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Abstract. We present a variation-of-constants formula for functional differential equations
of the form

ẏ = L(t)yt + f(yt, t), yt0 = ϕ,

where L is a bounded linear operator and ϕ is a regulated function. Unlike the result by
G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the
application t 7→ f(yt, t) is Kurzweil integrable with t in an interval of R, for each regulated
function y. This means that t 7→ f(yt, t) may admit not only many discontinuities, but
it can also be highly oscillating and yet, we are able to obtain a variation-of-constants
formula. Our main goal is achieved via theory of generalized ordinary differential equations
introduced by J. Kurzweil (1957). As a matter of fact, we establish a variation-of-constants
formula for general linear generalized ordinary differential equations in Banach spaces where
the functions involved are Kurzweil integrable. We start by establishing a relation between
the solutions of the Cauchy problem for a linear generalized ODE of type

dx
dτ
= D[A(t)x], x(t0) = x̃

and the solutions of the perturbed Cauchy problem

dx
dτ
= D[A(t)x+ F (x, t)], x(t0) = x̃.

Then we prove that there exists a one-to-one correspondence between a certain class of linear
generalized ODE and the Cauchy problem for a linear functional differential equations of
the form

ẏ = L(t)yt, yt0 = ϕ,
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where L is a bounded linear operator and ϕ is a regulated function. The main result comes
as a consequence of such results. Finally, because of the extent of generalized ODEs, we
are also able to describe the variation-of-constants formula for both impulsive FDEs and
measure neutral FDEs.
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1. Introduction

In order to generalize certain classical results on continuous dependence of solu-

tions of ODEs with respect to parameters, Jaroslav Kurzweil introduced in 1957 the

concept of generalized ordinary differential equations (we write generalized ODEs,

for short). See references [12], [13], [14], [15], [16], [21].

In [4] and [7], it was proved that retarded functional differential equations (we

write FDEs, for short) and impulsive FDEs can be regarded as generalized ODEs

taking values in Banach spaces. Then several important applications came out. See,

for instance, [1], [6], [5].

In the present paper, we establish a variation-of-constants formula for abstract

linear generalized ODEs, relating the solutions of the Cauchy problem

(1.1)
dx

dτ
= D[A(t)x], x(t0) = x̃

and the solutions of the perturbed problem

dx

dτ
= D[A(t)x+ F (x, t)], x(t0) = x̃.

Then we establish a relation between a Cauchy problem for linear FDEs of type

{
ẏ = L(t)yt,

yt0 = ϕ,

and linear generalized ODEs of the form (1.1). Such relation leads us to important

applications such as a variation-of-constants formula for the perturbed FDEs of the

form {
ẏ = L(t)yt + f(yt, t),

yt0 = ϕ,

where ϕ is a regulated function and t 7→ f(yt, t) is Kurzweil integrable for every

regulated function y. Therefore, our results generalize the variation-of-constants

formula for FDEs which appear in [8] and [25].
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In order to make our text self-contained, we include the concept and basic facts of

the Kurzweil non-absolute integration theory as well as the definition of generalized

ODEs and their main features. It is worth mentioning that nonabsolute integrals in

the sense of Kurzweil and Henstock have been playing an important role in Quantum

Physics and Finance. See, for instance, [2], [18] and [19].

2. Kurzweil integration

A tagged partition of a compact interval [a, b] ⊂ R is a finite collection P = (τi, si),

where a = s0 6 s1 6 . . . 6 s|P | = b is a partition of [a, b] and τi ∈ [si−1, si],

i = 1, 2, . . . , |P | are tags of the subintervals. Here |P | denotes the number of subin-

tervals [si−1, si] of [a, b].

A gauge on a set E ⊂ [a, b] is any function δ : E → (0,∞). Given a gauge δ

on [a, b], a tagged partition P = (τi, si) is δ-fine if for every i,

[si−1, si] ⊂ {t ∈ [a, b] : |t− τi| < δ(τi)}.

We sometimes write P = (τi, [si−1, si]) instead of P = (τi, si) whenever there is need

to emphasize the subintervals.

Let X be a Banach space with norm ‖·‖X . In the sequel, we will use integration

specified by the next definition due to Kurzweil.

Definition 2.1. A function U(τ, t) : [a, b] × [a, b] → X is Kurzweil integrable if

there is a unique element I ∈ X such that given ε > 0, there is a gauge δ on [a, b]

such that for every δ-fine tagged partition P = (τi, si) of [a, b] we have

‖S(U, P )− I‖X < ε,

where S(U, P ) =
|P |∑
i=1

[U(τi, si)− U(τi, si−1)]. In this case, we write I =
∫ b

a
DU(τ, t).

Note that the definition above has sense whenever, for a certain gauge δ on [a, b],

one can guarantee the existence of a δ-fine tagged partition of [a, b]. Fortunately,

Cousin’s Lemma (see [9], Theorem 4.1) guarantees this existence.

Lemma 2.2 (Cousin’s Lemma). Given a gauge δ on [a, b], there exists a δ-fine

tagged partition of [a, b].

Remark 2.3. Suppose the integral
∫ b

a
DU (τ, t) exists. We define

∫ a

b
DU(τ, t) =

−
∫ b

a
DU(τ, t).
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The type of integration we are dealing with (namely the Kurzweil integration)

and its properties are described extensively in Chapter I of [21] for the case X = R
n

(see [21], Definition 1.2n). The next results can be found in [21] for the case X = R
n.

When X is a general Banach space, analogous results can be obtained. We should

mention, in particular, that the Kurzweil integral has the usual properties of linearity

and additivity with respect to adjacent intervals. Another important result, which

will be used later, concerns the integrability on subintervals. Such result is stated

next for the Kurzweil integral (see [21], Theorem 1.10).

Lemma 2.4. Let U(τ, t) : [a, b] × [a, b] → X be integrable over [a, b]. Then for

each subinterval [c, d] ⊂ [a, b], the integral
∫ d

c
DU(τ, t) exists.

The next result is known as the Saks-Henstock Lemma for the Kurzweil integral.

A proof of it can be found in [21], Lemma 1.13.

Proposition 2.5 (Saks-Henstock Lemma). Let U(τ, t) : [a, b]× [a, b] → X . If for

every ε > 0 there exists a gauge δ on [a, b] such that for every δ-fine tagged partition

P = (τi, si) of [a, b],

∥∥∥∥
|P |∑

i=1

[U(τi, si)− U(τi, si−1)]−

∫ b

a

DU(τ, t)

∥∥∥∥
X

< ε,

then for a 6 c1 6 η1 6 d1 6 c2 6 η2 6 d2 6 . . . 6 cl 6 ηl 6 dl 6 b with

ηj ∈ [cj , dj ] ⊂ [ηj − δ(ηj), ηj + δ(ηj)], j = 1, 2, . . . , l,

∥∥∥∥
l∑

j=1

[U(ηj , dj)− U(ηj , cj)−

∫ dj

cj

DU(τ, t)]

∥∥∥∥
X

< ε.

The following result is an important Hake-type theorem (see [21], Theorem 1.14).

It says that the Kurzweil integral is invariant under Cauchy extensions.

Lemma 2.6. Let a function U : [a, b]× [a, b] → X be given so that U is integrable

over [a, c] for every c ∈ [a, b), and let the limit

lim
c→b−

[∫ c

a

DU(τ, t)− U(b, c) + U(b, b)

]
= I ∈ X

exist. Then the function U is integrable over [a, b] and
∫ b

a
DU(τ, t) = I. Similarly, if

the function U is integrable over [c, b] for every c ∈ (a, b], and the limit

lim
c→a+

[∫ b

c

DU(τ, t) + U(a, c)− U(a, a)

]
= I ∈ X

exists, then the function U is integrable over [a, b] and
∫ b

a
DU(τ, t) = I.
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This leads to the following result (see [21], Theorem 1.16).

Lemma 2.7. Let U : [a, b] × [a, b] → X be Kurzweil integrable over [a, b] and

c ∈ [a, b]. Then U is Kurzweil integrable over [a, c] and

lim
s→c

[∫ s

a

DU(τ, t)− U(c, s) + U(c, c)

]
=

∫ c

a

DU(τ, t).

Remark 2.8. Lemma 2.7 shows that the function defined by s ∈ [a, b] 7→∫ s

a
DU(τ, t) ∈ X, that is, the indefinite Kurzweil integral of U , may not be continu-

ous in general: it is continuous at a point c ∈ [a, b] if and only if the function U(c, ·) :

[a, b] → X is continuous at the point c. Notice further, that if U : [a, b]× [a, b] → X

is Kurzweil integrable over [a, b], then by Lemma 2.4, the indefinite integral of the

function U is well defined on the whole interval [a, b].

