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Abstract. We study some qualitative features like convergence, stability and data depen-
dency for Picard-S iteration method of a quasi-strictly contractive operator under weaker
conditions imposed on parametric sequences in the mentioned method. We compare the
rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration
methods for the quasi-strictly contractive operators. Results reveal that the Picard-S it-
eration method converges fastest to the fixed point of quasi-strictly contractive operators.
Some numerical examples are given to validate the results obtained herein. Our results
substantially improve many other results available in the literature.

Keywords: iteration method; quasi-strictly contractive operator; convergence; rate of
convergence; stability; data dependency
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1. INTRODUCTION

Many problems arising from various branches of science can be modeled by a fixed
point equation of the type Tz = =, where T is an appropriate operator defined on
an ambient space. One can encounter situations where the solution of this equation
cannot be obtained analytically. In such a case, fixed point iteration methods play
a very important role to locate the fixed point of T'.

Let T be a self-map of a nonempty closed convex subset C' of a real normed
space X, and {an, 152 o, {Bn 520, {1} C [0, 1] be real sequences satisfying certain
control condition(s).
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For arbitrarily chosen wy, zo € C, construct two iterative sequences {w, }22, and
{zn}nlo by

Wp+1 = (1 - an)wn + anTWn,

On = (]- - ’)/n)wn + ’)/nTwn Vn € Nv

P e Tyna
(1.2) yn = (1 — ap)Txn + anTzp,
zn =1 —Bn)xn + BTz, VneN,

where the iteration methods defined by (1.1) and (1.2) are called Noor, see [30], and
Picard-S, see [10], iteration methods, respectively.

Remark 1.1. The Noor iteration method reduces to:
(i) Picard iteration method, see [26],if oo, = 1, B, = =0, o, = 1 for all n € N;
(ii) Mann iteration method, see [22], if 8, =7, =0 for all n € N;
(iii) Ishikawa iteration method, see [15], if v, = 0 for all n € N;
(iv) normal-S iteration method, see [27] and also [18], if o, = 1, v, = 0 for alln € N.
However, the Picard-S iteration method is independent of all the Noor, Ishikawa,
Mann, Picard, and normal-S iteration methods.

The above-mentioned iteration methods have been intensively investigated in view
of convergence, rate of convergence, stability, and data dependency in the literature
(see, e.g., [4], [2], [7T]-[17], [19]-[22], [24]-[30]) for the different classes of mappings
including the class of contraction mappings satisfying:

(1.3) [Tz =Tyl <élle—yll, §€0,1)Va,yeX.

In 2010, Bosede and Rhoades in [6] proved some stability results for the Picard
and Mann iteration methods of quasi-strictly contractive operators satisfying the
following condition:

(1.4) 2% =Tyl <édlla" —yl, 6€[0,1)VyeX,

where z* is a fixed point of T.

The class of operators satisfying (1.4) was introduced by Scherzer in [28] and called
quasi-strictly contractive operators (see also [5]).

The following example shows that the class of quasi-strictly contractive operators
properly includes the class of contraction operators.
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Example 1.1. Let X =/o, B={2 €l |z]| <1} andlet T: X - BC X
be defined by

11

12(0 xlvxgvxga c ')a if ||xHoo < 17
Tr = 11
W(quﬁax%x; e ')7 if ”xHOO >1
00

for x = (r1,22,23,...) € Loo. Then, Tp = p if and only if p = 0. We compute as

follows:
11 9 9 .
12”(0 .131,1‘2,1‘3,.. )”007 if Hx”OO g 1’
[Tz — plloc = 11 s 9 o ]
W"(Oaxhx%x&'“)"ma lfHxHOO > ]-a
o0
so that
Sl < 12 llloes i e < 1,
HTm_pHOO < 11
1, if f|z]loe > 1.

12
Hence, we obtain that

11
1Tz = pllo < 2 = Plloc V2 € Lo, p=0.

