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Abstract. We revisit the properties of Bessel-Riesz operators and present a different
proof of the boundedness of these operators on generalized Morrey spaces. We also obtain
an estimate for the norm of these operators on generalized Morrey spaces in terms of the
norm of their kernels on an associated Morrey space. As a consequence of our results,
we reprove the boundedness of fractional integral operators on generalized Morrey spaces,
especially of exponent 1, and obtain a new estimate for their norm.
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1. Introduction

Integral operators such as maximal operators and fractional integral operators have

been studied extensively in the last four decades. Here we are interested in Bessel-

Riesz operators, which are related to fractional integral operators. Let 0 < α < n

and γ > 0. The operator Iα,γ which maps every f ∈ Lploc(R
n), 1 6 p <∞, to

Iα,γf(x) :=

∫

Rn

Kα,γ(x− y)f(y) dy = Kα,γ ∗ f(x), x ∈ R
n,

where Kα,γ(x) := |x|α−n(1 + |x|)−γ , is called Bessel-Riesz operator, and the kernel

Kα,γ is called Bessel-Riesz kernel. The boundedness of these operators on Morrey

spaces and on generalized Morrey spaces was studied in [8] and [9].
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Let 1 6 p < ∞ and ϕ : R
+ → R

+ be of class Gp, that is, ϕ is almost decreasing

(there exists C > 0 such that ϕ(r) > Cϕ(s) for r 6 s) and ϕp(r)rn is almost

increasing (there exists C > 0 such that ϕp(r)rn 6 Cϕp(s)sn for r 6 s). Clearly

if ϕ is of class Gp, then ϕ satisfies the doubling condition, that is, there exists C > 0

such that C−1 6 ϕ(r)/ϕ(s) 6 C whenever 1 6 rs−1 6 2. We define the generalized

Morrey space Lp,ϕ(Rn) to be the set of all functions f ∈ Lploc(R
n) for which

‖f‖Lp,ϕ := sup
B=B(a,r)

1

ϕ(r)

(
1

|B|

∫

B

|f(x)|p dx

)1/p

<∞,

where |B| denotes the Lebesgue measure of B. (Recall that the Lebesgue measure of

B = B(a, r) is |B(a, r)| = Cnr
n for every a ∈ R

n and r > 0, where Cn > 0 depends

only on n.)

If 1 6 p 6 q < ∞ and ϕ(r) := Cnr
−n/q, r > 0, then Lp,ϕ(Rn) is the classical

Morrey space Lp,q(Rn), which is equipped with

‖f‖Lp,q := sup
B=B(a,r)

|B|1/q−1/p

(∫

B

|f(x)|p dx

)1/p

.

Particularly, for p = q, Lp,p(Rn) is the Lebesgue space Lp(Rn).

In [9], we know that for γ > 0, Kα,γ is a member of L
t(Rn) spaces for some values

of t depending on α and γ. It follows from Young’s inequality (see [3]) that

‖Iα,γf‖Lq 6 ‖Kα,γ‖Lt‖f‖Lp, f ∈ Lp(Rn)

whenever 1 6 p < t′, 1/q = 1/p− 1/t′ (where t′ denotes the dual exponent of t) and

n/(n+ γ − α) < t < n/(n− α). This tells us that Iα,γ is bounded from Lp(Rn) to

Lq(Rn) with ‖Iα,γ‖Lp→Lq 6 ‖Kα,γ‖Lt . In [8], it is also shown that Iα,γ is bounded

on generalized Morrey spaces but without a good estimate for its norm as on Morrey

spaces. We shall now refine the results by estimating the norms of the operators

more carefully through the membership of Kα in Morrey spaces.

Note that for γ = 0, Iα,0 = Iα is the fractional integral operator with kernel

Kα(x) := |x|α−n. Hardy and Littlewood [6], [7] and Sobolev [13] proved the bound-

edness of Iα on Lebesgue spaces. The boundedness of Iα on Morrey spaces is proved

by Peetre [12], and improved by Adams [1] and Chiarenza and Frasca [2]. Later,

Nakai [11] obtained the boundedness of Iα on generalized Morrey spaces, which can

be viewed as an extension of Spanne’s result. In 2009, Gunawan and Eridani [4]

proved the boundedness of Iα on generalized Morrey spaces which extends Adams’

and Chiarenza-Frasca’s results.
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In this paper, we give a new proof of the boundedness of Iα,γ on generalized

Morrey spaces. At the same time, an upper bound for the norm of the operators is

obtained. As a consequence of our result, we have an estimate for the norm of Iα
(from a generalized Morrey space to another) in terms of the norm of Kα on the

associated Morrey space. A lower bound for the norm of the operators is discussed

in Section 3.