When U from Definition 2.1 is given by U(τ, t) = f(τ)g(t) with f : [a, b] → R
n

and g : [a, b] → R, we have

∫ b

a

DU(τ, t) =

∫ b

a

f(s) dg(s)

and we refer to the last integral as the Kurzweil-Stieltjes integral. In particular,

Lemma 2.7 also says that the Kurzweil-Stieltjes integrals of type
∫ b

a
f(s) dg(s) en-

compass their improper integrals.

Now, we present a classic example of a highly oscillating function which is Kurzweil

integrable.

Example 2.9. Let f : [0, 1] → R be a function given by

f(t) =





2t sin
2

t2
−

2

t
cos

2

t2
, t ∈ (0, 1],

0, t = 0.

Note that f is a highly oscillating function, it is not absolutely integrable over [0, 1]

and also it is not Lebesgue integrable over [0, 1]. Since the improper Riemann integral

of f exists, using a Hake-type theorem for the Kurzweil integral, which says that the

Kurzweil integral is invariant by Cauchy extensions, the Kurzweil integral of f also

exists and it has the same value as the improper Riemann integral of f .
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3. Generalized ordinary differential equations

Again, we consider X a Banach space with norm ‖·‖X . Let an open set Ω ⊂ X×R

be given and assume that G : Ω → X is a given X-valued function G(x, t) defined

for (x, t) ∈ Ω.

Definition 3.1. A function x : [α, β] → X is called a solution of the generalized

ordinary differential equation

(3.1)
dx

dτ
= DG(x, t)

on the interval [α, β] ⊂ R if (x(t), t) ∈ Ω for all t ∈ [α, β] and if the equality

x(v)− x(γ) =

∫ v

γ

DG(x(τ), t)

holds for every γ, v ∈ [α, β], where the integral is in the sense of Definition 2.1.

Let −∞ < a < b < ∞ and set Ω = O × [a, b], where O ⊂ X is an open set

(e.g. O = Bc = {x ∈ X : ‖x‖ < c} for some c > 0). Next, we define a class of

right-hand sides of equation (3.1) for which the local existence and uniqueness of

a solution are guaranteed.

Definition 3.2. A function G : Ω → X belongs to the class F(Ω, h) if there

exists a nondecreasing function h : [a, b] → R such that

(3.2) ‖G(x, s2)−G(x, s1)‖ 6 |h(s2)− h(s1)|

for all (x, s2), (x, s1) ∈ Ω and

‖G(x, s2)−G(x, s1)−G(y, s2) +G(y, s1)‖ 6 ‖x− y‖|h(s2)− h(s1)|

for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ Ω.

Assume that G ∈ F(Ω, h) for some nondecreasing function h : [a, b] → R. If

[α, β] ⊂ [a, b] and x : [α, β] → X is a solution of (3.1), then the inequality

(3.3) ‖x(s1)− x(s2)‖ 6 |h(s2)− h(s1)|

holds for every s1, s2 ∈ [α, β] (see [21], Lemma 3.10).

Let varβα x denote the variation of a function x : [α, β] → X . Then we have

the following property of solutions of (3.1), where G belongs to the class F(Ω, h).
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See [21], Corollary 3.11 for the case X = R
n. The infinite dimensional case follows

analogously.

Proposition 3.3. Assume that G ∈ F(Ω, h) for some nondecreasing function

h : [a, b] → R. If [α, β] ⊂ (a, b) and x : [α, β] → X is a solution of (3.1), then x is of

bounded variation in [α, β] and varβα x 6 h(β) − h(α) < ∞. Every point in [α, β] at

which the function h is continuous is a continuity point of the solution x : [α, β] → X .

Moreover, we have the following result (see [21], Lemma 3.12).

Lemma 3.4. If x : [α, β] → X is a solution of (3.1) and G : Ω → X satisfies

condition (3.2), then

x(σ+)− x(σ) = lim
s→σ+

x(s)− x(σ) = G(x(σ), σ+) −G(x(σ), σ), σ ∈ [α, β),

x(σ) − x(σ−) = x(σ) − lim
s→σ−

x(s) = G(x(σ), σ) −G(x(σ), σ−), σ ∈ (α, β],

where
G(x, σ+) = lim

s→σ+
G(x, s), σ ∈ [α, β),

G(x, σ−) = lim
s→σ−

G(x, s), σ ∈ (α, β].

Note that all the onesided limits G(x, σ+), G(x, σ−), x(σ+) and x(σ−) exist in X ,

since h is a nondecreasing real function.

We recall that a function f : [a, b] → X is regulated if at any point t ∈ [a, b], it

possesses onesided limits, that is, the limits

lim
s→t−

f(s) = f(t−) ∈ X, t ∈ (a, b] and lim
s→t+

f(s) = f(t+) ∈ X, t ∈ [a, b)

exist. We write f ∈ G([a, b], X) in this case. Therefore, if f ∈ G([a, b], X), then for

every ε > 0 and t ∈ (a, b] there exist δ > 0 and f(t−) ∈ X such that

‖f(s)− f(t−)‖ < ε for t− δ < s < t,

and for every ε > 0 and t ∈ [a, b) there exist δ > 0 and f(t+) ∈ X such that

‖f(s)− f(t+)‖ < ε for t < s < t+ δ.

If we endow G([a, b], X) with the usual supremum norm ‖f‖∞ = sup
a6t6b

‖f(t)‖,

then (G([a, b], X), ‖·‖∞) becomes a Banach space. It is also useful to know that

regulated functions are the uniform limit of step functions. For other properties of

this space, the reader may want to consult [10].
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Now, we present a result on the existence of the integral involved in the definition

of the solution of the generalized equation (3.1). See [1], Lemma 2.24 for a proof

when X is of finite dimension. The infinite dimensional case follows analogously.

Lemma 3.5. Let G ∈ F(Ω, h) and x : [α, β] → X be regulated in [α, β] ⊂ [0,∞)

and (x(s), s) ∈ Ω for every s ∈ [α, β]. Then the Kurzweil integral
∫ β

α
DG(x(τ), t)

exists and the function s 7→
∫ s

α
DG(x(τ), t) ∈ X is of bounded variation in [α, β]

(and therefore also regulated).

The next result concerns the local existence and uniqueness of a solution of (3.1)

(see [4], Theorem 2.15).

Theorem 3.6 (Existence and uniqueness). Let G : Ω → X belong to the class

F(Ω, h), where the function h : [a, b] → R is left continuous. Then for every

(x̃, t0) ∈ Ω such that for x̃+ = x̃ + G(x̃, t0+) − G(x̃, t0) we have (x̃+, t0) ∈ Ω and

there exists ∆ > 0 such that on the interval [t0, t0+∆] there exists a unique solution

x : [t0, t0 +∆] → X of the generalized ordinary differential equation (3.1) for which

x(t0) = x̃.

Remark 3.7. The assumption on the left continuity of the function h in The-

orem 3.6 implies that the solutions of (3.1) are also left continuous (see equa-

tion (3.3)). Given a solution x of (3.1), the limit x(σ−) exists for every σ in the

domain of x. This follows again by (3.3) and, by Lemma 3.4, we have the relation

x(σ) = x(σ−) +G(x(σ), σ) −G(x(σ), σ−), which describes the discontinuity of the

given solution.

4. The variation-of-constants formula

Let [a, b] ⊂ R be a compact interval, (x̃, t0) ∈ X × [a, b], where X is a Banach

space and let L(X) be the Banach space of bounded linear operators from X into

itself endowed with the usual operator norm in L(X).

Let us assume that F : X × [a, b] → X is given by F (x, t) = A(t)x, where A :

[a, b] → L(X) is of bounded variation, that is, varba(A) < ∞. Moreover, we assume

that the following conditions are satisfied:

(4.1)
1

I + [A(t+)−A(t)]
∈ L(X) ∀ t ∈ [a, b),

1

I − [A(t)−A(t−)]
∈ L(X) ∀ t ∈ (a, b],

where I ∈ L(X) is the identity operator, A(t+) = lim
s→t+

A(s) and A(t−) = lim
s→t−

A(s).
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Consider the following Cauchy problem for a generalized ODE

(4.2)





dx

dτ
= DF (x, t) = D[A(t)x],

x(t0) = x̃.

According to Definition 3.1, a function x : [a, b] → X is a solution of the generalized

ODE in (4.2) on the interval [a, b] if

(4.3) x(s2) = x(s1) +

∫ s2

s1

D[A(t)x(τ)] ∀ s1, s2 ∈ [a, b].

In particular, a function x : [a, b] → X is a solution of the initial value problem (4.2)

on [a, b] whenever

(4.4) x(s) = x̃+

∫ s

t0

D[A(t)x(τ)] ∀ s ∈ [a, b].

