$. The other inclusion can be shown similarly.
(2) \Rightarrow (1) By hypothesis, $\gamma\left(a^{\top}\right) \cap Y=\gamma\left(b^{\top}\right) \cap Y$, i.e.,

$$
\bigcup\left\{\varphi_{\mathbf{A}}(x)^{c}: x \in a^{\top}\right\} \cap Y=\bigcup\left\{\varphi_{\mathbf{A}}(y)^{c}: y \in b^{\top}\right\} \cap Y .
$$

Let $e \in a^{\top}$. We prove that there exists $f \in b^{\top}$ such that $(e, f) \in \theta(Y)$. Note that $\varphi_{\mathbf{A}}(e)^{\mathrm{c}} \cap Y \subseteq \bigcup\left\{\varphi_{\mathbf{A}}(x)^{\mathrm{c}}: x \in a^{\top}\right\} \cap Y=\bigcup\left\{\varphi_{\mathbf{A}}(y)^{\mathrm{c}}: y \in b^{\top}\right\} \cap Y$. Thus,

$$
\varphi_{\mathbf{A}}(e)^{\mathrm{c}} \cap Y \subseteq \bigcup\left\{\varphi_{\mathbf{A}}(y)^{\mathrm{c}} \cap Y: y \in b^{\top}\right\}
$$

or equivalently,

$$
\bigcap\left\{\varphi_{\mathbf{A}}(y) \cap Y: y \in b^{\top}\right\} \subseteq \varphi_{\mathbf{A}}(e) \cap Y
$$

Since Y is an N-subspace, by Proposition 1.2 , there exist $y_{1}, \ldots, y_{n} \in\left[b^{\top}\right)=b^{\top}$ such that $y_{1} \wedge \ldots \wedge y_{n}$ exists and $\left[\varphi_{\mathbf{A}}\left(y_{1}\right) \cap Y\right] \cap \ldots \cap\left[\varphi_{\mathbf{A}}\left(y_{n}\right) \cap Y\right] \subseteq \varphi_{\mathbf{A}}(e) \cap Y$. If $y=y_{1} \wedge \ldots \wedge y_{n}$, then $\varphi_{\mathbf{A}}(y) \cap Y \subseteq \varphi_{\mathbf{A}}(e) \cap Y$ and $\varphi_{\mathbf{A}}(e \vee y)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(e)^{\mathrm{c}} \cap Y$. Since $b^{\top} \in \operatorname{Fi}(\mathbf{A})$ and $y \in b^{\top}$, it follows that $f=e \vee y \in b^{\top} . \operatorname{So}, \varphi_{\mathbf{A}}(e)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(f)^{\mathrm{c}} \cap Y$ and $(e, f) \in \theta(Y)$. Therefore, $a^{\top} \equiv_{\tilde{\theta}(Y)} b^{\top}$.

Theorem 3.1. Let \mathbf{A} be a distributive nearlattice and $\theta \in \operatorname{Con}(\mathbf{A})$. Let $Y_{\theta} \in$ $\mathcal{S}(X(\mathbf{A}))$ such that $\theta=\theta\left(Y_{\theta}\right)$. The following conditions are equivalent:
(1) If $a \equiv_{\theta} 1$, then $a^{\top} \equiv_{\tilde{\theta}} A$.
(2) θ is an AP-congruence.
(3) $\left|a^{\top}\right|_{\theta}=|a|_{\theta}^{\top}$ for all $a \in A$.
(4) If $a \vee b \equiv_{\theta} 1$, then there exists $c \in a^{\top}$ such that $c \equiv_{\theta} b$.

Proof. (1) \Rightarrow (2) Let $a, b \in A$ such that $a \equiv_{\theta} b$. By Corollary 3.1, we only need to prove that $\gamma\left(a^{\top}\right) \cap Y_{\theta}=\gamma\left(b^{\top}\right) \cap Y_{\theta}$. If $P \in \gamma\left(a^{\top}\right) \cap Y_{\theta}$, then $P \cap a^{\top} \neq \emptyset$ and $P \in Y_{\theta}$. So, there exists $c \in P$ such that $a \vee c=1$. As $a \equiv_{\theta} b$, we have $b \vee c \equiv_{\theta} 1$ and by hypothesis $(b \vee c)^{\top} \equiv_{\tilde{\theta}} A$, i.e.,

$$
\gamma\left((b \vee c)^{\top}\right) \cap Y_{\theta}=\gamma(A) \cap Y_{\theta}=X(\mathbf{A}) \cap Y_{\theta}=Y_{\theta}
$$

