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Ultrafilter extensions of asymptotic density

Jan Greb́ık

In memory of Bohuslav Balcar

Abstract. We characterize for which ultrafilters on ω is the ultrafilter extension
of the asymptotic density on natural numbers σ-additive on the quotient boolean
algebra P(ω)/dU or satisfies similar additive condition on P(ω)/fin. These no-
tions were defined in [Blass A., Frankiewicz R., Plebanek G., Ryll-Nardzewski C.,
A Note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001),
no. 11, 3313–3320] under the name AP (null) and AP (*). We also present
a characterization of a P - and semiselective ultrafilters using the ultraproduct of
σ-additive measures.

Keywords: asymptotic density; measure; ultrafilter; P-ultrafilter

Classification: 28A12, 03E05, 03E35, 11B05

This paper is based on the author’s Bachelor thesis that was supervised by
Bohuslav Balcar and defended in 2014. We investigate additive properties of
measures on P(ω) that are extensions of asymptotic density as defined in [2]. More
concretely in Section 2 we give a necessary and sufficient combinatorial condition
for an ultrafilter U on ω for the extension of asymptotic density given by U to
satisfy AP (null) or AP (*). In Section 3 we characterize P - and semiselective
ultrafilters by relations between some ideals in an ultraproduct of measures.

We note that since 2014 there has been made some progress in similar direction
of density measures and additivity properties (see [4]).

1. Introduction

Let B be a boolean algebra and m : B → [0, 1]. We say that m is

◦ monotone if m(a) ≤ m(b) whenever a ≤ b ∈ B;
◦ strictly positive if m(a) = 0 implies that a = 0;
◦ a measure if m is monotone, m(1) = 1 and m

(
∨

i<n ai
)

=
∑

i<n m(ai)
for every finite antichain {ai}i<n ⊆ B;

◦ σ-additive if m is a measure and m
(
∨

i<ω ai
)

=
∑

i<ω m(ai) for every
antichain {ai}i<ω ⊆ B.
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If m is a measure on B, then define N (m) = {a ∈ B : m(a) = 0}. The quotient
boolean algebra B/N (m) carries a unique strictly positive measure that is natu-
rally derived from m. We will abuse the notation and write B/m for the quotient
algebra, m for the unique induced measure on B/m and [a] for the equivalence
class of a ∈ B. The following theorem is in fact a corollary of a stronger state-
ment from [5] but this version is sufficient for our purposes. Recall that a boolean
algebra B is σ-complete if every countable subset of B has a supremum in B.

Theorem 1.1 ([5]). Let m be a measure on a σ-complete boolean algebra B.
Then B/m is a countable chain condition (c.c.c.) complete boolean algebra.

We use ω for the set of natural numbers. We write n for the set {0, 1, . . . , n−1}
and [r, s] for the set {n ∈ ω : r ≤ n ≤ s} where r, s ∈ R. Recall that a set A ⊂ ω
has an asymptotic density if

lim
n→∞

∣

∣A ∩ n
∣

∣

n

exists, and in that case we denote the value of the limit as d(A). We say that
a measure m on P(ω) is a density if it extends the asymptotic density, i.e. m(A) =
d(A) for every A ⊆ ω for which the asymptotic density exists. Note that a density
m cannot be σ-additive on P(ω) because it has the value 0 on each atom. Since
the algebra P(ω)/m is σ-complete by Theorem 1.1, it is natural to ask whether
the density m is σ-additive on P(ω)/m. This question was considered in [2] where
the authors define two additive properties for measures on P(ω).

Definition 1.2 ([2]). A measure m on P(ω) satisfies AP (null) if for every inclu-
sion increasing sequence {An}n<ω of subsets of ω there is B ⊆ ω such that

◦ limn→∞ m(An) = m(B);
◦ m(An \B) = 0 for every n < ω.

If we can moreover find such B that also satisfies

◦ |An \B| < ω for every n < ω,

then we say that m satisfies AP (*).