Note that the integral term on the right-hand side of the last equality comes

from the fact that we are dealing with the Kurzweil-Stieltjes integral as it was de-

scribed in [22]. Indeed, the Riemann-type sums for
∫ v

t0
D[A(t)x(τ)] have the form∑

[A(si) − A(si−1)]x(τi), which leads us to the more conventional form of notation

of the integral, that is, to the form
∫ v

t0
d[A(t)]x(t). Then (4.3) becomes

x(s2)− x(s1) =

∫ s2

s1

d[A(s)]x(s), s1, s2 ∈ [a, b]

and, similarly, equation (4.4) can be written as

x(s) = x̃+

∫ s

t0

d[A(r)]x(r), s ∈ [a, b].

Let BV ([a, b], X) denote the Banach space of functions x : [a, b] → X such

that varba x < ∞, endowed with the variation norm ‖x‖ = ‖x(a)‖X + varba x. By

BV ([a, b], L(X)) we denote the Banach space of operators F : [a, b] → L(X) such

that varba F <∞, endowed with the norm ‖F‖ = ‖F (a)‖L(X) + varba F .

In general, we have the following result for the existence of the Kurzweil-Stieltjes

integral in Banach spaces (see [22], Proposition 15).

Theorem 4.1. Let X be a Banach space. Suppose g ∈ G([a, b], X) and F ∈

BV ([a, b], L(X)). Then the Kurzweil-Stieltjes integral
∫ t

a
d[F (s)]g(s) exists for every

t ∈ [a, b].
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The next result concerns the existence and uniqueness of a solution of the initial

value problem (4.2) on the whole interval [a, b]. Hence, a consequence of such result

is the global existence of a solution. For a proof, see [23], Theorem 2.10 together

with the last remark following it.

Theorem 4.2. Suppose A ∈ BV ([a, b], L(X)). If x : [a, b] → X is a solution

of (4.2) on [a, b], then x ∈ BV ([a, b], X). Moreover, if A satisfies (4.1), then the

initial value problem (4.2) has a unique solution on [a, b].

As we look at the equation
dx

dτ
= D[A(t)x]

in (4.2), we can also consider the equation

(4.5)
dΦ

dτ
= D[A(t)Φ],

where Φ ∈ L(X) and a solution of the second equation on the interval [a, b] is an

operator-valued function Φ: [a, b] → L(X) such that

Φ(s2) = Φ(s1) +

∫ s2

s1

D[A(t)Φ(τ)] = Φ(s1) +

∫ s2

s1

d[A(s)]Φ(s) ∀ s1, s2 ∈ [a, b].

Thus, we define an operator Φ: [a, b] → L(X) by

(4.6) Φ(t) = Φ(t0) +

∫ t

t0

d[A(s)]Φ(s), t ∈ [a, b].

Then Theorem 4.2 implies the operator Φ given by (4.6) is uniquely determined.

Furthermore, if (4.6) is satisfied for all t ∈ [a, b], then Φ: [a, b] → L(X) is a solution

of the generalized equation (4.5).

Now, we define the fundamental operator for linear generalized ODEs (see [21],

Theorem 6.13). We reproduce the proof here, applied to the infinite dimensional

case.

Theorem 4.3. Suppose A ∈ BV ([a, b], L(X)) satisfies (4.1). Then there exists

a uniquely determined operator U : [a, b]× [a, b] → L(X), called fundamental oper-

ator, such that

(4.7) U(t, s) = I +

∫ t

s

d[A(r)]U(r, s), t, s ∈ [a, b]
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and for every fixed s ∈ [a, b], U(·, s) is of bounded variation in [a, b]. Moreover, the

unique solution x : [a, b] → X of

dx

dτ
= D[A(t)x]

with initial condition x(s) = x̃ ∈ X , s ∈ [a, b], is given by the relation

(4.8) x(t) = U(t, s)x̃, t ∈ [a, b].

P r o o f. This proof follows as in Theorem 6.13 and 6.14 from [21]. For a given

s ∈ [a, b], U is a solution of

Φ(t) = I +

∫ t

s

d[A(r)]Φ(r)

and by Theorem 4.2, this solution exists and is of bounded variation in [a, b] for every

fixed s ∈ [a, b]. Then for s ∈ [a, b] fixed, the function x : [a, b] → X given by (4.8)

is of bounded variation. Therefore, for every t ∈ [a, b], the integral
∫ t

s
d[A(r)]x(r)

exists (Theorem 4.1) and we have

∫ t

s

d[A(r)]x(r) =

∫ t

s

d[A(r)]U(r, s)x̃ = [U(t, s)− I]x̃ = x(t)− x̃

for t ∈ [a, b], and x(s) = U(s, s)x̃. This means that x is a solution of the initial value

problem of the statement and this solution is unique by Theorem 4.2. �

Now, let us mention several properties of the fundamental operator U given

by (4.7). The proof follows the steps of Theorem 6.15 in [21]. But will not repeat it

here, since it is not so short.

Theorem 4.4. Suppose A ∈ BV ([a, b], L(X)) satisfies (4.1). Then the operator

U : [a, b]× [a, b] → L(X) given by (4.7) satisfies the following properties:

(i) U(t, t) = I for all t ∈ [a, b].

(ii) There exists a constant M > 0 such that for all t, s ∈ [a, b] we have

‖U(t, s)‖ 6M, varba U(t, ·) 6M and varba U(·, s) 6M.

(iii) U(t, s) = U(t, r)U(r, s) for all t, r, s ∈ [a, b].

(iv) There exists [U(t, s)]−1 ∈ L(X) and [U(t, s)]−1 = U(s, t) for all t, s ∈ [a, b].

(v) We have for all t, s ∈ [a, b],

U(t+, s) = [I +∆+A(t)]U(t, s) and U(t−, s) = [I −∆−A(t)]U(t, s),

U(t, s+) = U(t, s)[I +∆+A(t)]−1 and U(t, s−) = U(t, s)[I −∆−A(t)]−1.
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The next two lemmas are new and they will be useful for obtaining a Dirichlet-type

formula involving regulated functions in Banach spaces.

Lemma 4.5. Let t0 ∈ [a, b] and U : [a, b] × [a, b] → L(X) be given by (4.7)

in Theorem 4.3. Then for ϕ ∈ G([a, b], X), the function ϕ̂ : [a, b] → X given by

ϕ̂(r) =
∫ r

t0
ds[U(r, s)]ϕ(s) is regulated.

P r o o f. Let ϕ ∈ G([a, b], X) be fixed. Consider r ∈ [t0, t) and let rn be a se-

quence in [a, b] such that rn ց r (that is, {rm} is a sequence in [a, b] such that rn > r

for every n ∈ N and rn converges to r). By Theorem 4.4, lim
n→∞

U(rn, s) = U(r+, s)

exists for all s ∈ [a, b] and there exists M > 0 such that varba U(rn, ·) < M for

all n ∈ N. Then, by Helly’s Choice Theorem (see [10], Theorem I.5.8), U(r+, ·) ∈

BV ([a, b], L(X)) and thus, the integral
∫ r

t0
ds[U(r+, s)]ϕ(s) makes sense.

Define Ũ(σ, s) = U(σ, s) for a 6 s 6 σ 6 b and Ũ(σ, s) = I for a 6 σ < s 6 b. It

is difficult to see that U and Ũ has the same properties. Thus

∫ t

t0

ds[Ũ(r, s)]ϕ(s) =

∫ r

t0

ds[U(r, s)]ϕ(s) +

∫ t

r

ds[I]ϕ(s) = ϕ̂(r).

In order to obtain that ϕ̂ is regulated, let us prove that Ũ(rn, s) → Ũ(r+, s) uniformly

on [a, b]. Indeed, by property (ii) in Theorem 4.4, there exists M > 0 such that

‖U(r, s)‖ 6M for all t, s ∈ [a, b], then

sup
s∈[a,b]

‖Ũ(rn, s)− Ũ(r+, s)‖ = sup
s∈[a,r]

‖U(rn, s)− U(r+, s)‖

= sup
s∈[a,r]

‖U(rn, r)U(r, s)− [I +∆+A(r)]U(r, s)‖

= sup
s∈[a,r]

‖U(rn, r)− I −∆+A(r)‖‖U(r, s)‖

6M

∥∥∥∥
∫ rn

r

d[A(τ)]U(τ, r) −∆+A(r)

∥∥∥∥ → 0.

Thus, by the Uniform Convergence Theorem for the Kurzweil-Stieltjes integral

(see [22], Theorem 11), we have

lim
n→∞

∫ t

t0

ds[Ũ(rn, s)− Ũ(r+, s)]ϕ(s) = 0

and we conclude that the right-hand sided limit lim
s→r+

ϕ̂(s) exists for every r ∈ [t0, t).