Hence, T satisfies contractive condition (1.4). But the map T is not a contraction.
To see this, take x = (%, %, %, . ) and y = (%, %, %, ) Then,

1
“vle = 3o 1T Tule = 5 (075 15 )] =
lo=ylloo = 3. T2 =Ty e =

Suppose there exists 6 € [0 1) such that |72 — Ty|leo < d||x — y|loo for all z,y € ls,

5 which yields that § > 229 > 1, a contradiction. So, T is

then we must have 2 102

192 S
not, a contraction map.

Although Akewe and Okeke seemed to have introduced Example 1.1 above in [1],
actually, Example 1.1 was introduced in [7] for the first time by Chidume and Olaleru.
Furthermore, Akewe and Okeke in [1] proved some convergence and stability results
for the normal-S iteration method of quasi-strictly contractive operators. More pre-
cisely, they proved the following theorems.

Theorem 1.1. Let X be a real normed linear space and T: X — X be a map
satistfying (1.4) with a fixed point «*. For arbitrary ug € X, let {u,}>2, be an iter-
ative sequence defined by the normal-S iteration method [27] with the real sequence

{an}22, C [0,1] such that E oy, = oo. Then {u,}22 , converges strongly to z*

n=0
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Theorem 1.2. Let X be a real normed linear space and T: X — X be a map
satistfying (1.4) with a fixed point x*. Then the normal-S iteration method [27] with
the real sequence {a, }52, C [0, 1] satisfying

(1.5) 0<a<a, VYneN

is T-stable.

Remark 1.2. Theorems 1.1 and 1.2 are corrected forms of Theorems 2.1 and 3.1
of [1], respectively. In Theorems 2.1 and 3.1 of [1], no assumption has been introduced

o0
for the sequence {a,, }2, C [0, 1]. But, we observed that the conditions »_ «a, = oo
n=0

and 0 < o < ay, for all n € N were used in the proofs of Theorems 2.1 and 3.1 of [1],
respectively.

The following definitions and lemmas will be needed to realize our goals.

Definition 1.1 ([3]). Let T, T: X — X be operators. T is called an approxi-
mate operator for T if there exists some € > 0 such that

|Tz —Tz|| <e VzeX.

Definition 1.2 ([2]). Suppose that two fixed point iteration methods {¢,}22,
and {¢,}72, both converge to the same fixed point z*. Assume further that the

error estimates

lon =21 < 7y llpn — 27|l < 72

are available (and these estimates are the best possible, see [4]), where 7 , i = 1,2
are two sequences of positive numbers (converging to zero). If {7112, converges
faster than {72}2° ,, then we shall say that {¢,,}>, converges faster than {p,}>
to x*.

Definition 1.3 ([25]). Let {7£}%,, i = 1,2 be two sequences converging to the

n=0"
)

same point n*. We say that {7}}°° , converges faster than {72}2°, to n* if

o b=l

oo |73 =7

Definition 1.4 ([14]). Let X be a normed space, T: X — X be an operator,
and {x,}52, be a sequence generated by the iteration method z,+1 = f(T,z.),
xo € X with limit point © € Fr = {z: Tz = z}. Let {¢,}>2, be an arbitrary
sequence in X and set

en = lgn+1 — f(T, qn)|l-
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Then the iteration method {z,}52 is said to be T-stable or stable w.r.t. T if and
only if

lim e, =0 hm Qqn = .
n—roo

Lemma 1.1 ([3]). Let {u,}, {e} be nonnegative sequences of real numbers sat-
isfying
Upt1 < Oup, +e, YneN, §€[0,1)

and lim e, = 0. Then we have lim u, = 0.
n—o00 n—o0

Lemma 1.2 ([29]). Let {un}oo, {Vn}ff_o and {&,}52, be nonnegative real se-

)
quences with v, € (0,1) for all n € N, E v, = oco. Suppose there exists ng € N

]
( k=
such that for all n > ngy one has the 1nequa]1ty

Pntl < (1 - Vn),u'n + ann

Then the following inequality holds:

0 < limsup pp+1 < limsupé,.
n—oo n—oo

2. MAIN RESULTS

Theorem 2.1. Let X be a real normed linear space, T: X — X be a quasi-
strictly contractive operator satisfying (1.4) with a fixed point x* and {x,}52, be
an iterative sequence generated by (1.2) with real sequences {a,}22, and {8,}52,
in [0,1]. Then {z,}52, strongly converges to x*.