One can easily check that AP (null) is equivalent with the σ-additivity of m on
P(ω)/m. It is known (see [2]) that there are densities that satisfy AP (null) but
there are also densities that fail to have AP (null). The question about AP (*)
is more complicated since there is a model of Zermelo–Fraenkel set theory with
the axiom of choice (ZFC) in which no density satisfies AP (*). On the other
hand it is also consistent that densities satisfying AP (*) do exist, for example
the existence of a P -ultrafilter is sufficient.

Definition 1.3. Let U be an ultrafilter on ω. Define

dU (A) = U- lim
|A ∩ n|

n

for every A ⊆ ω.
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We call densities of the form dU ultrafilter densities. All examples presented
in [2] are in fact ultrafilter densities. The aim of this paper is to give a complete
combinatorial characterization of ultrafilters for which the ultrafilter densities
satisfy AP (null) or AP (*). Let us state here the case of AP (null) and postpone
the more technical case of AP (*) until the end of Section 2.

Definition 1.4. We say that an ultrafilter U on ω is ×-invariant if for all U ∈ U
there is 1 < k ∈ ω such that

kU =
⋃

n∈U

[kn, (k + 1)n] ∈ U .

The following is the main result of this paper and Section 2 is devoted to the
proof of this statement.

Theorem 1.5. Let U be an ultrafilter on ω. The following are equivalent

◦ dU is σ-additive on P(ω)/dU (i.e. satisfies AP (null));
◦ U is not ×-invariant.

2. Ultrafilter densities

In this section we present the proof of Theorem 1.5. We start with some
general facts about ultrafilters on ω. All ultrafilters considered in this section are
non-principal.

Claim 2.1. Let U be a ×-invariant ultrafilter (see Definition 1.4). Then for every
U ∈ U there are infinitely many k < ω such that

kU =
⋃

n∈U

[kn, (k + 1)n] ∈ U .

Proof: Assume that for a given U ∈ U there is some maximal k such that
kU ∈ U . Then there must be some 2 ≤ l < ω such that

l(kU) =
⋃

m∈kU

[lm, (l + 1)m] ⊆
⋃

n∈U

[lkn, (l + 1)(k + 1)n] ∈ U .

Because U is an ultrafilter, there must be some p < ω such that lk ≤ p ≤
(l + 1)(k + 1) − 1 and pU ∈ U . Now 2k ≤ lk ≤ p contradicts the maximality
of k. �

In order to prove our main result we need to investigate which ultrafilters give
rise to the same ultrafilter densities.

Definition 2.2. Let U ,V be ultrafilters. We say that U is close to V if for every
U ∈ U and for every ε > 0 there is V ∈ V such that

◦ for all x ∈ U there is y ∈ V such that max
{
∣

∣1− x
y

∣

∣,
∣

∣1− y
x

∣

∣

}

< ε;

◦ for all x ∈ V there is y ∈ U such that max
{
∣

∣1− x
y

∣

∣,
∣

∣1− y
x

∣

∣

}

< ε.



28 Greb́ık J.

Claim 2.3. Let U ,V be ultrafilters. Then U is close to V if and only if

Uε =
{

x < ω : ∃n ∈ U max
{
∣

∣

∣
1−

n

x

∣

∣

∣
,
∣

∣

∣
1−

x

n

∣

∣

∣

}

< ε
}

∈ V

for every ε > 0.

Proposition 2.4. The relation of being close is an equivalence relation on the
set of ultrafilters.

Proof: Suppose that U is close to V but V is not close to U . Then there is
δ > 0 and V ∈ V such that Vδ 6∈ U . Therefore B = ω \ Vδ ∈ U . Then Bδ ∩ V = ∅
because if x ∈ Bδ∩V , then there exists y ∈ B such that max

{
∣

∣1− x
y

∣

∣,
∣

∣1− y
x

∣

∣

}

< δ

and also x ∈ V implies y ∈ ω \B. Claim 2.3 gives us that Bδ ∩ V = ∅ ∈ V , a con-
tradiction.

In order to prove that the relation is transitive first notice that

Uε =
⋃

n∈U

[

n(1− ε),
n

(1− ε)

]

.