Similarly, one can prove that the left-hand sided limit lim
s→r−

ϕ̂(s) exists for every

r ∈ (t0, t]. �
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Lemma 4.6. Suppose K ∈ BV ([a, b], L(X)) and let U : [a, b]× [a, b] → L(X) be

given by (4.7) in Theorem 4.3 and t ∈ [a, b]. Then the function Û : [a, t] → L(X)

given by Û(s) =
∫ t

s
d[K(r)]U(r, s) is of bounded variation on [a, t].

P r o o f. At first, note that condition (ii) in Theorem 4.4 together with the fact

thatK ∈ BV ([a, b], L(X)), implies that the function Û is well defined (Theorem 4.1).

Let Ũ(σ, s) = U(σ, s) for a 6 s 6 σ 6 b and Ũ(σ, s) = I for a 6 σ < s 6 b. It

is easy to see that the function Ũ has the same properties as U does and, for each

σ ∈ [a, b], varba Ũ(σ, ·) = varσa U(σ, ·) + varbσ I = varσa U(σ, ·). Moreover, for every

s ∈ [a, t],

∫ t

a

d[K(r)]Ũ (r, s) =

∫ s

a

d[K(r)]I +

∫ t

s

d[K(r)]U(r, s) = K(s)−K(a) + Û(s).

With these equalities in mind, considering a partition P = (αj) of [t0, t], j =

1, . . . , |P |, we have

|P |∑

j=1

‖Û(αj)− Û(αj−1)‖ 6

|P |∑

j=1

∥∥∥∥
∫ t

a

d[K(r)](Ũ (r, αj)− Ũ(r, αj−1))

∥∥∥∥+ vartaK

6 vartaK sup
r∈[a,t]

|P |∑

j=1

‖Ũ(r, αj)− Ũ(r, αj−1)‖+ vartaK

6 vartaK sup
r∈[a,t]

varta Ũ(r, ·) + vartaK

= vartaK sup
r∈[a,t]

varta U(r, ·) + vartaK

= vartaK
(

sup
r∈[a,t]

varta U(r, ·) + 1
)
.

Then Û ∈ BV ([a, t], L(X)) and we have finished the proof. �

Remark 4.7. The two lemmas above are similar to Lemma 2.10 and Lemma 2.12

from [27], where they are presented for the finite dimension case though.

Next, we present a new Dirichlet-type formula for regulated functions in Banach

spaces. It will be useful to prove our variation-of-constants formula for generalized

ODEs. Such result generalizes Lemma 6.16 in [21], which deals with R
n-valued

functions of bounded variation. The technique we use here is totally different from

that presented in [21]. We first evaluate all the integrals of characteristic functions,

then apply a Uniform Convergence Theorem. In [21], the author used a Tonelli-type

theorem instead. In [27], a similar result appears (see Theorem 2.13 there), but by

the reasons pointed out in the last remark, our result is more general.
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Lemma 4.8. Let A,K ∈ BV ([a, b], L(X)) and assume that A satisfies (4.1). Then

for U : [a, b]× [a, b] → L(X) given by (4.7) in Theorem 4.3, and for t0, t ∈ [a, b] and

ϕ ∈ G([a, b], X), we have the equality

(4.9)

∫ t

t0

d[K(r)]

∫ r

t0

ds[U(r, s)]ϕ(s)

=

∫ t

t0

d[K(s)]ϕ(s) +

∫ t

t0

ds

[∫ t

s

dr[K(r)]U(r, s)

]
ϕ(s).

P r o o f. Assume that t0, t ∈ [a, b] with t0 6 t. Note that by Lemmas 4.5 and 4.6,

all the integrals involved in (4.9) are well defined.

Let (α, β) ∈ [t0, t] and x0 ∈ X be fixed. Using Lemmas 12 and 13 from [22], we

have

∫ r

t0

ds[U(r, s)]χ(α,β)(s)xo =





0, t0 6 r 6 α;

x0 − lim
s→α+

U(r, s)x0, α < r < β;

lim
s→β−

U(r, s)x0 − lim
s→α+

U(r, s)x0, β 6 r 6 t.

Then

(4.10)

∫ t

t0

d[K(r)]

∫ r

t0

ds[U(r, s)]χ(α,β)(s)x0

= lim
c→α+

(
lim

s→β−

K(s)x0 −K(c)x0 + lim
s→β−

[K(β)−K(s)]U(β, s)x0

+

∫ t

β

d[K(r)] lim
s→β−

U(r, s)x0 +

∫ t

c

d[K(r)]
(
− lim

s→α+
U(r, s)x0

))

= lim
s→β−

K(s)x0 − lim
s→α+

K(s)x0 + lim
s→β−

[K(β)−K(s)]U(β, s)x0

+

∫ t

β

d[K(r)] lim
s→β−

U(r, s)x0 − lim
s→α+

∫ t

s

d[K(r)]U(r, s)x0.

On the other hand,

(4.11)

∫ t

t0

d[K(s)]χ(α,β)(s)x0 = lim
s→β−

K(s)x0 − lim
s→α+

K(s)x0

902



and, using Theorem 17 in [22], we obtain

(4.12)

∫ t

t0

ds

[∫ t

s

dr[K(r)]U(r, s)

]
χ(α,β)(s)x0

= lim
s→β−

∫ t

s

dr[K(r)]U(r, s)x0 − lim
s→α+

∫ t

s

dr[K(r)]U(r, s)x0

= lim
s→β−

[K(β)−K(s)]U(β, s)x0 +

∫ t

β

dr[K(r)] lim
s→β−

U(r, s)x0

− lim
s→α+

∫ t

s

dr[K(r)]U(r, s)x0.

Then by (4.10), (4.11) and (4.12), equality (4.9) holds for ϕ(s) = χ(α,β)(s)x0.

Now, let x1 ∈ X and suppose t0 < γ < t. Using the same ideas as above, we have

∫ r

t0

ds[U(r, s)]χ{γ}(s)x1 =





0, t0 6 r < γ;

x0 − lim
s→γ−

U(γ, s)x0, r = γ;

lim
s→γ+

U(r, s)x0 − lim
s→γ−

U(r, s)x0, γ < r 6 t

and

(4.13)

∫ t

t0

d[K(r)]

∫ r

t0

ds[U(r, s)]χ{γ}(s)x1

=

∫ γ

t0

d[K(r)]

∫ r

t0

ds[U(r, s)]χ{γ}(s)x1

+

∫ t

γ

d[K(r)]

∫ r

t0

ds[U(r, s)]χ{γ}(s)x1

= lim
s→γ−

[K(γ)−K(s)](x1 − U(γ, s)x1)−

∫ t

γ

d[K(r)] lim
s→γ−

U(r, s)x1

+ lim
s→γ+

(∫ t

s

d[K(r)] lim
σ→γ+

U(r, σ)x1 + [K(s)−K(γ)]x1

)

= lim
s→γ+

K(s)x1 − lim
s→γ−

K(s)x1 − lim
s→γ−

[K(γ)−K(s)]U(γ, s)x1

+ lim
s→γ+

∫ t

s

d[K(r)]U(r, s)x1 −

∫ t

γ

d[K(r)] lim
s→γ−

U(r, s)x1.

For the right-hand side of (4.9) we obtain

(4.14)

∫ t

t0

d[K(s)]χ{γ}(s)x1 = lim
s→γ+

K(s)x1 − lim
s→γ−

K(s)x1
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and also

(4.15)

∫ t

t0

ds

[∫ t

s

d[K(r)]U(r, s)

]
χ{γ}(s)x1

= lim
s→γ+

∫ t

s

d[K(r)]U(r, s)x1 − lim
s→γ−

∫ t

s

d[K(r)]U(r, s)x1

= lim
s→γ+

∫ t

s

d[K(r)]U(r, s)x1 −

∫ t

γ

d[K(r)] lim
s→γ−

U(r, s)x1

− lim
s→γ−

[K(γ)−K(s)]U(γ, s)x1.

Then by (4.13), (4.14) and (4.15), equality (4.9) holds for ϕ(s) = χ{γ}(s)x1. Analo-

gously, one can prove equality (4.9) in the case where γ = t0 and γ = t.

Finally, let ϕ ∈ G([t0, t], X) and ϕn be a sequence of step functions which is

uniformly convergent in [t0, t] to ϕ, that is,

lim
n→∞

sup
s∈[t0,t]

‖ϕn(s)− ϕ(s)‖X = 0.

