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LOGARITHMICALLY IMPROVED BLOW-UP CRITERION FOR
SMOOTH SOLUTIONS TO THE
LERAY-a-MAGNETOHYDRODYNAMIC EQUATIONS

INES BEN OMRANE, SADEK GALA, JAE-MYOUNG KiM,
AND MARIA ALESSANDRA RAGUSA

ABSTRACT. In this paper, the Cauchy problem for the 3D Leray-a-MHD model
is investigated. We obtain the logarithmically improved blow-up criterion of
smooth solutions for the Leray-a-MHD model in terms of the magnetic field
B only in the framework of homogeneous Besov space with negative index.

1. INTRODUCTION

In this paper we consider the following incompressible Leray-a-MHD model in
R3 take the form (see e.g. [5] and references therein):

o+ (u-V)v—Av+Vr+iV|B> = (B-V)B,
8B+ (u-V)B—(B-V)—AB =0,
(1.1) v=(1-a?A)u, a>0,
divu =dive =divB =0,
(v, B)|t=0 = (vo, Bo),divug = divvg = div By =0 in R3,

where v : the fluid velocity field, u : “the filtered” fluid velocity, B : the magnetic
field and 7 : the pressure, are the unknowns; « is the lengthscale parameter that
represents the width of the filter. Note that the magnetic field is not regularized.

It has lately received significant attention in mathematical fluid dynamics due to
its connection to three-dimensional incompressible flows. When o — 0, the model
reduce to the following MHD equations:

du+ (u-Viu—Au+Vr+iV|B]>=(B-V)B,
0B+ (u-V)B—(B-V)u—AB=0,
divu =divB =0,
(U,B)|t:0 = (’U,Q,B()),diVUO = div BO =0 in R3,

(1.1) is smoother than (|1.2)). It is currently unknown whether solutions of the initial
value problem of the 3D Navier-stokes equations or the 3D MHD equations can
develop finite time singularities even if the initial data is sufficiently smooth. Thus

(1.2)
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it is easier to prove that the problem has a unique local smooth solution.
However, it is still open to prove whether the local solution is global or not. For
simplicity, without loss of generality, we assume o« = 1. When B = 0, the system
becomes the well-known Navier-Stokes-a (also known as the Lagrangian
averaged Navier-Stokes equations-a or the viscous Camassa-Holm equations) as a
closure model of turbulence in infinite channels and pipes, whose solutions give an
excellent agreement with empirical data for a wide range of large Reynolds numbers,
the alpha subgrid scale models of turbulence have been extensively studied (see
11, 2, 13, @, 15, [ [11]).

An extension of the Navier-Stokes-a model to the nondissipative MHD is given,
e.g., in [I0]. The model was obtained from variational principles by modifying the
Hamiltonian associated with the ideal MHD equations subject to the incompressi-
bility constraint. Then the dissipation is introduced in an ad hoc fashion in analogy
to the Navier-Stokes-a model following (see [5] and the references therein).

The existence of weak solutions to the problem has been established by
Linshiz and Titi [14]. Also, it is easy to prove the existence and uniqueness of local
smooth solutions to the problem with initial data (vo, Bg) € H'(R3) and
divug = divyg = div By = 0 in R®. However, the regularity of weak solutions to
the problem is still open. In [19], the authors established various regularity
criteria in terms of the velocity field, which implies that the velocity field plays a
dominant role in the regularity theorem. It is reasonable and similar to the case
for the standard MHD equations (for example, see [17, [I8] [20] 211 [23]).

We recall a solution pair (v, B) is a local smooth solution of system in the
interval [0, 7] for (vo, Bo) € H3(R3) x H3(R?) provided that

(v,B) € C(0,T; H*(R*)) x C(0,T; H*(R?)) .

