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TOPOLOGICAL DEGREE THEORY

IN FUZZY METRIC SPACES

M.H.M. Rashid

Abstract. The aim of this paper is to modify the theory to fuzzy metric
spaces, a natural extension of probabilistic ones. More precisely, the modifica-
tion concerns fuzzily normed linear spaces, and, after defining a fuzzy concept
of completeness, fuzzy Banach spaces. After discussing some properties of
mappings with compact images, we define the (Leray-Schauder) degree by a
sort of colimit extension of (already assumed) finite dimensional ones. Then,
several properties of thus defined concept are proved. As an application, a
fixed point theorem in the given context is presented.

1. Introduction and preliminaries

Topological degree theory is a generalization of the winding number of a curve
in the complex plane. It can be used to estimate the number of solutions of an
equation, and is closely connected to fixed-point theory. When one solution of an
equation is easily found, degree theory can often be used to prove existence of a
second, nontrivial, solution. There are different types of degree for different types
of maps: e.g. for maps between Banach spaces there is the Brouwer degree in Rn,
the Leray-Schauder degree for compact mappings in normed spaces, the coincidence
degree and various other types. There is also a degree for continuous maps between
manifolds. Topological degree theory has applications in complementarity problems,
differential equations, differential inclusions and dynamical systems [10].

Many problems in science lead to the equation x = y in infinite dimensional
spaces rather than to the finite dimensional case. In particular, ordinary and
partial differential equations, and integral equations can be formulated as abstract
equations on infinite dimensional spaces of functions. In 1934, Leray and Schauder
[18] generalized Brouwer degree theory to a finite Banach space and established the
so-called the Leray Schauder degree. It turns out that the Leray Schauder degree
is a very powerful tool in proving various existence results for nonlinear partial
differential equations (see [15], [18], [19], [21], etc.).

The Leray Schauder degree theory is very useful in solving an operator equation
of the type (I − S)x = y, where S is compact. In many applications S is not
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compact, so one may ask it is possible to give an analogue of the Leray Schauder
theory in the noncompact case. In 1936, Leray [17] constructed an example to show
that it is impossible to define a degree theory for mappings with only a continuity
condition.

To solve an infinite dimensional equation Sx = y, a very natural method is to
approximate the original equation by finite dimensional equations, as we have seen
in the Leray Schauder theory. The well-known Galerkin method has proved to be a
very efficient tool in finite dimensional approximation. In the 1960s, Browder and
Petryshyn systematically studied the finite dimensional method for a large class
of mappings, which they called A-proper mappings, and they developed a similar
theory to the Brouwer degree.

The question of stability in optimization deals with what happens to an opti-
mization problem when the elements of the problem are in some way deformed.
As being expressed by Felix E. Browder, the concept of degree of a mapping, in
all its different forms, is one of the most effective tools for studying the properties
of the existence and multiplicity of solutions of nonlinear equations. Historically,
the well known topological degree is a useful tool in applied mathematics, for
example to prove that some nonlinear equations have solutions and to investigate
the stability by using the continuation method. The notion of the degree was first
introduced explicitly by Brouwer in 1912 in the case of finite dimensional spaces.
Leray and Schauder extended this theme in 1934 to the context of Banach spaces
and mappings of the form f = I − g, with I the identity and g a compact mapping
(we refer to [6], [12] and [18] for a wide bibliography on the subject.) Afterwards
many authors defined and developed the topological degree theory for various
classes of non-compact nonlinear mappings between Banach spaces. For references
on these notions see [1, 2, 3], [5, 6, 7, 8, 9, 11], [13, 14, 16] and [12].