Assume now that U is close to V , V is close to W and take U ∈ U . We know that
Uε ∈ V and (Uε)ε ∈ W but

U2ε−ε2 =
⋃

n∈U

[

n(1− ε)2,
n

(1 − ε)2

]

⊇ (Uε)ε ∈ W .

Since ε > 0 was arbitrary we see that U is close to W . �

Once we have established Proposition 2.4 we can write that a pair of ultrafilters
U ,V is close since the relation U is close to V is symmetric. Note also that U ,V
are close if and only if

〈{Uε : U ∈ U , ε > 0}〉 = 〈{Vε : V ∈ V , ε > 0}〉,

where 〈A〉 denotes the filter generated by A ⊆ P(ω).

Theorem 2.5. Let U ,V be close ultrafilters. Then dU = dV and U is ×-invariant
if and only if V is ×-invariant.

Proof: Let A ⊆ ω and ε > 0 be given. Find a set U ∈ U such that

∣

∣

∣
dU (A)−

|A ∩ n|

n

∣

∣

∣
< ε

holds for every n ∈ U . Since U ,V are close, we have that Uε ∈ V . Let x ∈ Uε and
n ∈ U such that max

{
∣

∣1− n
x

∣

∣,
∣

∣1− x
n

∣

∣

}

< ε. We have

∣

∣

∣
dU(A) −

|A ∩ x|

x

∣

∣

∣
≤

∣

∣

∣
dU (A)−

|A ∩ n|

n

∣

∣

∣
+
∣

∣

∣

|A ∩ n|

n
−

|A ∩ x|

x

∣

∣

∣
< 3ε
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because if for example n ≤ x, then

∣

∣

∣

|A ∩ n|

n
−

|A ∩ x|

x

∣

∣

∣
≤

|A ∩ n|

n

∣

∣

∣
1−

n

x

∣

∣

∣
+

x− n

x
< ε+ ε < 2ε.

We may conclude that dV(A) = dU (A).
Next suppose that U is ×-invariant and let V ∈ V be given. We know from

Claim 2.3 that V1/4 =
{

y : ∃n ∈ V max
{∣

∣1 − n
y

∣

∣,
∣

∣1 − y
n

∣

∣

}

< 1
4

}

∈ U . Therefore

using Claim 2.1 there exists 4 ≤ k < ω such that kVε ∈ U . We show that there
are δ > 0 and 3 ≤ b < ω such that

(kVε)δ ⊆
⋃

n∈V

[2n, bn].

Once we have this the proof is finished because (kVε)δ ∈ V . We describe how to
find δ and 3 ≤ b < ω. By a simple computation it follows that

Vε =
⋃

n∈V

[

n
(

1−
1

4

)

,
n

(

1− 1
4

)

]

,

therefore

(kVε)δ =
⋃

n∈V

[

kn
(

1−
1

4

)

(1− δ),
(k + 1)n

(

1− 1
4

)

(1− δ)

]

.

We see that if we choose δ < 1
3 and b ≥ (k+1)

(1−1/4)(1−δ) , we have the desired conclu-

sion. �

Next we show that close to any given ultrafilter there is a thin ultrafilter. Recall
that an ultrafilter V is thin if

inf
V ∈V

{

lim sup
n→∞

FV (n)

FV (n+ 1)

}

= 0,

where FA(n) is the nth element of A, i.e. FA is the enumerating function of A.
Note that an ultrafilter V is thin if and only if there is a set V ∈ V such that

lim sup
n→∞

FV (n)

FV (n+ 1)
< 1.

Denote In = [2n, 2n+1) for every n < ω.

Proposition 2.6. Let U be an ultrafilter. For every ε, δ > 0 there is a set U ∈ U
such that for every x < y ∈ U

x

y
< ε or

x

y
> 1− δ.

Proof: Let α : ω → {0, 1}. Inductively define intervals Iα↾kn for k ∈ ω as

◦ Iα↾0n := In;
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◦ for 0 < k ≤ n if α(k − 1) = 0 put Iα↾kn to be the left half of the interval
Iα↾k−1
n ;

◦ for 0 < k ≤ n if α(k− 1) = 1 put Iα↾kn to be the right half of the interval
Iα↾k−1
n ;

◦ for k > n put Iα↾kn := Iα↾nn .