2. The boundedness of Iα,γ on generalized Morrey spaces

We begin with a lemma about the membership of Kα in some Morrey spaces.

Note that throughout this paper, the letters C and Ck denote constants which may

change from line to line.

Lemma 2.1. If 0 < α < n, then Kα ∈ Ls,t(Rn), where 1 6 s < t = n/(n− α).

P r o o f. Let 0 < α < n. Take an arbitrary B = B(a,R), where a ∈ R
n and

R > 0. For 1 6 s < t = n/(n− α) we observe that

|B|s/t−1

∫

B

Ks
α(x) dx 6 |B(0, R)|s/t−1

∫

B(0,R)

|x|(α−n)s dx

6 CRn(s/t−1)Rn(1−s/t) = C.

By taking the supremum over B = B(a,R) we obtain ‖Kα‖
s
Ls,t 6 C. Hence

Kα ∈ Ls,t(Rn). �

R em a r k 2.2. For 0 < α < n and γ > 0 we know that Kα,γ ∈ Lt(Rn) for

n/(n+ γ − α) < t < n/(n− α), see [9]. By the inclusion property of Morrey

spaces (see [5]) we have Kα,γ ∈ Lt(Rn) = Lt,t(Rn) ⊆ Ls,t(Rn) for 1 6 s 6 t

and n/(n+ γ − α) < t < n/(n− α). Moreover, because Kα,γ(x) 6 Kα(x) for every

x ∈ R
n, Kα,γ is also contained in L

s,t(Rn) for 1 6 s < t = n/(n− α).

As a counterpart of the results in [8] and [9], we have the following theorem on the

boundedness of Iα,γ on Morrey spaces. Note particularly that the estimate holds for

p1 = 1.

Theorem 2.3. If 0 < α < n and γ > 0, then Iα,γ is bounded from Lp1,q1(Rn)

to Lp2,q2(Rn) with

‖Iα,γf‖Lp2,q2 6 C‖Kα,γ‖Ls,t‖f‖Lp1,q1 , f ∈ Lp1,q1(Rn)

whenever 1 6 p1 6 q1 < n/α, 1/p2 = 1/p1 − 1/s′, and 1/q2 = 1/q1 − 1/t′, with

1 6 s < t = n/(n− α) for γ > 0 or 1 6 s 6 t and n/(n+ γ − α) < t < n/(n− α)

for γ > 0.
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Theorem 2.3 is in fact a special case of the boundedness of Iα,γ on generalized

Morrey spaces, which is stated in the following theorem.

Theorem 2.4. Let 0 < α < n and γ > 0. If ϕ : R
+ → R

+ is of class Gp1 such

that
∫∞

R
ϕ(r)rn/t

′−1 dr 6 Cϕ(R)Rn/t
′

for every R > 0, then Iα,γ is bounded from

Lp1,ϕ(Rn) to Lp2,ψ(Rn), where ψ(r) := ϕ(r)rn/t
′

, with

‖Iα,γf‖Lp2,ψ 6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ , f ∈ Lp1,ϕ(Rn)

whenever 1 6 p1 < n/α and 1/p2 = 1/p1 − 1/s′, with 1 6 s < t = n/(n− α) for

γ > 0 or 1 6 s 6 t and n/(n+ γ − α) < t < n/(n− α) for γ > 0.