In recent years, many great developments has been made in the theory and
applications of fuzzy metric spaces. In 1960, B. Schweizer and A. Sklar [23] gave a
description of the topological structure for a special class of probabilistic metric
spaces. In 1983, B. Schweizer and A. Sklar [24] summarized and presented the
generally developing situation in this field up-to-date. In H. Sherwood [25] has
pointed out the ordinary probability space is a special case of probabilistic metric
space and as known that the probabilistic metric space is a special case of the fuzzy
metric space [22]. This implies that the study of theory and applications relevant
to fuzzy metric space has important practical significant.

As is known to the researchers in this subject, the Leray-Schauder topological
degree theory is a forceful tool in the research of operator theory in normed spaces.
This motivates us to establish and study the Leray-Schauder topological degree in
fuzzy metric spaces.

Definition 1.1 ([24]). A binary operation T : [0, 1] × [0, 1] → [0, 1] is said to be
a continuous t-norm if ([0, 1], T ) is a topological monoid with unit 1 such that
T (a, b) ≤ T (c, d) whenever a ≤ c, b ≤ d for all a, b, c, d ∈ [0, 1].

Some typical examples of t-norm are the following:
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T (a, b) = ab , (product)
T (a, b) = min{a, b} , (minimum)
T (a, b) = max{a+ b− 1, 0} , (Lukasiewicz)

T (a, b) = ab

a+ b− ab
, (Hamacher)

Definition 1.2. [4] Let X be a linear space over K (field of real or complex
numbers). A fuzzy subset N of X ×R (R, the set of real numbers) is called a fuzzy
norm on X if and only if for all x, u ∈ X and c ∈ K.
(FN1) For all t ∈ R with t ≤ 0, N(x, t) = 0,
(FN2) for all t ∈ R with t > 0, N(x, t) = 1, if and only if x = 0,

(FN3) for all t ∈ R with t > 0, N(cx, t) = N
(
x, t
|c|

)
, if c 6= 0,

(FN4) for all s, t ∈ R, x, u ∈ X, N(x+ u, s+ t) ≥ T{N(x, s), N(u, t)},
(FN5) N(x, ·) is a non-decreasing function of R and lim

t→∞
N(x, t) = 1.

The pair (X,N) will be referred to as a fuzzy normed linear space (breifly FNLS).

Theorem 1.3 ([20]). Let (X,N, T ) be a FNLS. For x ∈ X, r ∈ (0, 1), t > 0, we
define the open ball

Bx(r, t) := {y ∈ X : N(x− y, t) > r} .
Then

τA := {A ⊂ X : x ∈ A⇐⇒ ∃t > 0, r ∈ (0, 1) : Bx(r, t) ⊂ A}
is a topology on X. Moreover, if the t-norm T satisfies sup

t∈(0,1)
T (t, t) = 1, then

(X, τN ) is Hausdorff.

Theorem 1.4 ([20]). Let (X,N, T ) be a FNLS. Then (X, τN ) is a metrizable
topological vector space.

Definition 1.5 ([20]). Let (X,N, T ) be a FNLS and {xn} be the sequence in X.
(1) The sequence {xn} is said to be convergent if there exists x ∈ X such that

lim
t→∞

N(xn − x, t) = 1, for all t > 0.

In this case x is called the limit of the sequence {xn} and we denote
lim
n→∞

xn = x or xn → x.

(2) The sequence {xn} is called Cauchy sequence if
lim
n→∞

N(xn+p − xn, t) = 1

for all t > 0 and all p ∈ N.
(3) (X,N, T ) is said to be complete if every Cauchy sequence in X is convergent

to a point in X. A complete FNLS will be called a fuzzy Banach space.
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Definition 1.6 ([24]). Let (X,N, T ) be a fuzzy normed linear space.
(a) A sequence {xn} in X is τ -convergent to x ∈ X if for any ε > 0, λ > 0,

there exists a positive integer k = k(ε, λ) such that
N(xn − x, ε) > 1− λ

whenever n ≥ k. In this case, we write xn
τ−→ x.