Since the solutions to the Leray-a-MHD model are smoother than that of
the original MHD equations, Fan and Ozawa [5] consider the blow-up criterion
of smooth solution in terms of the magnetic field B only by using the Fourier
localization technique and Bony’s paraproduct decomposition. More precisely, they
proved that (v, u,m, B) is smooth at time ¢ = T provided that

T

/||B(~,t)||2.o dt < 00,
BOO,OC

0

.0
where B, ., denotes the homogeneous Besov space. There are other types of
blow up criteria of smooth solutions to the Leray-a-MHD model, (see for example
[, 19]).
Here, motivated by the results in [5] and [I9], our aim is to establish the
logarithmically improved blow-up criterion to in the framework homogeneous
-1

Besov space with negative index BOO,OO by means of only magnetic field B. More
precisely, we will prove the following.
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Theorem 1.1. Suppose that vy, By € H3(R?) with divvy = divBy = 0 and
(v,u, B) is a local smooth solution to the system (1.1) for 0 <t < T. If B satisfies

T VB IP

00,00

(1.3) /FMe+HVBm>nf1>
0 B oo

dt < oo,

then the solution (v,u, B) can be extended beyond t = T.

Remark 1.1. Usually, regularity criteria are established in terms of the velocity
field for the MHD equations. But here the magnetic field plays a dominant role. As
a corollary, we reprove the solution to the density-dependent Leray-a-Navier-Stokes
equations (B = 0 in exists globally in time).

We have the following corollary immediately.

Corollary 1.2. Assume that vy, By € H3(R3) with divvy = divBy = 0. Let
(v,u, B) be a local smooth solution to the system (1.1)) for 0 <t < T. Suppose that
T is the mazximal existence time. Then

T VG-
Jm@ﬂwm ol )"

oooo

=1
It is well known that B, ., (R?) is the biggest critical homogeneous space of
degree —1, and as shown by Frazier, Jawerth and Weiss [7] any critical homoge-

neous space continuously embedded in S'(R?) is also continuously embedded into
=1

B o0 (R?).
As a consequence of the fact ||VB]||.-1+ =~ ||B||.o , from Theorem we
B

00,00 00,00

obtain immediately the following result

Corollary 1.3. Assume that vy, By € H?*(R3) with divvy = divBy = 0. Let
(v,u, B) be a local smooth solution to the system (L1.1)) for 0 <t < T. If B satisfies

T IBC, || 0

Boo.oo dt < ,
/me+w e )"
0

oo:x:

then the solution (v,u, B) remains smooth on [0,T)].
Thanks to
T B, || 0

Boo,oo dt< B dt
/lne+IIB /” ol B

0

it is easy to deduce that our criterion can be viewed as a generalization of
the result of Fan and Ozawa [5]. Moreover, thanks to the fact that the system
(1.1) with @« — 0 and B = 0 reduce to the 3D Navier-Stokes equations, we notice
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that our criterion becomes the recent reults of Gala-Guo [8] for the Navier-Stokes
equations (see also [22]).

2. PROOF OF THEOREM [L.1

This section is devoted to the proof of Theorem [I.I} Since we deal with the
regularity condition of the smooth solutions, we only need to prove the a priori
estimates for smooth solutions. Throughout the rest of the paper, C' denotes various
positive and finite constants whose exact values are unimportant and may vary
from line to line.

To prove the theorem we will use the following bilinear commutator estimate.
We can find the detailed proof in [I3] for example.

Lemma 2.1. suppose that 1 < p < oo and s > 0. Let f and g be two smooth
functions such that Vf € L9, A5f € L™, A" 'g € L™ and g € L. Then there
exists an abstract constant C such that

21)  IA(fg) = fA° gl < O (IVF Il 1A gl oy + 1A Fll s 19l o)

with 1 < q1,¢2 < 00, 1 < 71,79 < 00 such that % = q%—l—% = q%—l—i, where
1

A=(-A)z.
The following Gagliardo-Nirenberg inequality (see [9]) will be frequently used

later.

Lemma 2.2. Let j,m, k be any integers satisfyingk < j <m and let 1 < g,r < 00
andp € R, 0<60 <1 such that

Ly

1
=0(- +(1-0)(=-32).
LI —0C -0 - 3)
Then for all f € WFI(R3)NW™T (R3), there is a positive constant C dependending
only on m, j, k,q,r,0 such that the following inequality holds

(2.2) AT f]|,, < C AR 1A fd, .