On the other hand, $\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left(b^{\top}\right)=\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left((b \vee c)^{\top}\right)$. Indeed, if $P \in \varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap$ $\gamma\left(b^{\top}\right)$, then $c \in P$ and $P \cap b^{\top} \neq \emptyset$. Since $P \cap b^{\top} \neq \emptyset$, there exists $z \in P$ such that $b \vee z=1$. It follows that $z \in(b \vee c)^{\top}$ and $P \cap(b \vee c)^{\top} \neq \emptyset$, i.e., $P \in \gamma\left((b \vee c)^{\top}\right)$. So, $P \in \varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left((b \vee c)^{\top}\right)$. The other inclusion is similar. Therefore, $\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left(b^{\top}\right)=$ $\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left((b \vee c)^{\top}\right)$ and

$$
\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left(b^{\top}\right) \cap Y_{\theta}=\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap \gamma\left((b \vee c)^{\top}\right) \cap Y_{\theta}=\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap Y_{\theta}
$$

As $c \in P, P \in \varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap Y_{\theta}$. Thus, $P \in \gamma\left(b^{\top}\right) \cap Y_{\theta}$ and $\gamma\left(a^{\top}\right) \cap Y_{\theta} \subseteq \gamma\left(b^{\top}\right) \cap Y_{\theta}$. The inclusion $\gamma\left(b^{\top}\right) \cap Y_{\theta} \subseteq \gamma\left(a^{\top}\right) \cap Y_{\theta}$ is analogous.
(2) \Rightarrow (3) Let $a \in A$. We see that $\left|a^{\top}\right|_{\theta}=|a|_{\theta}^{\top}$. If $|x| \in\left|a^{\top}\right|_{\theta}$, then there exists $\bar{x} \in a^{\top}$ such that $|x|_{\theta}=|\bar{x}|_{\theta}$. Thus, $|x|_{\theta} \vee|a|_{\theta}=|\bar{x}|_{\theta} \vee|a|_{\theta}=|\bar{x} \vee a|_{\theta}=|1|_{\theta}$ and $|x|_{\theta} \in|a|_{\theta}^{\top}$. Therefore, $\left|a^{\top}\right|_{\theta} \subseteq|a|_{\theta}^{\top}$.

For the other inclusion, suppose there exists $|x|_{\theta} \in|a|_{\theta}^{\top}$ such that $|x|_{\theta} \notin\left|a^{\top}\right|_{\theta}$. Then $x \vee a \equiv_{\theta} 1$ and we consider the filter $F\left(\left|a^{\top}\right|_{\theta}\right)$. Note that $|x|_{\theta} \notin F\left(\left|a^{\top}\right|_{\theta}\right)$. Indeed, if $|x|_{\theta} \in F\left(\left|a^{\top}\right|_{\theta}\right)$, then there exist $\left|x_{1}\right|_{\theta}, \ldots,\left|x_{n}\right|_{\theta} \in\left[\left|a^{\top}\right|_{\theta}\right)$ such that $\left|x_{1}\right|_{\theta} \wedge \ldots \wedge\left|x_{n}\right|_{\theta}$ exists and $|x|_{\theta}=\left|x_{1}\right|_{\theta} \wedge \ldots \wedge\left|x_{n}\right|_{\theta}$. It is easy to see that $\left|a^{\top}\right|_{\theta}$ is increasing. So, $\left|x_{1}\right|_{\theta}, \ldots,\left|x_{n}\right|_{\theta} \in\left|a^{\top}\right|_{\theta}$ and there exist $\bar{x}_{1}, \ldots, \bar{x}_{n} \in a^{\top}$ such that $\left|\bar{x}_{i}\right|_{\theta}=\left|x_{i}\right|_{\theta}$ for all $i=1, \ldots, n$. Then $\left|\bar{x}_{1}\right|_{\theta}, \ldots,\left|\bar{x}_{n}\right|_{\theta} \in\left|a^{\top}\right|_{\theta}$ and since $a^{\top} \in \operatorname{Fi}(\mathbf{A})$,