Since ϕn is a step function, equality (4.9) holds for all n ∈ N. By the Uniform

Convergence Theorem for the Kurzweil-Stieltjes integral (see [22], Theorem 11), (4.9)

also holds for ϕ ∈ G([t0, t], X). �

Corollary 4.9. Let A ∈ BV ([a, b], L(X)) and assume that A satisfies (4.1). Then

for U : [a, b]× [a, b] → L(X) given by (4.7) in Theorem 4.3, the equality

∫ t

t0

d[A(r)]

∫ r

t0

ds[U(r, s)]ϕ(s) =

∫ t

t0

d[A(s)]ϕ(s) +

∫ t

t0

ds[U(t, s)]ϕ(s)

holds for t0, t ∈ [a, b] and ϕ ∈ G([a, b], X).

P r o o f. Let us consider K = A in Lemma 4.8. Then

∫ t

t0

d[A(r)]

∫ r

t0

ds[U(r, s)]ϕ(s) =

∫ t

t0

d[A(s)]ϕ(s) +

∫ t

t0

ds

[∫ t

s

dr[A(r)]U(r, s)

]
ϕ(s)

and by (4.7),

∫ t

t0

d[A(r)]

∫ r

t0

ds[U(r, s)]ϕ(s) =

∫ t

t0

d[A(s)]ϕ(s) +

∫ t

t0

ds[U(t, s)]ϕ(s)

for t0, t ∈ [a, b] and ϕ ∈ G([a, b], X). �
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The proof of the next theorem follows the main ideas of [21], Theorem 6.17 (see

also [24]). However, while in [21] the Cauchy problem concerns a linear generalized

ODE perturbed by a function of t only, here we consider a perturbation which also

depends on the state x.

Theorem 4.10. Let A ∈ BV ([a, b], L(X)) and F : X × [a, b] → L(X) be given

and let [α, β] ⊆ [a, b]. Then x : [α, β] → X is a solution of

(4.16)





dx

dτ
= D[A(t)x + F (x, t)],

x(t0) = x̃

on [α, β] if and only if it is a solution of the integral equation

(4.17) x(t) = U(t, t0)x̃+

∫ t

t0

DF (x(τ), s)

−

∫ t

t0

dσ[U(t, σ)]

∫ σ

t0

DF (x(τ), s), t ∈ [α, β]

on [α, β], where U : [a, b]× [a, b] → L(X) is given by (4.7).

P r o o f. Let t0 ∈ [a, b] and ϕ(σ) =
∫ σ

t0
DF (x(τ), s) for σ ∈ [a, b]. Since

ϕ ∈ BV ([a, b], X) (by Lemma 3.5), Corollary 4.9 implies that if x : [α, β] → X

is a solution of (4.17), then

∫ t

t0

d[A(r)]x(r) = U(t, t0)x̃− x̃−

∫ t

t0

dσ[U(t, σ)]ϕ(σ) = x(t) − x̃−

∫ t

t0

DF (x(τ), s),

that is, x is a solution of (4.16). On the other hand, if x : [α, β] → X is a solution

of (4.16) and we define

y(t) = U(t, t0)x̃+

∫ t

t0

DF (x(τ), s) −

∫ t

t0

dσ[U(t, σ)]

∫ σ

t0

DF (x(τ), s), t ∈ [α, β],

then by Corollary 4.9, y satisfies

∫ t

t0

d[A(r)]y(r) = U(t, t0)x̃− x̃−

∫ t

t0

dσ[U(t, σ)]ϕ(σ) = y(t)− x̃−

∫ t

t0

DF (x(τ), s).

Thus,

x(t)− y(t) =

∫ t

t0

d[A(r)](x(r) − y(r)), t ∈ [α, β]
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and since the unique solution of the Cauchy problem




dz

dτ
= D[A(t)z],

z(t0) = 0

is the function z(t) = 0 for all t ∈ [α, β], we have x(t) = y(t) for all t ∈ [α, β]. Then

we conclude that x is a solution of (4.17). �

5. Linear FDEs regarded as linear generalized ODEs

We recall that G([a, b],Rn) denotes the Banach space, endowed with the usual

supremum norm, of regulated functions from the compact interval [a, b] ⊂ R to Rn.

Denote by |·| any norm in R
n.

Let r, σ > 0 and t0 ∈ R. Given a function y : R → R
n, let yt : [−r, 0] → R

n

be given by yt(θ) = y(t + θ), θ ∈ [−r, 0], t ∈ R. It is clear that for any function

y ∈ G([t0 − r, t0 + σ],Rn) we have yt ∈ G([−r, 0],Rn) for all t ∈ [t0, t0 + σ].

Now, let us consider the following initial value problem for a linear functional

differential equation

(5.1)

{
ẏ = L(t)yt,

yt0 = ϕ,

where ϕ ∈ G([−r, 0],Rn) and L(t) : G([−r, 0],Rn) → R
n is bounded and linear for

every t ∈ [t0, t0 + σ].

We will show that the linear functional differential equation in (5.1) (we write lin-

ear FDE, for short) can be transformed into a linear generalized ordinary differential

equation of the form

(5.2)

{ dx

dτ
= D[A(t)x],

x(t0) = x̃,

whose solution x takes values in a subspace of G([t0−r, t0+σ],R
n). For this purpose,

we introduce two conditions that the function L must fulfill:

(A) For every y ∈ G([t0 − r, t0 + σ],Rn), the application t 7→ L(t)yt is Kurzweil

integrable over [t0, t0 + σ].

(B) There exists a Kurzweil integrable function M : [t0, t0 + σ] → R such that
∣∣∣∣
∫ s2

s1

L(s)ys ds

∣∣∣∣ 6
∫ s2

s1

M(s)‖ys‖ ds

for every s1, s2 ∈ [t0, t0 + σ] and y ∈ G([t0, t0 + σ],Rn).
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Remark 5.1. Condition (B) holds in the following particular situation. Let

η : R × R → L(Rn) be a function such that η(t, ·) is left continuous on (−r, 0) and

of bounded variation on [−r, 0] for a fixed t. Suppose M(t) = var0−r η(t, ·). Then M

is clearly nonnegative. Is is also Lebesgue integrable over [t0, t0 + σ] (and hence

Kurzweil integrable). Define

(5.3) L(t)ψ =

∫ 0

−r

dθ[η(t, θ)]ψ(θ).

By Theorem 4.1, the Kurzweil-Stieltjes integral on the right-hand side of (5.3) exists

for each t ∈ [t0, t0 + σ]. Note that for t ∈ [t0, t0 + σ] and ψ ∈ G([−r, 0],Rn) we have

|L(t)ψ| =

∣∣∣∣
∫ 0

−r

dθ[η(t, θ)]ψ(θ)

∣∣∣∣ 6 var0−r η(t, ·)‖ψ‖ =M(t)‖ψ‖

and this, together with (A), implies (B).

Similarly as in [4], for y ∈ G([t0 − r, t0 + σ],Rn) and t ∈ [t0, t0 + σ], define

(5.4) F (y, t)(θ) =





0, t0 − r 6 θ 6 t0,∫ θ

t0

L(s)ys ds, t0 6 θ 6 t 6 t0 + σ,

∫ t

t0

L(s)ys ds, t0 6 t 6 θ 6 t0 + σ.

For each y ∈ G([t0 − r, t0 + σ],Rn) and t ∈ [t0, t0 + σ], one can notice, looking

at (5.4), that F (y, t) defines a continuous function on [t0−r, t0+σ], that is, F (y, t) ∈

C([t0 − r, t0 + σ],Rn). This means that for any fixed t ∈ [t0, t0 + σ], by the relations

in (5.4), an operator acting on G([t0 − r, t0 + σ],Rn) is defined. Formally, F (·, t) :

G([t0 − r, t0 + σ],Rn) → G([t0 − r, t0 + σ],Rn).

The second easy observation, coming from (5.4), is the fact that F (y, t) is linear

in the first variable, that is, F (αy1 + βy2, t) = αF (y1, t) + βF (y2, t), for every t ∈

[t0, t0+σ], α, β ∈ R and y1, y2 ∈ G([t0−r, t0+σ],R
n). This follows from the linearity

of both the integral and the operator L(t) involved in (5.4).

Let us rewrite F in the more conventional form F (y, t) = A(t)y, that is,

(5.5) [A(t)y](θ) =





0, t0 − r 6 θ 6 t0,∫ θ

t0

L(s)ys ds, t0 6 θ 6 t 6 t0 + σ,

∫ t

t0

L(s)ys ds, t0 6 t 6 θ 6 t0 + σ.
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Using this convention, we have

A(t) : G([t0 − r, t0 + σ],Rn) → G([t0 − r, t0 + σ],Rn)

for every fixed t ∈ [t0, t0 + σ].

For t ∈ [t0, t0 + σ] and y ∈ G([t0 − r, t0 + σ],Rn), consider the norm

‖A(t)y‖ = sup
θ∈[t0−r,t0+σ]

|[A(t)y](θ)|.