(b) A sequence {xn} in X is a τ -Cauchy sequence if for any ε > 0, λ > 0, there
exist a positive integer k = k(ε, λ) such that

N(xn − xm, ε) > 1− λ
whenever n,m ≥ k.

(c) (X,N, T ) is said to be τ -complete if every τ -Cauchy sequence in X is
τ -convergent to some point in X.

2. Results

Definition 2.1. Let (X,N, T ) be a a fuzzy normed space and D be a subset of X.
A mapping A : D → X is said to be compact if A(D) is a compact subset of X.

Lemma 2.2. Let (X,N, T ) be a fuzzy normed space, T is a t-norm satisfying
T (t, t) ≥ t for all t ∈ [0, 1], Ω be a nonempty subset of X, S : Ω→ X be a compact
continuous mapping. Then for any neighborhood of θ, u(ε, λ), ε > 0, λ > 0, there
exists a finite dimension-valued compact mapping Sε,λ such that

Sx− Sε,λ ∈ u(ε, λ) , x ∈ Ω .

Proof. Since S : Ω → X is compact, S(Ω) is compact subset of X. For any
neighborhood of θ, u(ε, λ), ε > 0, λ > 0, there exist y1, y2, . . . , ym ∈ S(Ω) such that
S(Ω) ⊂ ∪mi=1(yi + u(ε, λ)). Letting

λi(x) = max{0, ε− {t,N(Sx− yi, t) > 1− λ}} , x ∈ Ω, i = 1, . . . ,m ,

we prove that for each x ∈ Ω, there exists some i0 such that λi0(x) > 0, 1 ≤ i0 ≤ m.
In fact, since Sx ∈ S(Ω) ⊂ ∪mi=1(yi + u(ε, λ)), there exists an i0, 1 ≤ i0 ≤ m, such
that Sx ∈ yi0 + u(ε, λ), i.e., N(Sx − yi0 , t) > 1 − λ. By the left continuity of N
there exist i0 < ε such that N(Sx − yi0 , t) > 1 − λ. Hence we have λi0(x) > 0.
Denote

φ(x) =
m∑
i=1

λi(x) .

Then for any x ∈ Ω, we have φ(x) 6= 0. Now we define a mapping Sε,λ : Ω→ X as
follows:

Sε,λ(x) =
m∑
i=1

λi(x)
φ(x) yi.

Now, we prove that Sε,λ satisfies the requirements of the lemma. For this purpose,
it suffices to prove that λi, i = 1, · · · ,m, is a continuous function, i.e., we show
that

pi(x) = inf{t : N(Sx− y, t) > 1− λ}
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is a continuous function. If xn
τ−→ x, it is easy to see that

pi(xn) ≤ pi(x0) + inf{t : N(Sxn − Sx0, t) > 1− λ},
pi(x0) ≤ pi(xn) + inf{t : N(Sx0 − Sxn, t) > 1− λ}.

Hence we have

|pi(xn)− pi(x0)| ≤ inf{t : N(Sx0 − Sxn, t) > 1− λ} .

If the right side of the preceding expression were not convergent to 0 as n→∞,
then there would exist an ε0 > 0 such that given positive integer N , there exists
an n0 > N such that

inf{t : N(Sxn0 − Sx0, t) > 1− λ} > ε0

and consequently, we have

(2.1) N(Sxn0 − Sx0, ε0) ≤ 1− λ .

Since S is continuous, Sxn
τ−→ Sx0, and so we have

lim
n→∞

N(Sxn0 − Sx0, ε0) = 1 ,

which contradicts (2.1). Thus, it follows that it gets pi(xn) → pi(x0) as n → ∞,
i = 1, . . . ,m. By (FN4), we have

N(Sx− Sε,λx, ε) ≥ min
1≤i≤m,λi(x)6=0

{N(Sx− yi, ε)} > 1− λ .