P r o o f. Suppose that γ > 0 and all the hypotheses hold. For f ∈ Lp1,ϕ(Rn) and

B = B(a,R), where a ∈ R
n and R > 0, write

f := f1 + f2 := fχ
B̃
+ fχ

B̃c
,

where B̃ = B(a, 2R) and B̃c denotes its complement. To estimate Iα,γf1, we observe

that for every x ∈ B, Hölder’s inequality gives

|Iα,γf1(x)| 6

∫

B̃

Kα,γ(x− y)|f(y)| dy

=

∫

B̃

Ks/p2
α,γ (x− y)|f(y)|p1/p2K(p2−s)/p2

α,γ (x− y)|f(y)|(p2−p1)/p2 dy

6

(∫

B̃

Ks
α,γ(x− y)|f(y)|p1 dy

)1/p2

×

(∫

B̃

K(p2−s)/(p2−1)
α,γ (x− y)|f(y)|(p2−p1)/(p2−1) dy

)1/p′2

.

Meanwhile, we have

∫

B̃

K(p2−s)/(p2−1)
α,γ (x − y)|f(y)|(p2−p1)/(p2−1) dy

6

(∫

B̃

Ks
α,γ(x − y) dy

)p′2(1/s−1/p2)(∫

B̃

|f(y)|p1 dy

)p′2/s′
.

Therefore we obtain

|Iα,γf1(x)| 6

(∫

B̃

Ks
α,γ(x− y)|f(y)|p1 dy

)1/p2

×

(∫

B̃

Ks
α,γ(x − y) dy

)1/s−1/p2(∫

B̃

|f(y)|p1 dy

)1/s′
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6

(∫

B̃

Ks
α,γ(x− y)|f(y)|p1 dy

)1/p2

× CRn(1−s/t)(1/s−1/p2)+n/s
′

ϕp1/s
′

(2R)‖Kα,γ‖
1−s/p2
Ls,t ‖f‖

p1/s
′

Lp1,ϕ .

We then take the p2th power and integrate both sides over B to get

∫

B

|Iα,γf1(x)|
p2 dx

6

∫

B

∫

B̃

Ks
α,γ(x− y)|f(y)|p1 dy dx

×
(
CRn(1−s/t)(1/s−1/p2)+n/s

′

ϕp1/s
′

(2R)‖Kα,γ‖
1−s/p2
Ls,t ‖f‖

p1/s
′

Lp1,ϕ

)p2
.

By Fubini’s theorem we have

∫

B

|Iα,γf1(x)|
p2 dx

6

∫

B̃

|f(y)|p1
(∫

B

Ks
α,γ(x − y) dx

)
dy

×
(
CRn(1−s/t)(1/s−1/p2)+n/s

′

ϕp1/s
′

(2R)‖Kα,γ‖
1−s/p2
Ls,t ‖f‖

p1/s
′

Lp1,ϕ

)p2

6 CRn(1−s/t)‖Kα,γ‖
s
Ls,t

∫

B̃

|f(y)|p1 dy

×
(
Rn(1−s/t)(1/s−1/p2)+n/s

′

ϕp1/s
′

(2R)‖Kα,γ‖
1−s/p2
Ls,t ‖f‖

p1/s
′

Lp1,ϕ

)p2

6 CRn(1−s/t)+nϕp1(2R)‖Kα,γ‖
s
Ls,t‖f‖

p1
Lp1,ϕ

×
(
Rn(1−s/t)(1/s−1/p2)+n/s

′

ϕp1/s
′

(2R)‖Kα,γ‖
1−s/p2
Ls,t ‖f‖

p1/s
′

Lp1,ϕ

)p2

6 C|B|ψp2 (R)‖Kα,γ‖
p2
Ls,t‖f‖

p2
Lp1,ϕ ,

whence
1

ψ(R)

(
1

|B|

∫

B

|Iα,γf1(x)|
p2 dx

)1/p2

6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ .

Next, we estimate Iα,γf2. For every x ∈ B = B(a,R) we observe that

|Iα,γf2(x)| 6

∫

B̃c

Kα,γ(x − y)|f(y)| dy

6

∫

|x−y|>R

Kα,γ(x− y)|f(y)| dy

=

∞∑

k=0

∫

2kR6|x−y|<2k+1R

Kα,γ(x − y)|f(y)| dy

6

∞∑

k=0

Kα,γ(2
kR)

∫

2kR6|x−y|<2k+1R

|f(y)| dy
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6 C
∞∑

k=0

Kα,γ(2
kR)(2kR)n/p

′

1

(∫

2kR6|x−y|<2k+1R

|f(y)|p1 dy

)1/p1

6 C‖f‖Lp1,ϕ
∞∑

k=0

Kα,γ(2
kR)(2kR)nϕ(2kR).