Using the definition (5.5) and conditions (A) and (B) we deduce that the estimate

|[A(t)y](θ)| 6

∣∣∣∣
∫ t

t0

L(s)ys ds

∣∣∣∣ 6
∫ t

t0

M(s) ds ‖y‖

holds for all t ∈ [t0, t0+σ], θ ∈ [t0−r, t0+σ] and y ∈ G([t0−r, t0+σ],R
n). Therefore

‖A(t)y‖ 6

∫ t

t0

M(s) ds ‖y‖

for each t ∈ [t0, t0 + σ] and y ∈ G([t0 − r, t0 + σ],Rn). This means that A(t) is for

each t ∈ [t0, t0 + σ] a linear bounded operator on G(t ∈ [t0 − r, t0 + σ],Rn), i.e. for

each t ∈ [t0, t0 + σ], A(t) ∈ L(G(t ∈ [t0 − r, t0 + σ],Rn)).

Furthermore, for y ∈ G([t0 − r, t0 + σ],Rn) and t0 6 s1 6 s2 6 t0 + σ, by the

definition in (5.5) and by conditions (A) and (B), we have

‖[A(s2)−A(s1)]y‖ = sup
θ∈[t0−r,t0+σ]

|[A(s2)y](θ) − [A(s1)y](θ)|

= sup
θ∈[s1,s2]

|[A(s2)y](θ) − [A(s1)y](θ)|

= sup
θ∈[s1,s2]

∣∣∣∣
∫ θ

s1

L(s)ys ds

∣∣∣∣ 6
∫ s2

s1

M(s) ds ‖y‖.

Thus,

(5.6) ‖A(s2)−A(s1)‖L(G([t0−r,t0+σ],Rn)) 6

∫ s2

s1

M(s) ds

for any s1, s2 ∈ [t0, t0 + σ], s1 6 s2. This implies that A : [t0, t0 + σ] → L(G([t0 − r,

t0+σ],R
n)) is of bounded variation on [t0−r, t0+σ] and var

t0+σ
t0−r (A) 6

∫ t0+σ

t0−r
M(s) ds.

Actually, (5.6) implies that A : [t0, t0 + σ] → L(G([t0 − r, t0 + σ],Rn)) is continuos

on [t0, t0 + σ].
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The construction of the operator A(t) described in (5.5) is based on the idea

coming from [20] and [11] and from the results presented in [5] and [4] which relate

initial value problems for FDEs, in particular, linear systems of type (5.1), with

a certain type of Kurzweil’s generalized ODEs in Banach spaces. We now describe

this connection in more detail.

Let ϕ ∈ G([−r, 0],Rn) be given. Define

(5.7) x(t0)(θ) = x̃(θ) =

{
ϕ(θ − t0), t0 − r 6 θ 6 t0,

ϕ(0) = x(t0)(t0), t0 6 θ 6 t0 + σ.

It is easy to see that x̃ ∈ G([t0 − r, t0 + σ],Rn) and this function is constructed from

the initial condition of problem (5.1).

The generalized ODE related to problem (5.1) is linear and has the form of (5.2)

with phase space X = G([t0 − r, t0 + σ],Rn). The integral form of problem (5.2) is

x(t) = x̃+

∫ t

t0

d[A(s)]x(s), t ∈ [t0 − r, t0 + σ],

and the integral is in the sense of Kurzweil-Stieltjes.

By (5.6), the operator A in (5.2) satisfies the assumptions in Theorem 4.2 and we

have global existence and uniqueness of a solution of the initial value problem (5.2)

(see Theorem 4.2).

Before presenting a correspondence between linear functional differential equations

of type (5.1) and a certain class of linear generalized ordinary differential equations of

type (5.2), we mention an important result borrowed from [4] (see Lemma 3.3 there).

Lemma 5.2. Let x : [t0, t0+σ] → G([t0−r, t0+σ],R
n) be a solution of the linear

generalized ODE (5.2) on the interval [t0, t0 + σ]. If v ∈ [t0, t0 + σ], then

x(v)(θ) = x(v)(v), θ > v, θ ∈ [t0 − r, t0 + σ],

x(v)(θ) = x(θ)(θ), v > θ, θ ∈ [t0 − r, t0 + σ].

The following result relates a solution of the linear FDE (5.1) and a solution of the

linear generalized ODE (5.2). The proof can be found in [17], Theorems 4.4 and 4.5.

Theorem 5.3. Let x(t0) = x̃ be given by (5.7).

(a) If y : [t0−r, t0+σ] → R
n is a solution of (5.1) on [t0, t0+σ], then x : [t0, t0+σ] →

G([t0 − r, t0 + σ],Rn) given by

(5.8) x(t)(θ) =

{
y(θ), θ ∈ [t0 − r, t],

y(t), θ ∈ [t, t0 + σ]

for t ∈ [t0, t0 + σ], is a solution of (5.2) on [t0 − r, t0 + σ].
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(b) If x : [t0, t0 + σ] → G([t0 − r, t0 + σ],Rn) is a solution of (5.2) on [t0, t0 + σ],

then y : [t0 − r, t0 + σ] → R
n given by

(5.9) y(θ) =

{
x(t0)(θ), t0 − r 6 θ 6 t0,

x(θ)(θ), t0 6 θ 6 t0 + σ

is a solution of (5.1) on [t0 − r, t0 + σ] and y(θ) = x(t0 + σ)(θ) for all θ ∈

[t0 − r, t0 + σ].

Remark 5.4. In [4], FDEs (not necessarily linear) and generalized ODEs are

related (see Theorems 3.4 and 3.5 there). Clearly, then linear FDEs can be regarded

as generalized ODEs. But Theorem 5.3 says that, as a matter of fact, linear FDEs

can be embeded in a class of linear generalized ODEs. Conversely, as a particular

case of Theorem 3.5 in [4], a solution of a linear generalized ODE can be described

as a solution of a general FDE. Here, though, we prove that, in fact, a solution of

a linear generalized ODE can be viewed as a solution of a linear FDE.

The last result, namely Theorem 5.3, produce a one-to-one correspondence be-

tween the solution of the linear FDE (5.1) and the solution of the linear generalized

ODE (5.2). Thus, for results involving the solutions, it is possible to transfer the

properties of a solution of a functional differential equation to a solution of the

corresponding generalized ODE and vice-versa. In this paper, we use the variation-

of-constants formula we have established for generalized ODEs in Section 4 (see

Theorem 4.10) to obtain a variation-of-constants formula for perturbed linear FDEs.

6. A nonlinear variation-of-constants formula for FDEs

Consider the perturbed linear FDE

(6.1)

{
ẏ = L(t)yt + f(yt, t),

yt0 = ϕ,

where f : G([−r, 0],Rn)×[t0, t0+σ] → R
n and L : [t0, t0+σ] → L(G([−r, 0],Rn),Rn)

satisfy conditions (A) and (B) and ϕ ∈ G([−r, 0],Rn).

As in [4], we define for y ∈ G([−r, 0],Rn) and t ∈ [t0 − r, t0 + σ),

(6.2) F (y, t)(θ) =





0, t0 − r 6 θ 6 t0,∫ θ

t0

f(ys, s) ds, t0 6 θ 6 t,

∫ t

t0

f(ys, s) ds, t 6 θ 6 t0 + σ.
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By Theorems 3.4 and 3.5 from [4] and, in particular, considering the linear case and

Theorem 5.3 in the present paper, it is clear that there is a one-to-one correspondence

between equation (6.1) and the following perturbed generalized ODE:

(6.3)





dx

dτ
= D[A(t)x + F (x, t)],

x(t0) = x̃,

where A : [t0 − r, t0 + σ] → L(G([t0 − r, t0 + σ],Rn)) is given by (5.5) and x̃ is given

by (5.7).

Before establishing a variation-of-constants formula for the perturbed linear

FDE (6.1), we need some auxiliary results which we present next. The first result,

namely Lemma 6.1, relates the integrals of the nonlinear perturbations of the Cauchy

problems (6.1) and (6.3).

Lemma 6.1. Let y and x be the solutions of the perturbed Cauchy problems (6.1)

and (6.3), respectively, corresponding to one another. Then
∫ t

t0
DF (x(τ), s)(θ) =

F (y, t)(θ) whenever t0 6 t 6 t0 + σ.

P r o o f. By the definition of F in (6.2), it is easy to see that
∫ t

t0
DF (x(τ), s)(θ)=0

for θ ∈ [t0 − r, t0].

Let ε > 0 be given. Since y : [t0 − r, t0 + σ] → R
n is a regulated function, there

exists a sequence in [t0, t], t0 < t1 < . . . < tm = t such that |y(̺)−y(s)| < ε whenever

tk−1 < ̺, s < tk, k = 1, . . . ,m (see [10], Theorem 3.1).