Proof. It follows by (1.2) and (1.4) that

(2.1) [@ns1 — 2| = [[Tyn — 27| < 6llyn — 27|,
(2.2) [yn — 2" N1 = )T + anTzn — 27|
S (U =) Ten — 27| + anl|Tzn — 27|
< (1= an)dllzn — 27| + andl[zn — 27|,
(2:3) [zn — 2| = [|(1 = Bn)@n + BuTxn — 2|
< (L= Ba)llwn — 2" + Bl Twn — 2|
< (U= Bn)llzn — 2™ + Bndllzn — ||
= (1= Bn(1 = 0)llwn — 2.
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Combining (2.1)—(2.3), we get
(2.4) Jmer — 2 < (1= anBa(l — 6))6% 2 — 2.
Using the fact 1 — a,,8,(1 — §) < 1, we have
(2.5) Jonsr — 21l < 8 lan — 2] < ... < 620 g — 27
Taking the limit of both sides of inequality (2.5), we obtain
Jim [l — 2" = 0.

O

Theorem 2.2. Let X be a real normed linear space, T: X — X be a quasi-
strictly contractive operator satisfying (1.4) with a fixed point =* and {x,}>, be
the iterative sequence generated by (1.2) with real sequences {a,}22 , and {5,}22,
in [0,1]. Let {gn}32, C X be any sequence and define a sequence {&,}2° , in R
by

en = [lgn+1 — Tuall,

tun = (1 = an)Tqn + anTop,

Un = (1= Bn)gn + BnTaqn, YneN.
Then the Picard-S iteration method (1.2) is T-stable.

Proof. Assume that lim e, = 0. In order to prove that the sequence {z,}>% is
n—oo

stable with respect to T', it suffices to prove that lim ¢, = z*. It follows from (1.2)

n—oo
and (1.4) that
(2.6) lgn+1 = 27| < llgnt1 = Tun|| + | Tun — 27| < £ + bfJun — 27|,
(2.7) l[n — 2| = [[(1 = an)Tgn + anTvn — 27|

< (1= an)|Tqn — || + an||Ton — ||
< (1= an)dllgn — =% + andljvn — ™,
(2.8) lon = 2" = I(L = Br)gn + BnTqn — 27|
(1= Bn)llgn = 27| + Bl Tgn — 27|
(1= Bn)llgn = =*[| + Bndllgn — 27|
(1= Bn(1 = 0))llgn — 27]|.

NN

Combining (2.6)—(2.8), we obtain
(2.9) lgn+1 = 2|1 < 6°(1 = anfBn(l = 8))llgn — ™| + €n.
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Applying the inequalities 1 — a,,3,(1 — &) < 1 for all n € N and 6% < § to (2.9), we
have

(2.10) lgnt1 — ™| < Ollgn — 27[| + €n.

It is now easy to check that (2.10) satisfies the requirements in Lemma 1.1. So, we
have lim g, = z*. ([
n—oo

Theorem 2.3. Let X be a real normed linear space, T: X — X be a quasi-
strictly contractive operator satisfying (1.4) with a fixed point x* and {x,}22,,
{wn}2,, {w }n 0 {wn 12, {w }n o be the iterative sequences generated by
Picard-S (1.2), Noor (1.1), Ishikawa (see [15]), Mann (see [22]), normal-S (see [27])
iteration methods, respectively, with real sequences {ay}5>, and {3,}22, in [0,1]
satistying lim o, = lim B8, = 0. Then the Picard-S iteration method (1.2) con-
verges to g??aster tﬁ;;looNoor, Ishikawa, Mann and normal-S iteration methods,
provided that the initial point is the same for all iterations.