This implies that Sx− Sε,λx ∈ u(ε, λ) for all x ∈ Ω. Moreover, obviously, Sε,λ is
compact. This achieves the proof. �

Lemma 2.3. Let (X,N, T ) satisfy all the conditions of Lemma 2.2. Let Ω be a
nonempty open subset of X and S : Ω → X be a compact continuous mapping.
Then R = I − S is a closed mapping.

Proof. The conclusion can be proved immediately. The details are omitted here.
�

Definition 2.4. Let (X,N, T ) be a fuzzy normed space, T is a t-norm satisfying
T (t, t) ≥ t for all t ∈ [0, 1]. Let Ω be a nonempty open subset of X and S : Ω→ X be
a compact continuous mapping. Let R = I −S and p ∈ X \R(∂Ω). By Lemma 2.3,
R is a closed mapping, R(∂Ω) is a closed subset of X, and, consequently, there
exists a neighborhood of θ, u(ε, λ), such that

(p+ u(ε, λ)) ∩R(∂Ω) = ∅ .

By Lemma 2.2, there exists a finite dimension subspace X(n) of X with p ∈ X(n)

and a continuous compact mapping Sn : Ω→ X(n) such that N(Sx−Snx, ε) > 1−λ
for all x ∈ Ω. Letting Ωn = Ω ∩ X(n) and Rn = I − Sn, we are going to prove
p /∈ Rn(∂Ω).

In fact, if there exists some x0 ∈ ∂Ω such that p = Rnx0, then we have

N(Rx0 − p, ε) = N(Sx0 −Rnx0, ε) = N(Sx0 − Snx0, ε) > 1− λ .
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This contradicts (p+ u(ε, λ)) ∩ R(∂Ω) = ∅. Beside, since (I − (I − Sn))(Ωn) is a
compact set, the topological degree degn(Rn,Ωn, p) in finite dimensional space
X(n) is significant. We define the Leray-Schauder topological degree of R as follows:
(2.2) Deg (R,Ω, p) = degn(Rn,Ωn, p) .
In order to explain the topological degree defined by (2.2) is significant, it suffices
to show that it is independent of the choice of the neighborhood of θ, u(ε, λ), the
space X(n) and the mapping Sn.

First, we prove that, when u(ε, λ) is given, Deg (R,Ω, p) is independent of the
choice of X(n) and Sn. In fact, if X(m) and Rm also satisfy the requirements in
Definition 2.4, now we prove the following expression holds:
(2.3) degn(Rn,Ωn, p) = degm(Rm,Ωm, p).
Letting X(l) be the linear sum of X(n) and X(m), Ωl = X(l) ∩ Ω and noting that
Sn can be seen as a mapping from Ω→ X(l), we know that Rn is a mapping from
Ωl into X(l). By the reduced theorem of topological degree, we have

degl(Rn,Ωl, p) = degn(Rn,Ωn, p) .
Similarly, we can prove that

degl(Rn,Ωl, p) = degm(Rm,Ωm, p) .

Next, we prove that

degl(Rn,Ωl, p) = degl(Rm,Ωl, p) .

Write

ht(x) = tRn(x) + (1− t)Sm(x) .

If there exists a t0 ∈ [0, 1], x0 ∈ ∂Ω such that p = ht0(x0), then we have
N(Rx0 − p, ε) = N(Rx0 − t0Rn(x0)− (1− t0)Rm(x0), ε)

= N(t0Snx0 + (1− t0)Smx0 − Sx0, ε)
≥ T (N(t0(Snx0 − Sx0), t0ε), N((1− t0)(Smx0 − Sx0), (1− t0)ε))
> 1− λ ,

which is a contradiction. This implies that p /∈ ht(∂Ω) for all t ∈ [0, 1]. By the
homotopy inveriance of topological degree in finite dimensional spaces, we have

degl(Rn,Ωl, p) = degl(Rm,Ωl, p).
This shows that (2.3) is true.