Consider a gauge δ on [t, t0] such that for τ ∈ [t, t0],

δ(τ) < min
{ tk − tk−1

2
, k = 1, . . . ,m

}

and

δ(τ) < min{|τ − tk|, |τ − tk−1|, τ ∈ [tk−1, tk], k = 1, . . . ,m}.

This choice of δ ensures us that if (τk, sk) is a δ-fine partition, then each subinterval

[sk−1, sk] contains at most one of the points t0, . . . , tm and, in this case, tk is the

corresponding tag of that subinterval.

By the continuity of the Kurzweil indefinite integral (see Remark 2.8), we can

assume that
∫ tk+δ(tk)

tk

M(s)‖ys − x(tk)s‖ ds <
ε

2m+ 1
, k = 1, . . . ,m.

Let P = (τk, sk) be a δ-fine partition of [t0, t] such that

∥∥∥∥
∫ t

t0

DF (x(τ), s) −

|P |∑

k=1

[F (x(τk), sk)− F (x(τk−1), sk−1)]

∥∥∥∥ < ε.
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By (6.2), for every k = 1, . . . , |P | we have

[F (x(τk), sk)− F (x(τk−1), sk−1)](θ) =





0, θ ∈ [t0 − r, sk−1],
∫ θ

sk−1

f(x(τk)s, s) ds, θ ∈ [sk−1, sk],

∫ sk

sk−1

f(x(τk)s, s) ds, θ ∈ [sk, t0 + σ].

Suppose θ ∈ [t0, t]. Then θ ∈ [sj−1, sj ] for some j = 1, . . . , |P | and

∣∣∣∣
|P |∑

k=1

[F (x(τk), sk)− F (x(τk−1), sk−1)](θ)−

∫ θ

t0

f(yu, u) du

∣∣∣∣

=

∣∣∣∣
j−1∑

k=1

[F (x(τk), sk)− F (x(τk−1), sk−1)](θ)−

∫ sk

sk−1

f(yu, u) du

+ [F (x(τj), sj)− F (x(τj−1), sj−1)](θ) −

∫ θ

sj−1

f(yu, u) du

+

|P |∑

k=j

[F (x(τk), sk)− F (x(τk−1), sk−1)](θ)

∣∣∣∣

=

∣∣∣∣
j−1∑

k=1

∫ sk

sk−1

[f(x(τk)u, u)− f(yu, u)] du+

∫ θ

sj−1

[f(x(τj)u, u)− f(yu, u)] du

∣∣∣∣.

Note that if u 6 τk, then x(τk)u = yu and consequently,

∫ sk

sk−1

[f(x(τk)u, u)− f(yu, u)] du =

∫ sk

τk

[f(x(τk)u, u)− f(yu, u)] du

for every k = 1, . . . , j − 1 and

∫ θ

sj−1

[f(x(τj)u, u)−f(yu, u)] du =





0, θ ∈ [sj−1, τj ],∫ sj

τj

[f(x(τj)u, u)− f(yu, u)] du, θ ∈ [τj , sj ].

By condition (B),

∣∣∣∣
∫ sk

τk

[f(x(τk)u, u)− f(yu, u)] du

∣∣∣∣ 6
∫ sk

τk

M(u)‖x(τk)u − yu‖ du

for every k = 1, . . . , j − 1 and

∣∣∣∣
∫ θ

τj

[f(x(τj)u, u)− f(yu, u)] du

∣∣∣∣ 6
∫ θ

τj

M(u)‖x(τk)u − yu‖ du.
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If u ∈ [τk, sk], then

x(τk)u(θ) = x(τk)(u+ θ) =

{
y(u+ θ) = yu(θ), u+ θ 6 τk,

y(τk), τk 6 u+ θ

for every k = 1, . . . , j − 1. Therefore, by the definition of the gauge δ, we have

‖x(τk)u − yu‖ = sup
̺∈[τk,uk]

|y(̺) − y(τk)| 6 ε and if the intersection of [sk−1, sk] and

{t0, . . . , tm} is empty, then

∫ sk

τk

M(u)‖x(τk)u − yu‖ du 6 ε

∫ sk

τk

M(u) du

for every k = 1, . . . , j − 1.

Analogously, we have

∫ θ

τj

M(u)‖x(τj)u − yu‖ du 6 ε

∫ θ

τj

M(u) du.

If the intersection of [sk−1, sk] and {t0, . . . , tm} is not empty, then τk = tj for some

j ∈ {1, . . . ,m} and in this case,

∫ sk

τk

M(s)‖ys − x(τk)s‖ ds 6

∫ tj+δ(tj)

tj

M(s)‖ys − x(tj)s‖ ds <
ε

2m+ 1
.

Thus,

∣∣∣∣
|P |∑

k=1

[F (x(τk), sk)− F (x(τk−1), sk−1)](θ) −

∫ θ

t0

f(yu, u) du

∣∣∣∣ 6 ε

∫ θ

t0

M(u) du+ ε.

Finally, since ε > 0 is arbitrary,
∫ t

t0
DF (x(τ), s)(θ) =

∫ θ

t0
f(yu, u) du for θ ∈ [t0, t].

Following the same steps as above, one can prove the case where θ ∈ [t, t0 + σ]. �

In order to present a variation-of-constants formula for perturbed linear FDEs, let

us define a solution operator for linear FDEs.

Definition 6.2. Let y : [t0 − r, t0 + σ] → R
n be the solution of the linear FDE

(6.4) ẏ = L(t)yt

with initial condition yt0 = ϕ ∈ G([−r, 0],Rn). For t, s ∈ [t0, t0 + σ], t > s, the

operator T (t, s) : G([−r, 0],Rn) → G([−r, 0],Rn) defined by

T (t, s)ys = yt, t, s ∈ [t0, t0 + σ], t > s,

will be called solution operator of the linear FDE (6.4).
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From the existence and uniqueness of a solution of the linear FDE (5.1), the

operator T (t, s) satisfies:

(i) T (t, t) = I, t ∈ [t0, t0 + σ] (identity property),

(ii) T (t, w)T (w, s) = T (t, s), t, w, s ∈ [t0, t0 + σ] and t > w > s (semigroup prop-

erty).

The above definition, restricted to continuous functions, coincides with the defini-

tion of solution operator presented in [8] (see Section 6.2 there).

Remark 6.3. Definition 6.2 can be generalized in the following way. Let g :

[t0 − r, t0 + σ] → R
n be given and for s ∈ [t0, t0 + σ] let y : [t0 − r, t0 + σ] → R

n

be the solution of the linear FDE (6.4) with initial condition ys = gs. Then for

t ∈ [t0, t0 + σ], t > s, we define T (t, s) : G([t0 − r, t0 + σ],Rn) → G([−r, 0],Rn) by

T (t, s)g = yt.

Lemma 6.4. Let y and x be the corresponding solutions of the perturbed Cauchy

problems (6.1) and (6.3), respectively. Let T (t, s) be the solution operator of the

linear FDE (6.4) and U(t, s) be the fundamental operator of the corresponding linear

generalized ODE (5.2). Then for t0 6 s 6 t 6 t0 + σ and t0 6 w 6 t0 + σ we have

U(t, s)

(∫ w

t0

DF (x(τ), u)

)
(t) = T (t, s)(h(w)s)(0),

where

(6.5) h(w)(θ) =





0, t0 − r 6 θ 6 t0,∫ θ

t0

f(yu, u) du, t0 6 θ 6 w,

∫ w

t0

f(yu, u) du, w 6 θ 6 t0 + σ.

P r o o f. By Lemma 6.1,
∫ w

t0
DF (x(τ), u) = h(w) for w ∈ [t0, t0 + σ]. Also,

Definition 6.2 implies that T (t, s)(h(w)s)(0) describes the solution of the linear FDE

{
ẏ = L(t)yt,

ys = h(w)s

and, by Theorem 4.3, U(t, s)h(w) describes the solution of the corresponding linear

generalized ODE 



dx

dτ
= D[A(t)x],

x(s) = h(w),
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where A is given by (5.5). Then, Theorem 5.3 implies

U(t, s)

(∫ w

t0

DF (x(τ), u)

)
(t) = T (t, s)(h(w)s)(0)

for all t0 6 s 6 t 6 t0 + σ and t0 6 w 6 t0 + σ. �

The next result will be useful to get a variation-of-constants formula for the per-

turbed linear FDE (6.1).