For every k ∈ Z we have

Kα,γ(2
kR) 6 C(2kR)−n/s

(∫

2kR6|x−y|<2k+1R

Ks
α,γ(x− y) dy

)1/s

6 C(2kR)−n/t‖Kα,γ‖Ls,t.

Since
∫∞

R ϕ(r)rn/t
′−1 dr 6 Cϕ(R)Rn/t

′

, we get

|Iα,γf2(x)| 6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ
∞∑

k=0

(2kR)n/t
′

ϕ(2kR)

6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ

∫ ∞

R

ϕ(r)rn/t
′−1 dr

6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕϕ(R)R
n/t′

= C‖Kα,γ‖Ls,t‖f‖Lp1,ϕψ(R).

Raising to the p2th power and integrating over B we obtain

∫

B

|Iα,γf2(x)|
p2 dx 6 C(‖Kα,γ‖Ls,t‖f‖Lp1,ϕ)

p2ψp2(R)|B|,

whence
1

ψ(R)

(
1

|B|

∫

B

|Iα,γf2(x)|
p2 dx

)1/p2

6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ .

Combining the two estimates for Iα,γf1 and Iα,γf2 we obtain

1

ψ(R)

(
1

|B|

∫

B

|Iα,γf(x)|
p2 dx

)1/p2

6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ .

Since this inequality holds for every a ∈ R
n and R > 0, it follows that

‖Iα,γf‖Lp2,ψ 6 C‖Kα,γ‖Ls,t‖f‖Lp1,ϕ ,

as desired.

We may repeat the same argument and use Lemma 2.1 to obtain the same in-

equality for the case where γ = 0 and 1 6 s < t = n/(n− α). �
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R em a r k 2.5. Theorems 2.3 and 2.4 give us upper estimates for the norm of

the Bessel-Riesz operators (from one Morrey space to another). In particular, for

γ = 0 we have an estimate for the norm of the fractional integral operator Iα in

terms of the norm of its kernel (on the associated Morrey space), which follows from

the inequality

‖Iαf‖Lp2,ψ 6 C‖Kα‖Ls,t‖f‖Lp1,ϕ

for 1 6 p1 < n/α and 1/p2 = 1/p1 − 1/s′, with 1 6 s < t = n/(n− α).

In the following section, we discuss lower estimates for the norm of the operators

in terms of the norm of the Bessel-Riesz kernel (on some Morrey spaces).

3. An estimate for the norm of the operators

Recall that if (X, ‖·‖X) and (Y, ‖·‖Y ) are normed spaces and if T : (X, ‖·‖X) →

(Y, ‖·‖Y ) is a linear operator, then the norm of T (from X to Y ) is defined as

‖T ‖X→Y := sup
f 6=0

‖Tf‖Y
‖f‖X

.

Knowing that the Bessel-Riesz operator Iα,γ is a linear operator on Morrey spaces,

we would like to estimate the norm of Iα,γ from a (generalized) Morrey space to

another. We obtain the following result.

Theorem 3.1. Let 0 < α < n, γ > 0, and ϕ be of class Gp1 where 1 6 p1 < n/α.

If ϕ(r)rn is almost increasing and for every R > 0 we have

(i)
∫∞

R ϕ(r)rn/t
′−1 dr 6 C1ϕ(R)R

n/t′ ,

(ii)
∫ R
0 ϕp1(r)rn−1 dr 6 C2ϕ

p1(R)Rn, and

(iii)
∫ R
0
rn−1/ϕs

′

(r)rns
′

dr 6 C3R
n/ϕs

′

(R)Rns
′

, where 1 6 p1 < t and 1 < s <

t = n/(n− α) for γ > 0 or 1 6 p1 6 t, 1 < s 6 t, and n/(n+ γ − α) < t <

n/(n− α) for γ > 0,

then we have

C4‖Kα,γ‖Lp1,t 6 ‖Iα,γ‖Lp1,ϕ→Lp2,ψ 6 C5‖Kα,γ‖Ls,t

whenever 1/p2 = 1/p1 − 1/s′ and ψ(r) := ϕ(r)rn/t
′

. In particular, for γ = 0,

1 6 p1 < t and 1 < s < t = n/(n− α) we have

C4‖Kα‖Lp1,t 6 ‖Iα‖Lp1,ϕ→Lp2,ψ 6 C5‖Kα‖Ls,t

whenever 1/p2 = 1/p1 − 1/s′ and ψ(r) := ϕ(r)rn/t
′

.
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P r o o f. Suppose that γ > 0 and all the hypotheses hold. By Theorem 2.4 we