In order to prove our main result, we need the following interpolation inequality
which may be found in ([I5] [16]):

(23) £ < CUAL+ IVl -

00,00

m 1 k&
3

Recall also that for 0 < s < %, we have

6
s (M3 PR3
H*(R3) C LP(R3) Wp e [2,325).

Now let us proceed to prove Theorem [I.1]

Proof. Owing to (L.3), we know that that for any small constant € > 0, there
exists Ty = To(e) < T such that

T VBGE
B

@4 /meWM¢ﬁ;>“S“

To

,00
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Consequently, the main goal of this section is to establish the following a priori
estimate

tim sup ([[A%( )7, + [A°BC.D)[7,) < oo

Step 1. L? and H' energy estimates.

To begin with, we multiply the first, second equation of (1.1)) by v, B, respectively
and integrate them over R? with respect to z, then add the resulting equation, it
yields

1d

5 (v* + B?) dx+/|Vv|2+|VB|2d:c
]RS

R3

_ /(B-VB)-vdx—/(u-Vv)mdx—R[ V7r~vdx+/(B-Vv)-de—/(u-VB)-Bda:

R3 R3 R3 R3

1 1
:/B-V(Bv)dx— §/u-V(U2)dm— §/u-V(BQ)dat:O,
R3 R3 R3
where we have used V-4 =V .0 =V .B =0.
Integrating above equality with respect to time yields
(2.5) [Vl g 0,7:22) + 10l 20,7801y < €
1Bl oo 0,322y + I1Bll 20,7501y < C-

As a consequence, the relation between v and u allows us to show
(2.6) lull oo 0,7 12y + 1ll 20,775y < C-

We apply V to (1.1); and multiplying the resulting equation by Vv, and
integrating with respect to « on R, using integration by parts, we derive

1d 2 2
5% ||VU(7t)HL2 + HVQU(':t)HLz
= —/V(u -V)v - Vudz +/V(B -V)B - Vudz
R3 R3
:/(u~V)v~Avda:—/(B-V)B~Avdx
R3 R3
3
(27) = /(u . V)’U - Avdx + Z ((r“)kBj . 8JB + Bjﬁjé)kB) opvdx
R3 jvkle:}

where we have used the fact

3 3
— / (B-V)B-Avdz = =) / (B;-0;B)ojvdr = / (8x B;-0; B+B;;01,B)dyvdz .

R3 j}kilRS j,kleg
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Similarly, applying V to (|1.1)s and multiplying the resulting equation by VB, and
integrating with respect to « on R3, using integration by parts, we get

1d 2 2
3 IVBCIE + [ 92BC 0],
= —/V(u -V)B - VBdx + /V(B -V)v - VBdx
:/(u'V)B-Ade—/(B~V)v'Ade
R3 R3
3
(2.8) = /(u -V)B - ABdzx + Z (OxBj - 0y BOjv — Bj0;0xB - Opv) dx ,
R3 jvk:1R3

where we have used the fact

—/(B V)v - ABdx = — Z/B@v .92 Bdx = — Z/akaakade

R3 J.k= 1]R3 J,k= 1]R3

= - Z (8 Bjv + B;jOv)0;0x Bdx
j,k:lRa
3
= > [ (0xB; - 0xB- ;v — B;0;04B - 0yv) da .

Jk=1gs
Summing up and (2.8)), we deduce that
SV 2 + IVBCDIE) + [ V2,02 + [VBC,H)
:/[(u~V)v-Av+(u-V)B-AB]dm
4
(2.9) + Z OB; - (0;B - Opv + B - 9;v) dz

J,k= IRB

Using Hélder inequality, (2.6) and then due to the inequality a'=%b% < a + b,
0<pB<1,a,b>0,one has

/[(wV)v-Aer(uV)B.AB]dx

]RS
< lull o 190l 2 | V20| o + ull e VBl 2 || V2B 2
< C |Vl [V 2 + CIIVBI 2 [|[V? B 2
1 1
(2.10) < 5 IVl + 7 IV Bl + C (19003 + IV B, ) |

where the Sobolev embedding H?(R3) — L>°(R?) is applied.
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Thanks to (2.3)) and Young inequality, we can obtain

3
> | 0xB; - (9;B- kv + kB - djv) da
j7k=1]R3
< 2||VB] 74 [Vl 2 < CIVB| - ||VQB||L2 Vol L2

<C IIVBII S Vollze + g ||V23HL2

oooo

1
(2.11) <C|VB|’ (||W||§2 +IVBI:) + 7 IV*B]}. -

oooo

Substituting (2.10) and ( into (| , we arrive at
2
@(||w<-7t>||iz + ||VB<.,t>||32> + V2o 0[5 + [V2BC D2
(2.12) <C+ HVBHZ—l )(IVolzz +IVBIZ2).