There exists αU : ω → {0, 1} such that for every k ∈ ω

⋃

n∈ω

IαU ↾k
n ∈ U .

Let x < y ∈ IαU ↾k
n . Since |IαU ↾k

n | = 2max{n−k,0} we have that

x

y
>

2n

2n + |IαU↾k
n |

=
2n

2n + 2n−k
= 1−

2n−k

2n + 2n−k
> 1−

1

2k
.

Finally it is enough to observe that for every k < ω and U there is A ⊆ ω such
that

⋃

n∈A In ∈ U and (A + j) ∩ A = ∅ for every j < k. If n < m ∈ A, x ∈ In
and y ∈ Im, then

x

y
<

2n+1

2m
≤

2n+1

2n+k
≤

1

2k+1
.

To finish the proof it is enough to combine the two estimates. �

We use the function αU that was defined in the proof of Proposition 2.6 for the
next definition.

Definition 2.7. Let U be an ultrafilter on ω. Define the function αU as in the
proof of Proposition 2.6. Let

AU =
⋂

k<ω

⋃

n<ω

IαU ↾k
n .

The ultrafilter G(U) is defined by U ∈ G(U) if
⋃

{In : In ∩ U ∩ AU 6= ∅} ∈ U .

Proposition 2.8. Let U be an ultrafilter. Then G(U) is a thin ultrafilter and
U , G(U) are close.

Proof: From the definition it follows that G(U) is a non-principal ultrafilter and

we have lim supn→∞
FAU

(n)

FAU
(n+1) < 1. Since AU ∈ G(U), it follows that G(U) is

thin.
Let ε > 0 and V ∈ G(U) be given. We may assume that V ⊆ AU . Find k < ω

such that max
{∣

∣1− x
y

∣

∣,
∣

∣1− y
x

∣

∣

}

< ε for every n < ω and every x, y ∈ Iα↾kn . Then

Vε ⊇ U =
⋃

{Iα↾kn : V ∩ Iα↾kn 6= ∅} ∈ U .

�
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Corollary 2.9. Let U be an ultrafilter. Then dU = dG(U) and U is ×-invariant
if and only if G(U) is ×-invariant.

The last ingredient needed for the proof of Theorem 1.5 is the ultraproduct of
measures. Let us define for a non-principal ultrafilter U a measure mU on the set
∏

n∈ω P(n) by putting

mU (f) = U- lim
n→∞

|f(n)|

n
,

i.e. we are taking the measure ultraproduct of the sequence (P(n))n<ω where
each P(n) is endowed with the normalized counting measure. Next we consider
the embedding e : P(ω) →

∏

n∈ω P(n) defined for A ⊆ ω as e(A)(n) = A ∩ n.
Immediately from the definitions we have mU(e(A)) = dU (A). Therefore the
embedding e lifts to the quotients, i.e.

e : P(ω)/dU →
∏

n∈ω

P(n)/mU .

It is well-known that the measure mU on
∏

n∈ω P(n)/mU is σ-additive (see [3]).

Proposition 2.10. Let U be a thin ultrafilter. Then the density dU is σ-additive
if and only if the embedding e is isomorphism.

Proof: Let f ∈
∏

n∈ω P(n) and ε > 0 be given. We show that there is A ⊆ ω
such that |mU (e(A)△f)| < ε. Because U is thin, there is U ∈ U such that

FU (n)

FU (n+ 1)
< ε.

We define

A :=
⋃

n<ω

([FU(n), FU(n+1)] ∩ f(FU (n+ 1))).

We have for every n < ω that

∣

∣

∣

|(e(A)(FU (n+ 1)))△f(FU (n+ 1))|

FU (n+ 1)

∣

∣

∣
≤

FU (n)

FU (n+ 1)
< ε.

This implies that e(P(ω)/dU) is dense in
∏

n∈ω P(n)/mU , therefore dU is σ-
additive if and only if e is surjective. �

We are now ready to prove our main result.