Lemma 6.5. Let y and x be the corresponding solutions of the perturbed linear

Cauchy problems (6.1) and (6.3), respectively. Let T (t, s) be the solution operator of

the linear FDE (6.4) and U(t, s) be the fundamental operator of the corresponding

linear generalized ODE (5.2). Then for t0 6 t 6 t0 + σ we have

∫ t

t0

ds[U(t, s)]

(∫ s

t0

DF (x(τ), u)

)
(t) =

∫ t

t0

ds[T̃ (t, s)]h(s)(0),

where h is given by (6.5) and T̃ (t, s)y = T (t, s)ys for y ∈ G([t0 − r, t0 + σ,Rn]).

P r o o f. Let ε > 0 be given. Then by the definition of the Kurzweil integral,

there exists a gauge δ on [t0, t] such that for every δ-fine tagged partition P we have

∥∥∥∥
|P |∑

i=1

[U(t, si)− U(t, si−1)]

∫ τi

t0

DF (x(τ), u)

−

∫ t

t0

ds[U(t, s)]

∫ s

t0

DF (x(τ), u)

∥∥∥∥ < ε.

By Lemma 6.4, we have

|P |∑

i=1

[U(t, si)− U(t, si−1)]

(∫ si−1

t0

DF (x(τ), u)

)
(t)

=

|P |∑

i=1

[T (t, si)(h(τi)si)− T (t, si−1)(h(τi)si−1
)](0)

=

|P |∑

i=1

[T̃ (t, si)− T̃ (t, si−1)]h(τi)(0)

and this implies

∫ t

t0

ds[U(t, s)]

(∫ s

t0

DF (x(τ), u)

)
(t) =

∫ t

t0

ds[T̃ (t, s)]h(s)(0),

which completes the proof. �
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The next result follows from our main result and the correspondence of differential

equations. It gives a variation-of-contansts formula for perturbed linear FDE (6.1).

Theorem 6.6. Let y be the solution of the perturbed linear FDE (6.1) and T (t, s)

be the solution operator of the linear FDE (5.1). Then for t0 6 t 6 t0 + σ we have

y(t) = T (t, t0)ϕ(0) +

∫ t

t0

f(yu, u) du−

∫ t

t0

ds[T (t, s)]h(s)(0),

where h is given by (6.5).

P r o o f. Given t ∈ [t0, t0 + σ], Theorems 3.4 and 3.5 in [4] imply y(t) = x(t)(t)

and by Theorem 4.10 we obtain

x(t)(t) = U(t, t0)x̃(t) +

∫ t

t0

DF (x(τ), s)(t) −

∫ t

t0

ds[U(t, s)]

(∫ s

t0

DF (x(τ), u)

)
(t),

where x is the solution of the perturbed problem (6.3) and U(t, s) is the fundamental

operator of the linear generalized ODE (5.2).

Note that by Theorem 5.3, U(t, t0)x̃(t) = T (t, t0)ϕ(0). By Lemmas 6.1 and 6.5,

∫ t

t0

DF (x(τ), s)(t) =

∫ t

t0

f(yu, u) du

and ∫ t

t0

ds[U(t, s)]

(∫ s

t0

DF (x(τ), u)

)
(t) =

∫ t

t0

ds[T̃ (t, s)]h(s)(0).

Hence

y(t) = T (t, t0)ϕ(0) +

∫ t

t0

f(yu, u) du−

∫ t

t0

ds[T̃ (t, s)]h(s)(0)

and the proof is complete. �

7. Variation-of-constants formula for impulsive FDEs

and measure neutral FDEs

We turn our attention to impulsive FDEs. At first, consider the Cauchy problem

(7.1)





ẏ = L(t)yt + f(yt, t), t 6= ti,

∆y(ti) = Ik(y(tk)), i = 1, 2, . . . ,m,

yt0 = ϕ,
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where the assumptions of equation (6.1) are fulfilled, t0 < t1 < . . . < tk < . . . <

tm 6 t0+σ are pre-assigned moments of impulse, y 7→ Ik(y) maps R
n into itself and

∆y(tk) := y(tk+)−y(tk−) = y(tk+)−y(tk) for k = 1, 2, . . . ,m, that is, we suppose y

is left continuous at t = tk and the lateral limit y(tk+) exists for k = 1, 2, . . . ,m.

Concerning the impulse functions Ik : R
n → R

n, k = 1, . . . ,m, we assume:

(A′) There is a constant K1 > 0 such that |Ik(x)| 6 K1 for k = 1, . . . ,m and x ∈ R
n.

(B′) There is a constantK2 > 0 such that |Ik(x)−Ik(y)| 6 K2|x−y| for k = 1, . . . ,m

and x, y ∈ R
n.

For y ∈ G([t0 − r, t0 + σ],Rn) and t ∈ [t0, t0 + σ], let H(y, t) = F (y, t) + J(y, t),

where F is given as in (6.2) and, as in [4], J : G([t0, t0 + σ],Rn)× [t0 − r, t0 + σ] →

G([t0 − r, t0 + σ],Rn) is given by J(y, t)(θ) =
m∑

k=1

Htk(t)Htk(θ)Ik(y(tk)) for θ ∈

[t0− r, t0+σ] with Htk denoting the left continuous Heaviside function concentrated

at tk. Then the Cauchy problem (7.1) corresponds to the perturbed generalized ODE





dx

dτ
= D[A(t)x +H(x, t)] = D[A(t)x + F (x, t) + J(x, t)],

x(t0) = x̃,

and by Theorem 4.10 and the correspondence of equations (see [4], Theorems 3.4

and 3.5), the solution y of (7.1) can be described explicitly as

y(t) = x(t)(t)

= U(t, t0)x̃(t) +

∫ t

t0

DH(x(τ), s)(t) −

∫ t

t0

ds[U(t, s)]

(∫ s

t0

DH(x(τ), u)

)
(t)

= U(t, t0)x̃(t) +

∫ t

t0

DF (x(τ), s)(t) −

∫ t

t0

ds[U(t, s)]

(∫ s

t0

DF (x(τ), u)

)
(t)

+

∫ t

t0

DJ(x(τ), s)(t) −

∫ t

t0

ds[U(t, s)]

(∫ s

t0

DJ(x(τ), u)

)
(t),

where, following the ideas in Theorems 3.4 and 3.5 from [4], we obtain

∫ t

t0

DJ(x(τ), s)(θ) =

m∑

k=1

Htk(t)Htk(θ)Ik(y(tk))

for every t, θ ∈ [t0, t0+σ], and using the same arguments as in Theorem 6.6, we have

y(t) = T (t, t0)ϕ(0) +

∫ t

t0

f(yu, u) du−

∫ t

t0

ds[T̃ (t, s)]h(s)(0)

+
m∑

k=1

Ik(y(tk))Htk(t)−

∫ t

t0

ds[T̃ (t, s)]

( m∑

k=1

Ik(y(tk))Htk(s)

)
(0).
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We can also obtain a variation-of-constants formula for a more general class of

functions. Consider the equation of the form

(7.2) D[N(yt, t)] = f(yt, t)Dg,

whereD[N(yt, t)] and Dg(t) are the distributional derivatives ofN(yt, t) and g(t), re-

spectively, in the sense of Schwartz (see the references [3], [26]). We call equation (7.2)

a measure neutral functional differential equation or simply measure NFDE. All re-

sults presented in Section 5 for linear FDEs such as the correspondence results (The-

orem 5.3) have their analogous for measure NFDEs (see [17]). We assume that there

exists a matrix µ : R×R → R
n×n such that µ(t, θ) = 0, θ > 0, and µ(t, θ) = µ(t,−r),

θ 6 −r, and also that µ(t, ·) is left-continuous in (−r, 0), of bounded variation on

[−r, 0], and var[s,0] µ(t, ·) goes to zero as s → 0 for each fixed t ∈ R, such that the

operator N is given by

(7.3) N(ϕ, t) = ϕ(0)−

∫ 0

−r

dθ[µ(t, θ)]ϕ(θ),

where ϕ ∈ G([−r, 0],Rn). Thus, by (7.3) the equation

(7.4) D[N(yt, t)] = L(t)ytDg,

which we call linear measure NFDE, with the initial condition yt0 = ϕ ∈G([−r, 0],Rn)

can be rewritten in the form

(7.5) y(t) = ϕ(0)+

∫ t

t0

L(s)ys dg(s)+

∫ 0

−r

dθ[µ(t, θ)]y(t+θ)−

∫ 0

−r

dθ[µ(t0, θ)]ϕ(t0+θ).

If we define a solution operator T (t, s) for the linear measure NFDE (7.4) such as

in Definition 6.2, and use again the same arguments as in Theorem 6.6, the solution

of the perturbed equation

{
D[N(yt, t)] = [L(t)yt + f(yt, t)]Dg,

yt0 = ϕ

can be rewritten in the form

y(t) = T (t, t0)ϕ(0) +

∫ t

t0

f(yu, u) dg(u)−

∫ t

t0

ds[T̃ (t, s)]h(s)(0).
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