Proof. We know from Theorem 2.1 that
n
(2.11) [nt1 — ¥ < 6D T (1 = arB(l = 6))l|lzo — 2|
k=0

By some simple calculations, we obtain the following estimates for Noor (1.1),
Ishikawa [15], Mann [22], normal-S [27] iteration methods, respectively:

n

(212) fJwnir —a*| = TT(0 = a1+ 8(1 = Br) + Brd* (1 — (1 = 8))))llwo — =",

k=0
n
* 1 *
213)  llwpy — 2%l > [] (= an(1+ 61— Be(t = 8))ljug” — .
k=0
n
(2.14) iy a7 > Ha-ass Dllwg? — |
(2.15) iy =l < LG Dlwg? —a°].

Set
i = g2t H — o Be(l = 0))[|wo — z7],

A = [0 - Bl = )l — 2% W eN.
k=0
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Since lim 6"*! = lim 62("+1) = 0, we have lim 7" = 0 and lim 74> = 0, that is,
n—o00 n—o00 n—00 n—r00

both the sequences {Ty(bl)}%o:o and {T,(LQ)};L’OZO converge to zero as assumed in Defini-
tion 1.2. Now, using the assumption xy = w03 , we get

= ) 6" TT (1 = anfB(1 = 9))
o) = 5 = k=0 VneN,
™ = 0] I1(1 - Bi(1-4))
k=0

n

which implies
05l _ 6(1— a1 Bnia(1—6))

= N.
o0 T G- "°

By the assumption lim 3, = 0, we obtain
n—oo

)

_ ntl _
l—nh_>rr;o 9%1) =0<1.

oo

Since | = ¢ < 1, the ratio test tells us that the series ) 9511) converges. This allows
n=0

us to conclude that

(1)

n’ —0
lim 65) = tim 1770
n— oo n—oo |7.T(l ) Ol

0.
Hence, from Definition 1.2, we conclude that {Ty(bl)};’f:o converges faster than
{TT(LQ)}ZO:O, which implies that {x,}32 , converges faster than {w&{s)};’f’:o.

Now, using (2.11)—(2.14) and the assumption g = wy = w(()l) = w(()2), we have

n

52("+1) H (1 — Oékﬁk(l — 5))
k

[Znt1 — =]

(2.16) 0 < — < — =0 :
o =L (- (14800 = 1) + 818201 = 3401 = 8))
L S T (- a1 - 6))
(2.17) < ”x”l“_x I« _ E=0 :
oy =2l T = an(1+6(1 — Be(1 — 5))))
k=0
L 8 [T B - 6)
(2.18) 0< ”x’g;;l — 2l _k=0 VneN.
w4y — 2] kH (1—ap(l+6))
=0
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Define

5200 [T (1 = apfBu(1 — 6))
92 — k=0

n n )

[T(1—ar(+3(1 = Br) + Brd?(1 — (1l - 9))))

k=0

5200 [T (1 — a1 — 6)
k=0

9513) = n ’
[T(1—ar(l+5(1—-Be(1-9))))
k=0
520 T (1 = anfu(1 — 6))
oW = k=0 VneN.
[T —ar(l1+9))
K=0
Then, we have
92 §2(1 — 1-6
ntl _ (1 — apy1Bnya( )
0 1 —ap(1+06(1 = Bas1) + But102(1 — ynpa(1 = 0)))
03, 6%(1 — any1Bnir(1— )

9%3) 11— g1 (14+6(1 = Brga (1 — 5))),

924_;)_1 _ 52(1 — an+1/6n+1(1 - 5)) Vn e N
o) 1 —ap1(1+9) .