Proof of Theorem 1.5: Assume first that U is thin and not ×-invariant. We
show that e is onto. Let f ∈

∏

n∈ω P(n). We find a set A, A ⊆ ω, such that
|mU (e(A)△f)| = 0. Let U ∈ U such that for every 3 ≤ k < ω is

Uk =

(

ω \
⋃

n∈U

[2n, kn]

)

∩ U ∈ U
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and FU (n)
FU (n+1) <

1
2 . Define

A =
⋃

n<ω

([FU (n), FU (n+ 1)] ∩ f(FU (n+ 1))).

Let m ∈ Uk. Choose the largest n ∈ U such that n < m. Then by definition
of Uk we have that n

m < 1
k . Note that m ∈ U . Therefore by the definition of

a set A we have the estimate

|e(A)(m)△f(m)|

m
≤

n

m
<

1

k
,

and the claim follows.
Assume on the other hand that U is thin and×-invariant. There is a decreasing

sequence {Uk}k<ω ⊆ U such that
FUk

(n)

FUk
(n+1) <

1
2k+1 . Define

Ak =
⋃

n∈Uk

[ n

2k+1
,
n

2k

]

.

We have dU (Ak) < 1
2k
. Assume that there is A ⊆ ω such that dU (Ak \ A) = 0

and dU (A) <
1
8 for every 3 < k < ω, i.e. A is a candidate for the upper bound of

the sequence {Ak}3<k<ω. Let U =
{

n : |A∩n|
n ≤ 1

8

}

. There must be 16 ≤ l < ω
such that

W =
⋃

n∈U

[ln, (l+ 1)n] ∈ U .

Consider now the smallest k < ω such that l + 1 < 2k. Define V = Uk ∩W ∈ U .
Since for n ∈ V there is m ∈ U such that lm ≤ n ≤ (l + 1)m < 2km and
[

n
2k+1 ,

n
2k−1

]

⊆ Ak−1 ∪ Ak, we have

n

2k+1
≤

m

2
, m ≤

n

2k−1
.

Therefore
[

m
2 ,m

]

⊆ Ak−1 ∪Ak. Since m ∈ U , we must have

|A ∩m|

m
≤

1

8
,

and therefore
∣

∣

∣

[m

2
,m

]

\A
∣

∣

∣
≤

3m

8
.

Finally we can conclude that

|((Ak−1 ∪Ak) \A) ∩ n|

n
≥

3m

8n
≥

3

8(l+ 1)

for n ∈ V . This is a contradiction with the properties of A. We conclude that
there is no upper bound for {Ak}3<k<ω such that its measure is less than 1

8 ,
consequently dU is not σ-additive. �
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Corollary 2.11 ([2]). Let U be an ultrafilter that contains a thin set, i.e. a set

A such that limn→∞
FA(n)

FA(n+1) = 0. Then dU satisfies AP (null).

An example of an ultrafilter U such that dU does not satisfy AP (null) was
presented in [2] (the construction is due to D.H. Fremlin).

Our aim is now to characterize those ultrafilters U such that dU satisfiesAP (*).
For that we need the following observation. Recall that an ultrafilter U is a P -

ultrafilter if every decresaing sequence {Ui}i<ω ⊆ U has a pseudointersection
U ∈ U ,

Proposition 2.12 ([2]). Let U be an ultrafilter that contains a thin set. Then
dU has AP (*) if and only if U is a P -ultrafilter.

Claim 2.13. Let U be a thin P -ultrafilter. Then U contains a thin set.

Proof: Let {Uk}k<ω ⊆ U be a decreasing sequence such that
FUk

(n)

FUk
(n+1) < 1

k for

every k < ω. Take the pseudointersection U of {Uk}k<ω. Then for every k < ω
there is n0 < ω such that for every n > n0

FU (n)

FU (n+ 1)
<

1

k
.

�

Proposition 2.14. Let U be an ultrafilter. Then the following are equivalent

◦ G(U) is a P -ultrafilter;
◦ dU has AP (*).

Proof: Assume that G(U) is a P -ultrafilter. By the Claim 2.13 it must contain
a thin set and by Proposition 2.13 dU has AP (*).