$$
|x|_{\theta}=\left|x_{1}\right|_{\theta} \wedge \ldots \wedge\left|x_{n}\right|_{\theta}=\left|\bar{x}_{1}\right|_{\theta} \wedge \ldots \wedge\left|\bar{x}_{n}\right|_{\theta}=\left|\bar{x}_{1} \wedge \ldots \wedge \bar{x}_{n}\right|_{\theta} \in\left|a^{\top}\right|_{\theta}
$$

which is a contradiction. Then $|x|_{\theta} \notin F\left(\left|a^{\top}\right|_{\theta}\right)$ and by Theorem 1.2 there exists $P_{\theta} \in X(\mathbf{A} / \theta)$ such that $|x|_{\theta} \in P_{\theta}$ and $P_{\theta} \cap\left|a^{\top}\right|_{\theta}=\emptyset$. Since $q_{\theta}: A \rightarrow A / \theta$ is a homomorphism onto, $q_{\theta}^{-1}\left(P_{\theta}\right)=P \in X(\mathbf{A})$ and $P \in Y_{\theta}$. Then $P \cap a^{\top}=\emptyset$ and by Lemma 2.2 there exists $Q \in \max X(\mathbf{A})$ such that $P \subseteq Q$ and $a \in Q$.

On the other hand, $x \vee a \equiv_{\theta} 1$ and as θ is an AP-congruence, $(x \vee a)^{\top} \equiv_{\tilde{\theta}} 1^{\top}$ and $\gamma\left((x \vee a)^{\top}\right) \cap Y_{\theta}=\gamma\left(1^{\top}\right) \cap Y_{\theta}=X(\mathbf{A}) \cap Y_{\theta}=Y_{\theta}$, i.e., $Y_{\theta} \subseteq \gamma\left((x \vee a)^{\top}\right)$. As $P \in Y_{\theta}, P \in \gamma\left((x \vee a)^{\top}\right)$ and $P \cap(x \vee a)^{\top} \neq \emptyset$. Then there exists $w \in P$ such that $(x \vee a) \vee w=1$. Since $|x|_{\theta} \in P_{\theta}, x \in q_{\theta}^{-1}\left(P_{\theta}\right)=P$. So, $w, x \in P \subseteq Q$. Also, $a \in Q$ and $(x \vee a) \vee w=1 \in Q$, which is a contradiction because Q is maximal. Therefore, $\left|a^{\top}\right|_{\theta}=|a|_{\theta}^{\top}$.
(3) \Rightarrow (4) Let $a, b \in A$ such that $a \vee b \equiv_{\theta} 1$. Then $|a \vee b|_{\theta}=|a|_{\theta} \vee|b|_{\theta}=|1|_{\theta}$. It follows that $|b|_{\theta} \in|a|_{\theta}^{\top}=\left|a^{\top}\right|_{\theta}$. Then there exists $c \in a^{\top}$ such that $c \equiv_{\theta} b$.
(4) \Rightarrow (1) Let $a \in A$ such that $a \equiv_{\theta} 1$. If $b \in A$, then $a \vee b \equiv_{\theta} 1$ and by hypothesis there exists $c \in a^{\top}$ such that $c \equiv_{\theta} b$, i.e., $a^{\top} \equiv_{\tilde{\theta}} A$.

In [3] we introduce and study a particular class of homomorphisms, called Thomomorphisms. We say that a homomorphism $h: A \rightarrow B$ between distributive nearlattices is a \top-homomorphism if $F\left(h\left(a^{\top}\right)\right)=h(a)^{\top}$ for all $a \in A$. The following result will be useful later.

Lemma 3.2 ([3]). Let A, B be two distributive nearlattices and $h: A \rightarrow B$ be a T-homomorphism. Then $h^{-1}(P) \in \max X(\mathbf{A})$ for all $P \in \max X(\mathbf{B})$.

Theorem 3.2. Let \mathbf{A} be a distributive nearlattice and $\theta \in \operatorname{Con}(\mathbf{A})$. Let $Y_{\theta} \in$ $\mathcal{S}(X(\mathbf{A}))$ such that $\theta=\theta\left(Y_{\theta}\right)$. The following conditions are equivalent:
(1) θ is an AP-congruence.
(2) q_{θ} is a T-homomorphism.