already have

‖Iα,γ‖Lp1,ϕ→Lp2,ψ 6 C‖Kα,γ‖Ls,t .

To prove the lower estimate, put ̺(r) := ϕ(r)rn. Let B = B(a,R), where a ∈ R
n

and R > 0. By our assumptions on ϕ we have

|B|1/tψ(R)

(
1

|B|

∫

B

̺−s
′

(|x|) dx

)1/s′

6 Cϕ(R)Rn/s
(∫ R

0

rn−1

ϕs′(r)rns′
dr

)1/s′

6 C.

Now take f0(x) := ϕ(|x|). Here ‖f0‖Lp1,ϕ ≈ 1. Moreover, one may compute that

Iα,γf0(x) >

∫

B(x,2|x|)

Kα,γ(x− y)f0(y) dy > CKα,γ(2x)ϕ(|x|)|x|
n = C̺(|x|)Kα,γ(x)

for every x ∈ R
n. It follows that

‖̺(|·|)Kα,γ‖Lp2,ψ 6 C‖Iα,γf0‖Lp2,ψ 6 C‖Iα,γ‖Lp1,ϕ→Lp2,ψ .

Next, by Hölder’s inequality we have

(∫

B

Kp1
α,γ(x) dx

)1/p1

6

(∫

B

̺−s
′

(|x|) dx

)1/s′(∫

B

(̺(|x|)Kα,γ(x))
p2 dx

)1/p2

,

whence

|B|1/t−1/p1

(∫

B

Kp1
α,γ(x) dx

)1/p1

6 |B|1/tψ(R)

(
1

|B|

∫

B

̺−s
′

(|x|) dx

)1/s′

×
1

ψ(R)

(
1

|B|

∫

B

(̺(|x|)Kα,γ(x))
p2 dx

)1/p2

6 C‖Iα,γ‖Lp1,ϕ→Lp2,ψ .

By taking the supremum over B = B(a,R) we conclude that

C‖Kα,γ‖Lp1,t 6 ‖Iα,γ‖Lp1,ϕ→Lp2,ψ ,

as desired. The same argument applies for the case where γ = 0 with 1 6 p1 < t and

1 < s < t = n/(n− α). �

R em a r k 3.2. One may observe that the constants C4 and C5 in Theorem 3.1

depend on ϕ, n, p1, s, and t, but not on α and γ. Although the lower and the upper

bound are not comparable, we may still get useful information from these estimates,
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especially for the norm of the operator Iα from Lp1,ϕ(Rn) to Lp2,ψ(Rn). Observe

that for 1 6 p1 < t = n/(n− α) we have ‖Kα‖
p1
Lp1,t = C/((α− n)p1 + n) > C/α.

Hence, if all the hypotheses in Theorem 3.1 hold for the case where γ = 0, then we

obtain ‖Iα‖Lp1,ϕ→Lp2,ψ > C/α, which blows up when α → 0+. For ϕ(r) := r−n/q1

with 1 6 p1 < q1 < min{s, n/α} and 1 < s < n/(n− α), our result reduces to the

estimate ‖Iα‖Lp1,q1→Lp2,q2 > C/α, where 1/p2 = 1/p1− 1/s′ and 1/q2 = 1/q1−α/n.

A similar behavior of the norm of Iα from Lp1(Rn) to Lp2(Rn) for 1/p2 = 1/p1−α/n

when α→ 0+ is observed in [10], Chapter 4.

A c k n ow l e d g em e n t. All authors would like to thank the anonymous referee

for his/her careful reading and useful comments on the earlier version of this paper.
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