Assume that dU has AP (*). Again by Proposition 2.13 it is enough to show
that G(U) contains a thin set. Fix a decreasing sequence {Uk}k<ω ⊆ G(U) such
that

FUk
(n)

FUk
(n+ 1)

<
1

k + 1

and define

Ak =
⋃

n∈Uk

[n

2
, n

]

.

One can easily verify that a sequence {Ak}k<ω is a decreasing sequence such that
limk→∞ dU (Ak) = 1

2 . By the property AP (*) there is a set A ⊆ ω such that

|A \ Ak| < ω and dU (A) = 1
2 (here we use the property AP (*) for decreasing

rather than increasing sequences). Define

U =
{

n ∈ U3 :
[n

2
, n

]

∩A 6= ∅
}

.
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We must show that U ∈ G(U) and U is thin. Assume that U 6∈ G(U). Then
U3 \ U ∈ G(U). For n ∈ U3 \ U we have

|A ∩ n|

n
≤

1

4
,

which is a contradiction with dU (A) =
1
2 . To prove that U is thin it is enough to

observe that |A \Ak| < ω implies |U \ Uk| < ω. �

Definition 2.15. We say that ultrafilter U is close to a P -ultrafilter if for every
decreasing sequence {Uk}k∈N ⊆ U and every ε > 0 there is U ∈ U such that
|U \ (Uk)ε| < ω for all k ∈ N.

Note that the ambiguity in the Definition 2.15 with respect to the Definition 2.2
is justified by the following claims. It follows that if U is close to a P -ultrafilter,
then we can find a P -ultrafilter V such that U is close to V , in particular we can
take V = G(U).

Claim 2.16. Let U be thin and close to a P -ultrafilter. Then U is a P -ultrafilter.

Proof: Let {Uk}k<ω ⊆ U be a decreasing sequence. Assume that
FU0

(n)

FU0
(n+1) <

1
2 .

Find a pseudointersection U of {(Uk)1/4}k<ω. We claim that V = U ∩ U0 is
a pseudointersection of {Uk}k<ω. To see this fix k < ω. We know that there is
some m such that U \m ⊆ (Uk)ε. Let x ∈ U0 ∩ (U \ m). There is y ∈ (Uk)1/4
such that max

{
∣

∣1 − x
y

∣

∣,
∣

∣1 − y
x

∣

∣

}

< 1
4 . Note that y ∈ U0 because the sequence

is decreasing. From the properties of U0 we have that x = y. This implies that
V \m ⊆ Uk which finishes the proof. �

Claim 2.17. Let U ,V be close ultrafilters. Then U is close to a P -ultrafilter if
and only if V is close to a P -ultrafilter.

Proof: Assume that U ,V are close and U is close to a P -ultrafilter. Let ε > 0
and {Vk}k<ω ⊆ V are given. Choose δ0, δ1, δ2 > 0 such that 1 − ε < (1 − δ0) ×
(1− δ1)(1− δ2). Then by simple computation we have for every A ⊆ ω

((Aδ0 )δ1)δ2 =
⋃

n∈A

[

(1 − δ0)(1− δ1)(1 − δ2)n,
n

(1− δ0)(1 − δ1)(1 − δ2)

]

⊆
⋃

n∈A

[

(1 − ε)n,
n

(1− ε)

]

= Aε.

Because U ,V are close, we have {(Vk)δ0}k<ω ⊆ U . By the assumption on U
there is a pseudointersection V of {((Vk)δ0)δ1}k<ω. One can easily check that Vδ2

is a pseudointersection of {(((Vk)δ0)δ1)δ2}k<ω. Since U ,V are close, Vδ2 ∈ V and
{(((Vk)δ0)δ1)δ2}k<ω ⊆ V . So Vδ2 is also a pseudointersection of {(Vk)ε}k<ω ⊆ V .

�
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Theorem 2.18. An ultrafilter U is close to a P -ultrafilter if and only if dU has
AP (*).

Proof: Combine Proposition 2.14, Claim 2.16 and Claim 2.17. �

Corollary 2.19. There is a P -ultrafilter if and only if there exists a ultrafilter
density that satisfies AP (*).