Proof. $\quad(1) \Rightarrow(2)$ By Theorem 3.1 we have that $F\left(\left|a^{\top}\right|_{\theta}\right)=F\left(|a|_{\theta}^{\top}\right)=|a|_{\theta}^{\top}$. It follows that $F\left(\left|q_{\theta}(a)^{\top}\right|\right)=q_{\theta}(a)^{\top}$ and q_{θ} is a T-homomorphism.
$(2) \Rightarrow(1)$ Let $a, b \in A$ such that $a \equiv_{\theta} b$. We see that $a^{\top} \equiv_{\tilde{\theta}\left(Y_{\theta)}{ }^{\top}\right.} b^{\top}$, or equivalently by Corollary 3.1, that $\gamma\left(a^{\top}\right) \cap Y_{\theta}=\gamma\left(b^{\top}\right) \cap Y_{\theta}$. Let $P \in \gamma\left(a^{\top}\right) \cap Y_{\theta}$. Then $P \in$ $\bigcup\left\{\varphi_{\mathbf{A}}(x)^{\mathrm{c}}: x \in a^{\top}\right\}$ and $P \in Y_{\theta}$, i.e., there exists $e \in a^{\top}$ such that $P \in \varphi_{\mathbf{A}}(e)^{\mathrm{c}}$ and $P=q_{\theta}^{-1}\left(P_{\theta}\right)$ for some $P_{\theta} \in X(\mathbf{A} / \theta)$. So, $e \in P$ and $|e|_{\theta} \in P_{\theta}$. Since $e \in a^{\top},|e|_{\theta} \in$ $\left|a^{\top}\right|_{\theta} \subseteq F\left(\left|a^{\top}\right|_{\theta}\right)=|a|_{\theta}^{\top}=|b|_{\theta}^{\top}$. By hypothesis, q_{θ} is a T-homomorphism and $|b|_{\theta}^{\top}=$ $F\left(\left|b^{\top}\right|_{\theta}\right)$. Then $|e|_{\theta} \in F\left(\left|b^{\top}\right|_{\theta}\right)$ and there exist $\left|y_{1}\right|_{\theta}, \ldots,\left|y_{n}\right|_{\theta} \in\left[\left|b^{\top}\right|_{\theta}\right)=\left|b^{\top}\right|_{\theta}$ such that $\left|y_{1}\right|_{\theta} \wedge \ldots \wedge\left|y_{n}\right|_{\theta}$ exists and $|e|_{\theta}=\left|y_{1}\right|_{\theta} \wedge \ldots \wedge\left|y_{n}\right|_{\theta}$. Thus, there exist $t_{1}, \ldots, t_{n} \in$ b^{\top} such that $\left|t_{i}\right|_{\theta}=\left|y_{i}\right|_{\theta}$ for all $i=1, \ldots, n$. Since $|e|_{\theta}=\left|y_{1}\right|_{\theta} \wedge \ldots \wedge\left|y_{n}\right|_{\theta} \in P_{\theta}$ and $P_{\theta} \in X(\mathbf{A} / \theta)$, there exists $j \in\{1, \ldots, n\}$ such that $\left|y_{j}\right|_{\theta} \in P_{\theta}$. So, $\left|t_{j}\right|_{\theta} \in P_{\theta}$ and $t_{j} \in q_{\theta}^{-1}\left(P_{\theta}\right)=P$, i.e., $P \in \varphi_{\mathbf{A}}\left(t_{j}\right)^{\text {c }}$ and as $t_{j} \in b^{\top}, P \in \bigcup\left\{\varphi_{\mathbf{A}}(y)^{\text {c }}: y \in b^{\top}\right\}$. Therefore, $P \in \gamma\left(b^{\top}\right) \cap Y_{\theta}$ and $\gamma\left(a^{\top}\right) \cap Y_{\theta} \subseteq \gamma\left(b^{\top}\right) \cap Y_{\theta}$. The other inclusion can be shown similarly.

Now, we study the structure of the quotient algebra \mathbf{A} / θ of a distributive nearlattice \mathbf{A} when θ is an AP-congruence. In the following definition we generalize the normal and quasicomplemented lattices studied by Cornish in [12] and [13].

Definition 3.3. Let A be a distributive nearlattice.
(1) We say that \mathbf{A} is normal if each prime ideal is contained in a unique maximal ideal.
(2) We say that \mathbf{A} is quasicomplemented if for each $a \in A$ there exists $b \in A$ such that $a^{\top \top}=b^{\top}$, where

$$
a^{\top \top}=\left\{c \in A:\left(\forall e \in a^{\top}\right)(c \vee e=1)\right\} .
$$

Theorem 3.3. Let \mathbf{A} be a distributive nearlattice and $\theta \in \operatorname{Con}_{\mathrm{AP}}(\mathbf{A})$.
(1) If \mathbf{A} is normal, then \mathbf{A} / θ is normal.
(2) If \mathbf{A} is quasicomplemented, then \mathbf{A} / θ is quasicomplemented.