By the assumption lim a, = 0, we obtain
n—oo

o)
li=lim 2L =62 <1 fori=2,34.

nooo g0

o0 .
Since I; = 0% < 1 for i = 2,3, 4, the ratio test tells us that the series 955) converges

n=0
for i = 2,3,4. This allows us to conclude that
lim 0% =0 fori=23,4.
n—oo
It follows from (2.16)—(2.18) that
e IR T R P
o [0 — 2| IR T M@ _
n—00 ||wn+1 —x H n—o0 Hw( _ (E*H n—ro0 Hw _ :L’*H

n+1 n+1

Hence, from Definition 1.3, we can say that {x,}>2 , converges faster than {w,}52,
{wg)};’f:O and {wﬁ?’}gozo to the fixed point z*. O
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Example 2.1. Let X =[0,1] and T: X — X be an operator defined by

cos(z? — 5) e’
T =
! s 2

It is clear that T satisfies (1.4) with 6 = 0.677865 and z* = 0.462220. Take
Qn = fBn = Y = (n® +50)"1 and 2y = %. Table 1 and Figure 1 show that
the Picard-S iterative scheme (1.2) converges to z* = 0.462220 faster than normal-S,

Mann, Ishikawa and Noor iteration methods.

# of Tter. Picard-S Normal-S Noor Ishikawa Mann

0.504620 0.334800 0.692695 0.692696 0.692594
0.469452 0.502597 0.685769 0.685771 0.685579
0.463417 0.445218 0.679867 0.679869 0.679614
0.462417 0.468807 0.675539 0.675539 0.675251
0.462254 0.459554 0.672665 0.672668 0.672368
0.462226 0.463289 0.669613 0.670821 0.670517
0.462221 0.461789 0.668802 0.669616 0.669311

N O Ot s W N

14 0.462221 0.666871 0.666987 0.666683
15 : 0.666779 0.666874 0.66657

Table 1. Comparison of the rate of convergence among various iteration methods for Ex-
ample 2.1.

Lemma 2.1. Let X be a real normed linear space and T: X — X be a quasi-
strictly contractive operator satisfying (1.4) with a fixed point x*. Assume that
T: X — X is an approximate operator of T for given €. Then

(2.19) ITx - Tyl < 2]a — 2| + 5]}y — ]| +e.

Proof. Using triangle inequality, Definition 1.1 and condition (1.4), we get
1Tz - Ty|| < | Tz —Ty| + [Ty — Ty|
STz —a™[[+|Ty — 2™ + ¢
<Ollz —a™|| +olly —a*|| +e
<Ollz — a7 +0lly —zfl + 0llz — 2" +¢
=20||z — || +0lly — x| +e.
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0.4 o Picard-S
o Normal-S
A Noor iteration
0.35 - V Ishikawa iteration
’ e Mann iteration
T T T T T T T T T T T T T T T T
5 10 15 20

Numbers of iteration

Figure 1. Convergence behavior of various iteration methods.

Theorem 2.4. Let X be a real normed linear space, T: X — X be a quasi-
strictly contractive operator satisfying (1.4) with a fixed point *, T: X — X be an
approximate operator of T for given e, and T be the fixed point of T. Assume that

{z,}22, Is the sequence in (1.2) and {Z,,}5 is a sequence defined by

-%n-i-l - j:?jfu
(2.20) Yn = (1 — an)TFn + anTZn,
zn = (1= Bn)an + BuTZn VYneEN,
where {an 152, and {Bn}52, are real sequences in [0,1] satisfying lim o, = 0 or
n—oo