00,00

For any To <75<T7 we denote
F(t) = s + |BC s ) -
() Tg[la(ft](Hv(’ )”HS ” (7 )HH3)

Integrating above inequality (2.12)) over interval [Ty, t) and observing that F(t)
is a monotonically increasing function of ¢, we thus obtain

t

Vo0l +1VBCO1E: + [ (V[ + VB )5 )ar

To
t

< (IVel T + IVEC,To) ) exp (C [ (14 IVBC,IE 0 ar)

0,00

To

< Mexp /||VB PP dT)
BOCOO

A ZCETEY
= (C hl(e—i—HVB(',T)HB—l )dT)

(e + VB -+ )

ococ

00,00

t HVB(a )H -1
B,
L VB
<M (C s - In(e + |B("T)||L°°)d7_>

ne +[VBC, 7 -

oooo
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IN

e IVBEAIE
e (C/ e+ [VBC] )T ”B("”'Hs)“)

0 00,00

¢ IVB(, )|| -1
< M exp (CT/ (e VBT )HB* )ln(€+F(T))dT>

00,00

L [VBG )R

Boc,oo
< M exp (CT/ (et HVB('J')HBfl )dTln(e—i— F(t))) )

0 00,00
where the Sobolev embedding H?3(R3) < L (R?) is applied. We want to state
here that from the above observation C' is an absolute constant and M depends on
IVo(, To)ll g2, [IVB(:, To) [ 2, To and T
By Gronwall’s inequality, we conclude that

t

Vel 0l + VB0 + [ (9206 + V2B dr
To
< Cole+ F(1)

Step 2. We go to the estimate for the H3-norm. Taking the operation A® = (— A)%
on both sides of (1.1));, then multiplying them by A3v and integrate with respect

to = on R3, usmg integration by parts, we have

3 dt HA3 HL2 + || APV, HL2 = —/A3(u Vv - Avdzx
R3
(2.13) +/A3(B-V)B~A3vdx.
R3
Likewise, we obtain
3 dt }|A3 B3, + |APVB(CL 0|5, = 7/A3(u -V)B - A*Bdzx
R3
(2.14) +/A3(B~V)U-A3de.
R3
Summingup and and using V-u=V-v=V-B =0, we have
L2, + BB + APV + AV BB,

=— /[AS(u Vo) —u - VA3] - Advde

R3
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- /[A?’(u -VB) —u-VA®B]- A*Bdx

R3
+ /[A3(B -VB) — B-VA3B] - Avdx
R3
+ /[A3(B -Vv) — B-VA*v] - A*Bdx
R3
(2.15) =Ji+Jo+J3+ Jy,

where we have used the divergence free condition V-u =V .-v =V -B =0, that is,

/(u VA3 - ABvdx = /(u -V)A3B - A*Bdx =0,

R3 R3

/(B -V)A3B - Nvdx + /(B “V)A3v - A3Bdr =0.

R3 R3
According to the fact that v = (I — a2A) u and using , we easily get
u € L>®(0,T; H?)
whence

Vu € L>®(0,T; H') ¢ L>(0,T; L?).

/l 2(S+2)|
</|w|25 (1+a2 |w|2) ()] dw

/|w|25 (W)|? dw = |A%0|3, , forall s>0.