Proof. (1) Let $P \in X(\mathbf{A} / \theta)$ and $U_{1}, U_{2} \in \max X(\mathbf{A} / \theta)$ such that $P \subseteq U_{1}$ and $P \subseteq U_{2}$. By Lemma 3.2, $q_{\theta}^{-1}\left(U_{1}\right), q_{\theta}^{-1}\left(U_{2}\right) \in \max X(\mathbf{A})$. As $q_{\theta}^{-1}(P) \subseteq$ $q_{\theta}^{-1}\left(U_{1}\right) \cap q_{\theta}^{-1}\left(U_{2}\right)$ and \mathbf{A} is normal, $q_{\theta}^{-1}\left(U_{1}\right)=q_{\theta}^{-1}\left(U_{2}\right)$. Thus, $U_{1}=q_{\theta}\left(q_{\theta}^{-1}\left(U_{1}\right)\right)=$ $q_{\theta}\left(q_{\theta}^{-1}\left(U_{2}\right)\right)=U_{2}$ and \mathbf{A} / θ is normal.
(2) Let $|a|_{\theta} \in X(\mathbf{A} / \theta)$. Then $a \in A$ and as \mathbf{A} is quasicomplemented, there exists $b \in A$ such that $a^{\top \top}=b^{\top}$. We prove that $|a|_{\theta}^{\top \top}=|b|_{\theta}^{\top}$, or equivalently by Theorem 3.1, $|a|_{\theta}^{\top \top}=\left|a^{\top \top}\right|_{\theta}$. If $|x|_{\theta} \in\left|a^{\top \top}\right|_{\theta}$, then there exists $\bar{x} \in a^{\top \top}$ such that $|\bar{x}|_{\theta}=|x|_{\theta}$. Let $|y|_{\theta} \in|a|_{\theta}^{\top}$. By Theorem 3.1, $|a|_{\theta}^{\top}=\left|a^{\top}\right|_{\theta}$. So, there exists $\bar{y} \in a^{\top}$ such that $|\bar{y}|_{\theta}=|y|_{\theta}$. Since $\bar{y} \in a^{\top}$ and $\bar{x} \in a^{\top \top}, \bar{x} \vee \bar{y}=1$. So,

$$
|x|_{\theta} \vee|y|_{\theta}=|\bar{x}|_{\theta} \vee|\bar{y}|_{\theta}=|\bar{x} \vee \bar{y}|_{\theta}=|1|_{\theta},
$$

i.e., $|x|_{\theta} \in|a|_{\theta}^{\top \top}$ and $\left|a^{\top \top}\right|_{\theta} \subseteq|a|_{\theta}^{\top \top}$.

Let us prove the other inclusion. Let $|x|_{\theta} \in|a|_{\theta}^{\top \top}$. As $a^{\top \top}=b^{\top}$, it follows that $a^{\top}=a^{\top \top \top}=b^{\top \top}$. Since $b \in b^{\top \top}, b \in a^{\top}$ and $b \vee a=1$. Then $|b \vee a|_{\theta}=|b|_{\theta} \vee|a|_{\theta}=$ $|1|_{\theta}$ and $|b|_{\theta} \in|a|_{\theta}^{\top}$. So, as $|x|_{\theta} \in|a|_{\theta}^{\top \top}$ and $|b|_{\theta} \in|a|_{\theta}^{\top},|x|_{\theta} \vee|b|_{\theta}=|1|_{\theta}$, which implies that $|x|_{\theta} \in|b|_{\theta}^{\top}$. By hypothesis, θ is an AP-congruence and $|b|_{\theta}^{\top}=\left|b^{\top}\right|_{\theta}=\left|a^{\top \top}\right|_{\theta}$. Thus, $|x|_{\theta} \in\left|a^{\top \top}\right|_{\theta}$ and $|a|_{\theta}^{\top \top} \subseteq\left|a^{\top \top}\right|_{\theta}$. Therefore $|a|_{\theta}^{\top \top}=|b|_{\theta}^{\top}$.