Question 2.20. Does the existence of a density that satisfies AP (*) imply the
existence of a P -ultrafilter?

3. Ultraproducts

In the last section we show how certain special properties of ultrafilters may
affect properties of some ideals in the measure ultraproduct. Recall that for
a sequence (Bi,mi)i<ω of σ-complete boolean algebras with measures (not neces-
sarily strictly positive or σ-additive) and for U an ultrafilter on ω we define the
ultraproduct measure mU on

∏

i<ω Bi as

mU(f) = U- limmi(f(i))

for f ∈
∏

i<ω Bi.
There are several natural ideals that one may assign to the product. In order

to keep the presentation as straightforward as possible we make the assumption
that (Bi,mi) = (B,m) for every i < ω where B is a σ-complete boolean algebra
with a measure m. Given an ultrafilter U on ω we define

◦ NU = {f ∈ Bω : mU (f) = 0};
◦ Z = {f ∈ Bω : limi<ω m(f(i)) = 0};
◦ MU = {f ∈ Bω : {i : m(f(i)) = 0} ∈ U};
◦ IU =

{

f ∈ Bω :
∧

U∈U

∨

i∈U f(i)
}

.

We summarize basic relations between these ideals.

Proposition 3.1. Let (B,m) be a σ-complete boolean algebra with a σ-additive
and strictly positive measure. Then Z ⊆ NU , MU ⊆ NU and MU ⊆ IU ⊆ NU .

Proof: The only case that does not follow immediately from the definitions is
IU ⊆ NU . Let f 6∈ NU . Then

inf
U∈U

m

(

∨

i∈U

f(i)

)

= c > 0.

Take a decreasing sequence {Uk}k<ω ⊆ U such that

lim
k→∞

m

(

∨

i∈Uk

f(i)

)

= c.

Since the sequence
{
∨

i∈Uk
f(i)

}

k<ω
is also decreasing there must be some b ∈ B

such that b ≤
∨

i∈Uk
f(i) for every k < ω and m(b) = c. We show that d ≤
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∨

i∈U f(i) for every U ∈ U , this finishes the proof. Assume that there is some
U ∈ U such that b 6≤

∨

i∈U f(i) = a. Then m(b \ a) = ε > 0 and therefore

lim
k→∞

m

(

∨

i∈Uk∩U

f(i)

)

= c− ε

which is a contradiction. �

Let U be a non-principal ultrafilter on ω. We say that U is

◦ semi-selective if for every {an}n<ω of positive real numbers such that
U- limn→∞ an = 0 there is U ∈ U such that

∑

n∈U an < ∞.

Theorem 3.2. Let (B,m) be a σ-complete infinite boolean algebra with a σ-
additive strictly positive measure and U an ultrafilter on ω. Then the following
hold

◦ U is a P -ultrafilter if and only if NU = Z +MU = {f ∨ g : f ∈ Z, g ∈
MU};

◦ U is semi-selective if and only if IU = NU .

Proof: To prove the first claim notice that it is enough for each f ∈ NU find
a set U ∈ U such that limi∈U m(f(i)) = 0. Under the assumption that B is
infinite, this is possible if and only if U is P -ultrafilter.

Let U be a semi-selective ultrafilter and f ∈ NU . Then there is U ∈ U such
that

∑

i∈U m(f(i)) < ∞ and therefore

∧

n<ω

∨

i∈(U\n)

f(i) = 0.

Let U be not semi-selective. There must be a sequence {ai}i<ω of positive real
numbers such that U- lim ai = 0 and for every U ∈ U is

∑

i∈U ai = ∞. Take
a sequence {bi}i<ω ⊆ B such that m(bi) = ai and {bi}i<ω is independent (see for
example [1]). We have for every U ∈ U that

m

(

1−
∨

i∈U

f(i)

)

= m

(

∧

i∈U

(1− f(i))

)

=
∏

i∈U

m(1− f(i)) = 0.

Therefore
∨

i∈U f(i) = 1 and f ∈ NU \ IU . �
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