Note the following fact

2 dw

HAs+2 _ HA9+2

In what follows, we will use the following Gagliardo-Nirenberg inequalities which

follows from (2.2]):
(2.16) [A%0] o < CIA%[|F2 || Aol

4s—1_
(2.17) [ A%ul| 4 < C||Vu||4<s“’ HASH“H;,(;H) )
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Now we start to estimate each term of ([2.15)). To estimate the first term J;, we
use Hoélder inequality, (2.1)), (2.5), (2.16)), (2.17) and Young inequality to obtain

Ju < [ A%]| L [[[A% (u- V) —u - APV|| 4
< Cl|A%[| o (IVull 2 [[A%0]] o + [[A%]] o V0 2)
< C||A%||7 IVul 2 + C V0]l o [|A%]] o | A%
< C|[Vull e A% 5, |A%] .
+C IVl A% 1A% £ IVl 5 [|A%] 1%
< C ol [|8%] 5. [[a%] .

+ OVl HA%Hi loll e [[A%]
3
(O lv][72 HA%HM) (HA%HU)
3
vH; foll) (]’

< C vl |\A3v|\L2+ A% HLz

+ (C Vel

+cnwnp ollf Nellds + 1o 1A%
<3 A%+ O el A% + C Vel & o2 + %] 5
< LI+ (ot ) A+ (C Vol fols)
< g [Ao]s +C (A% + 9l

1

HV%HLQ +C (HWHLQ + ||VB||L2) |V20]2, +C V202, .
Arguing surmlarly as above J;, we can obtain
Ty < ‘/[A37u~V]B-A3de‘ < |A%B| . 1A% - V1B, 4
R3
< C||V?BI[; . IVull 2 + C | Vull 2 || V2 B[ . | V34|,
<C 21 ||odpllt 208 ||vdpls g 11u6, 113
< Clloll 2 V2Bl 22 |V Bl Lo +Cllvll 2 [V B| £ VBl Lo Vel [ VO
1 2
< S [9B[lL + C ol [IV2BIS. + Clol & + [ 925
1 1
S IV'B[. + 191
1 2 2
§HV4 ofl7. + *||V4B||L2+CHV2B||L2

1
< S IVl 5 IV B +C 92 BI2 (190l HIVBIE. +CIV* Bl
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The Gagliardo-Nirenberg inequality (2.16]) as well as inequality (2.1]) allow as to
show that

= /[V3,B VB - Viudz < [|[VP0[, [[[V?, B-V]B| 4
R3
< [V2oll a1V B [|V°B]

1 T 1 T
< CIVBI e V20l V¥l V2Bl 2. [V Bl .
1 1
< g9l + V' Bl + CUVBIL: (9%l + V7B ) -

By using the same estimates as above, we have

Jo= /[V3,B Vo V®Bde < ||V*B|| ., |[[V*, B V]v| 4
R3
< C VBl IV Bllgs V%0l + C IV B 901

< CIVBIL: [92B . IV4B] 5. [ 92 5. V40 5.
+C Vol V2B s V4B
< CIVBIL (IV2BI. + V205 ) + 5 VBl + 5 IV
+ OVl 2B + 5 IVl < 5 1940l +  IV*BI
+C(Ivollya + IVBIG: ) (V2B + [[920]]52)-
Therefore, combining the estimates of Jy, J, J3 and Jy, we have
ST O] + VB G)
< C(IVollSs + IVBIE) (|9°BI. + 9203
+ (V%2 + ¢ |98
Integrating the above inequality over (Tp,t), we infer that

V%0 1122 + | V2BC, D)7, — (|V20C To)|)5s + V2B To)|[7.)

1)z

<c/ 900 + V2B )ar

+C/ (19005 + 19 B3 ) (19206 )+ V2B C D e )dr
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t

< Cole + F@) “+Co [(e+ Fm) (7200 D[+ [92BC D) )ar
< Cole+ P) “+Cole+ FO)'” [ (V.5 +IV2BC, 7 ar
To

< Cole+ F(1)" + Cole + F(t)"

< Cole+ F(1)),

which leads to o
e+ F(t) < Cr, +Cole+F(t)) "

where Cp,, = HV?’U(',TO)Hi2 + HVSB(~,T0)H2L2. Now we choose € small enough so
that 5Ce < 1, to conclude

F(t) < O([|V30(, To) |20 + | V2B T0) |2, To, T) < o0 forall ¢ € [Ty, T].

As a consequence, we get the boundedness of H? x H3-norm of (v, B) for all
t € [0,T]. This completes the proof. O
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