Remark 3.3. Note that for every $Q \in X(\mathbf{A})$ the set $Q^{\top}=\left\{a \in A: Q \cap a^{\top} \neq \emptyset\right\}$ is a filter of \mathbf{A}. Since $1^{\top}=A, 1 \in Q^{\top}$. Let $x \in Q^{\top}$ and $x \leqslant y$. Then $Q \cap x^{\top} \neq \emptyset$ and $x^{\top} \subseteq y^{\top}$. So, $Q \cap y^{\top} \neq \emptyset$ and $y \in Q^{\top}$. Finally, let $x, y \in Q^{\top}$ such that $x \wedge y$ exists. Then $Q \cap x^{\top} \neq \emptyset$ and $Q \cap y^{\top} \neq \emptyset$. It follows that there exists $q_{1}, q_{2} \in Q$ such that $x \vee q_{1}=1$ and $y \vee q_{2}=1$. Let $q=q_{1} \vee q_{2} \in Q$. So, $x \vee q=1, y \vee q=1$ and as $[q)$ is a bounded distributive lattice, $(x \wedge y) \vee q=(x \vee q) \wedge(y \vee q)=1$, i.e., $q \in Q \cap(x \wedge y)^{\top}$ and $x \wedge y \in Q^{\top}$. Therefore, $Q^{\top} \in \operatorname{Fi}(\mathbf{A})$.

We characterize the N -subspaces of $X(\mathbf{A})$ corresponding to AP-congruences.
Theorem 3.4. Let \mathbf{A} be a distributive nearlattice and $Y \in \mathcal{S}(X(\mathbf{A}))$. The following conditions are equivalent:
(1) $\theta(Y)$ is an AP-congruence.
(2) $\max [Q) \subseteq Y$ for all $Q \in Y$.

Proof. (1) $\Rightarrow(2)$ Let $Q \in Y$ and $P \in \max [Q)$. Suppose that $P \notin Y$. We consider the family

$$
\mathcal{F}=\bigcap\left\{\varphi_{\mathbf{A}}(b) \cap Y: \varphi_{\mathbf{A}}(b) \notin H(P)\right\} \cap \bigcap\left\{\varphi_{\mathbf{A}}^{\mathrm{c}}(c) \cap Y: \varphi_{\mathbf{A}}(c) \in H(P)\right\} .
$$

If $\mathcal{F} \neq \emptyset$, then there exists $R \in \mathcal{F}$ such that $H(P)=H(R)$. Since H is 1-1, we have $P=R$ and $P \in Y$, which is a contradiction. So, $\mathcal{F}=\emptyset$ and

$$
\bigcap\left\{\varphi_{\mathbf{A}}(b) \cap Y: \varphi_{\mathbf{A}}(b) \notin H(P)\right\} \subseteq \bigcup\left\{\varphi_{\mathbf{A}}(c) \cap Y: \varphi_{\mathbf{A}}(c) \in H(P)\right\} .
$$

Let $B=\left\{b: \varphi_{\mathbf{A}}(b) \notin H(P)\right\}$ and $C=\left\{c: \varphi_{\mathbf{A}}(c) \in H(P)\right\}$. As Y is an N-subspace, there exist $b_{1}, \ldots, b_{n} \in[B)$ and $c_{1}, \ldots, c_{m} \in C$ such that $b_{1} \wedge \ldots \wedge b_{n}$ exists and

$$
\left[\varphi_{\mathbf{A}}\left(b_{1}\right) \cap Y\right] \cap \ldots \cap\left[\varphi_{\mathbf{A}}\left(b_{n}\right) \cap Y\right] \subseteq\left[\varphi_{\mathbf{A}}\left(c_{1}\right) \cap Y\right] \cup \ldots \cup\left[\varphi_{\mathbf{A}}\left(c_{m}\right) \cap Y\right] .
$$