lim 3, = 0. If {Z,}5°, converges to T, then we have
n—oo

1
ot 3 < 02X

Proof. From (1.2), (1.4), (2.19) and (2.20), we have

(2.21) |Zn+1 = Tnt1ll = [ TYn — TYnll < 26|y — || + 6[|Yn — ynll + ¢,
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(2.22) lyn — Tnll = 11 = ) Txn + 0nT2n — (1 — an)Tn — anTZ|
< (1= an)|Tzn — TZn|| + anl|T2n — Tzl
< (1= an)(28]|zn — 2% + 0]|Zn — zal| +€)
+ an(26||zn — || + 9|20 — 2zl + &)
= (1 — an)(20||zn — 2*|| + 6[|Zn — 2al])
+ an (20|20, — x*|| + 0||Zn — 2nl|) + &
=2(1 — an)0||xn — || + 20,020, — =¥ ||
+ (1 — an)d||Zn — znl| + andl|Zn — 2znl| + &,
(223)  lzn = Zall = (1 = Bu)n + BuTn — (1 = Bn)Tn — BT
< (1= Bo)llzn — Fnll + Bl Tz — Tl
< (L= Bu)llzn — Zn|
+ Bn (20| xy — 2*|| 4 0]|Zn — xal| + €)
= (1= Ba(1 = 0))l|zn — Znll + 2Bn6|zn — ™| + Bre.

Combining (2.21)-(2.23) and using the fact 1 — a,,5,(1 — §) < 1 for all n € N in the
resulting inequality, we get

(2.24) |lzni1 — Tnpa ]l < (1= 0)|l@n — Tnll + 20[lyn — 2*|| + 2(1 — )8 [|zp — ||
+ 20,02 || 2 — || + @62 Bne + 6 + €,

where o =1— 62 € (0,1).
Denote
fin = [|Tn41 — Tnga| 20, vn=0¢€(0,1),
_ 26(llyn — 2| + (1 = an)dllzn — 2" || + andllzn — 27[]) + (@nd*Bn + 5+ 1)e

én > 0.
o

It is now easy to check that (2.24) fulfills all the requirements of Lemma 1.2 and so
by its conclusion, we obtain

e(d+1)

z* -z < 15

Example 2.2. Let X =[0,1] and T: X — X be defined by

1 7
Ty = 5 2 + % ef(coshx)/éll
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It is clear that T satisfies (1.4) with § = 0.265205 and x* = 0.133342. Define an
operator T: X — X by

~ 0.0644541
Tz =005 0.87561922 sin (Le~2*r).
x + (015 052)(3 + cos(2na)) + 2?sin (3% 1)

The fixed point of T is 7 = 0.173261. If we put oy, = By = (5n3 4+ 1000) ! for all
n € N in (2.20), then the resulting iteration method converges to & = 0.173261 as
shown in Table 2

# of Iter. Iteration (2.20)

0 0.600000
1 0.195153
2 0.173779
3 0.173270
4 0.173261

Table 2. Convergence behavior of iteration method (2.20).

By using Wolfram Mathematica 9 software package, we get
[Tz — Tz < 0.0949569

for all + € X and for a fixed ¢ = 0.0949569 > 0. That is, T is an approximate
operator of . Now, we have |z* — Z| = 0.039919. Actually, without knowing and
computing the fixed point Z, we can find the following estimate via Theorem 2.4:

e(0+1)  0.0949569(0.265205 + 1)

7 < = = 0.129229.
S B gy > 1— 0.2652057
3. CONCLUSION
Pertaining to the iteration methods employed in [1], [6], [8], [9], [12], [17], [21], [20],
[19], [23], [24], [25], [29] and [31], 1t is the usual practice to 1mpose some conditions
o0 o0 &)
like > oy =00 (or > By = o0, Z'yn: 00), Y. Qpfly = 00, Z(an—f—ﬂn): 00,

n=0 n=0 n=0 n=0

O<a<ap 0<p8< B, B < an, % < ag, % < an(l =9) forallne N on the
parametric sequences {amn 15, {Fn}o20, {1152y C [0,1] for the type of conver-
gency, stability and data dependency problems considered in those papers. However,
none of these conditions has been used in our corresponding results. Therefore, our
results are improvements over the corresponding results in all the above mentioned
references and some other previous results in the literature.
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