Since $b_{1}, \ldots, b_{n} \in[B)$, it follows that there exist $\bar{b}_{1}, \ldots, \bar{b}_{n} \in B$ such that $\bar{b}_{i} \leqslant b_{i}$ for all $i=1, \ldots, n$. Let $b=b_{1} \wedge \ldots \wedge b_{n}$ and $c=c_{1} \vee \ldots \vee c_{m}$. Then $\varphi_{\mathbf{A}}(b) \cap Y \subseteq \varphi_{\mathbf{A}}(c) \cap Y$ and $\varphi_{\mathbf{A}}(b \vee c)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(c)^{\mathrm{c}} \cap Y$. So, $(b \vee c, c) \in \theta(Y)$. As $c_{1}, \ldots, c_{m} \in C$, then $\varphi_{\mathbf{A}}\left(c_{j}\right) \in H(P)$, i.e., $P \notin \varphi_{\mathbf{A}}\left(c_{j}\right)$ and $c_{j} \in P$ for all $j=1, \ldots, m$. Thus, $c \in P$. On the other hand, if $b \in P$, then $b_{1} \wedge \ldots \wedge b_{n} \in P$ and since P is prime, there exists $k \in\{1, \ldots, n\}$ such that $b_{k} \in P$. As $\bar{b}_{k} \leqslant b_{k}$, then $\bar{b}_{k} \in P$. But $\bar{b}_{k} \in B$ and $\varphi_{\mathbf{A}}\left(\bar{b}_{k}\right) \notin H(P)$, i.e., $P \in \varphi_{\mathbf{A}}\left(\bar{b}_{k}\right)$ and $\bar{b}_{k} \notin P$, which is a contradiction. Then $b \notin P$.

We consider the set $Q^{\top}=\left\{a \in A: Q \cap a^{\top} \neq \emptyset\right\}$. By Remark 3.3, $Q^{\top} \in \operatorname{Fi}(\mathbf{A})$. Since P is maximal, $I(P \cup\{b\}) \cap Q^{\top} \neq \emptyset$. Otherwise, if $I(P \cup\{b\}) \cap Q^{\top}=\emptyset$ then there exists $R \in X(\mathbf{A})$ such that $P \subseteq R, b \in R$ and $R \cap Q^{\top}=\emptyset$. So, $b \in R$ and $b \notin P$, which is a contradiction because P is maximal. Then $I(P \cup\{b\}) \cap Q^{\top} \neq \emptyset$ and there exists $p \in P$ such that $p \vee b \in Q^{\top}$, i.e., $Q \cap(p \vee b)^{\top} \neq \emptyset$. Thus, there exists $d \in A$ such that $d \in Q \cap(p \vee b)^{\top}$. On the other hand, since $\theta(Y)$ is a congruence and $(b \vee c, c) \in \theta(Y)$, then $(b \vee c \vee p, c \vee p) \in \theta(Y)$. By hypothesis, $\theta(Y)$ is an AP-congruence and $(b \vee c \vee p)^{\top} \equiv_{\tilde{\theta}(Y)}(c \vee p)^{\top}$. As $p \vee b \leqslant b \vee c \vee p$, $(p \vee b)^{\top} \subseteq(b \vee c \vee p)^{\top}$ and $d \in(b \vee c \vee p)^{\top}$. Thus, there exists $f \in(c \vee p)^{\top}$ such that $d \equiv_{\theta(Y)} f$, i.e., $\varphi_{\mathbf{A}}(d)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(f)^{\mathrm{c}} \cap Y$. Moreover, $Q \in \varphi_{\mathbf{A}}(d)^{\mathrm{c}} \cap Y$. Consequently, $Q \in \varphi_{\mathbf{A}}(f)^{\mathrm{c}} \cap Y$ and $f \in Q$. Since $P \in \max [Q)$, it follows that $Q \subseteq P$ and $f \in P$. Also, $c, p \in P$ and $f \vee c \vee p=1 \in P$, which is a contradiction. Therefore $P \in Y$ and $\max [Q) \subseteq Y$ for all $Q \in Y$.
$(2) \Rightarrow(1)$ Let $a, b \in A$ such that $a \equiv_{\theta(Y)} b$. Then $\varphi_{\mathbf{A}}(a)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(b)^{\mathrm{c}} \cap Y$. We prove that $a^{\top} \equiv_{\tilde{\theta}(Y)} b^{\top}$, or equivalently by Corollary 3.1, $\gamma\left(a^{\top}\right) \cap Y=\gamma\left(b^{\top}\right) \cap Y$. Let $Q \in \gamma\left(a^{\top}\right) \cap Y=\bigcup\left\{\varphi_{\mathbf{A}}(x)^{c}: x \in a^{\top}\right\} \cap Y$. Then there exists $c \in a^{\top}$ such that $Q \in \varphi_{\mathbf{A}}(c)^{\mathrm{c}}$. So, $c \vee a=1$ and $c \in Q$. Suppose that $Q \notin \gamma\left(b^{\top}\right) \cap Y$, i.e., $Q \cap b^{\top}=\emptyset$. Thus, by Lemma 2.2, there exists $P \in \max X(\mathbf{A})$ such that $Q \subseteq P$ and $b \in P$. So,
$P \in \varphi_{\mathbf{A}}(b)^{\mathrm{c}}$. Since $P \in \max [Q) \subseteq Y, P \in \varphi_{\mathbf{A}}(b)^{\mathrm{c}} \cap Y=\varphi_{\mathbf{A}}(a)^{\mathrm{c}} \cap Y$ and $a \in P$. Moreover, $c \in Q \subseteq P$ and $c \vee a=1 \in P$, which is a contradiction. Therefore, $a^{\top} \equiv_{\tilde{\theta}(Y)} b^{\top}$ and $\theta(Y)$ is an AP-congruence.

Definition 3.4. Let \mathbf{A} be a distributive nearlattice and $Y \in \mathcal{S}(X(\mathbf{A}))$. We say that Y is an APN-subspace if $\max [Q) \subseteq Y$ for all $Q \in Y$.

Theorem 3.5. Let \mathbf{A} be a distributive nearlattice and $\left\langle X(\mathbf{A}), \mathcal{K}_{\mathbf{A}}\right\rangle$ be the dual space of \mathbf{A}. Then there exists a dual isomorphism between the lattice of APNsubspaces of $X(\mathbf{A})$ and the lattice of AP-congruences of \mathbf{A}.

References

[1] J. C. Abbott: Semi-boolean algebra. Mat. Vesn., N. Ser. 19 (1967), 177-198.
zbl MR
[2] J. Araújo, M. Kinyon: Independent axiom systems for nearlattices. Czech. Math. J. 61 (2011), 975-992.
zbl MR doi
[3] I. Calomino, S. Celani: A note on annihilators in distributive nearlattices. Miskolc Math. Notes 16 (2015), 65-78.
[4] S. A. Celani: Topological representation of distributive semilattices. Sci. Math. Jpn. 58 (2003), 55-65.
[5] S. A. Celani: Remarks on annihilators preserving congruence relations. Math. Slovaca 62 (2012), 389-398.
[6] S. A. Celani: Relative annihilator-preserving congruence relations and relative annihi-lator-preserving homomorphisms in bounded distributive semilattices. Open Math. 13 (2015), 165-177.
zbl MR doi
[7] S. Celani, I. Calomino: Stone style duality for distributive nearlattices. Algebra Universalis 71 (2014), 127-153.
zbl MR doi
[8] I. Chajda, R. Halaš: An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii, Ser. Math. 13 (2006), 29-31.
[9] I. Chajda, R. Halaš, J. Kühr: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann Verlag, Lemgo, 2007.
[10] I. Chajda, M. Kolařik: Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Natur. Math. 46 (2007), 25-33.
zbl MR
[11] I. Chajda, M. Kolařík: Nearlattices. Discrete Math. 308 (2008), 4906-4913. zbl MR doi
[12] W. H. Cornish: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200-215.
zbl MR doi
[13] W. H. Cornish: Quasicomplemented lattices. Commentat. Math. Univ. Carolinae 15 (1974), 501-511.
zbl MR
[14] W. H. Cornish, R. C. Hickman: Weakly distributive semilattices. Acta Math. Acad. Sci. Hung. 32 (1978), 5-16.
zbl MR doi
[15] R. Halaš: Subdirectly irreducible distributive nearlattices. Miskolc Math. Notes 7 (2006), 141-146.
zbl MR doi
[16] R. Hickman: Join algebras. Commun. Algebra 8 (1980), 1653-1685.
zbl MR doi
[17] M. F. Janowitz: Annihilator preserving congruence relations of lattices. Algebra Univers. 5 (1975), 391-394.
[18] M. H. Stone: Topological representations of distributive lattices and Brouwerian logics. Čas. Mat. Fys. 67 (1937), 1-25.

Authors' address: Sergio Celani, Ismael Calomino, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas y Departamento de Matemáticas, Facultad de Ciencias Exactas, Universidad Nacional Del Centro De La Provincia De Buenos Aires, Pinto 399, 7000 Tandil, Argentina, e-mail: scelani@ exa.unicen.edu.ar, calomino@exa.unicen.edu.ar.