Next, we prove that Deg (R,Ω, p) is independent of the choice of u(ε, λ). Suppose
that there exists neighborhood of θ, u1(ε1, λ1), satisfying all the conditions of
Definition 2.4. Taking

0 < ε0 ≤ min{ε, ε1}, 0 < λ0 ≤ min{λ, λ1} ,
it follows that u(ε0, λ0) also satisfies all the conditions of Definition 2.4 for u(ε, λ),
u(ε1, λ1) and u(ε0, λ0), respectively, by the choice of ε0, λ0, it is obvious that Rl,
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Ωl satisfy all the conditions of Definition 2.4 for both u(ε, λ) and u1(ε1, λ1), too. It
follows from (2.3) that

degn(Rn,Ωn, p) = degl(Rl,Ωl, p) ,
degm(Rm,Ωm, p) = degl(Rl,Ωl, p) .

Hence we have
degm(Rm,Ωm, p) = degn(Rn,Ωn, p) .

Thus, summing up the above explanation, we know that the topological degree
defined by (2.2) is significant.

In the sequel of this section, we study the properties of topological degree defined
by (2.2).

Theorem 2.5. The topological degree defined by (2.2) has the following properties:
(a) Deg (I,Ω, p) = 1 for all p ∈ Ω,
(b) If Deg (R,Ω, p) 6= 0, then the equation R(x) = p has a solution in Ω,
(c) If H(t, x) is a continuous compact mapping defined on [0, 1]× Ω and p /∈

(I−H(t, ·))(∂Ω) for all t ∈ [0, 1], then Deg (I−H(t, ·),Ω, p) is independent
of t ∈ [0, 1],

(d) If Ω1, Ω2 are two disjoint open subsets of Ω and p /∈ R(Ω \ (Ω1 ∪Ω2)), then

Deg (R,Ω, p) = Deg (R,Ω1, p) + Deg (R,Ω2, p),

(e) If Ω0 is an open subset of Ω and p /∈ R(Ω \ Ω0), then

Deg (R,Ω, p) = Deg (R,Ω0, p) ,

(f) If p /∈ R(∂Ω), then

Deg (R,Ω, p) = Deg (R− p,Ω, θ) .

Proof. (a) and (f) can be obtained from Definition 2.4 immediately.
(b) Suppose that the equation R(x) = p has no solution in Ω. Then p /∈ R(Ω). In
view of Lemma 2.3, R(Ω) is a closed subset and hence there exists a neighborhood of
θ, u(ε, λ), such that (p+u(ε, λ))∩R(Ω) = ∅. Take a finite dimension subspace X(n)

of X and a finite dimension-valued continuous compact mapping Sn : Ω → X(n)

such that
Sx− Snx ∈ u(ε, λ) , x ∈ Ω .

Letting Rn = I − Sn and Ωn = X(n) ∩ Ω, by Definition 2.4, we have

Deg (R,Ω, p) = degn(Rn,Ωn, p) .

If there exist an x0 ∈ Ωn ⊂ Ω such that Rnx0 = p, then we have

N(Rx0 − p, ε) = N(Rx0 −Rnx0, ε) = N(Sx0 − Snx0, ε) > 1− λ .

This contradicts (p+u(ε, λ))∩R(Ω) = ∅. Thus we have p ∈ Rn(Ωn), hence we have

Deg (S,Ω, p) = deg(Rn,Ωn, p) = 0 ,
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which is a contradiction. This achieves the proof of (b).
(c) First we prove that there exists a neighborhood of θ, u(ε, λ), such that the
following expression uniformly holds in t ∈ [0, 1]:

(p+ u(ε, λ)) ∩ (I −H(t, ·))(∂Ω) = ∅ .
Otherwise, there exist εn > 0, λn > 0, n = 1, 2, . . . , with λn → 0, εn → 0 as n→∞
and xn ∈ ∂Ω, tn ∈ [0, 1], n = 1, 2, . . . , such that

N(p− xn +H(xn, xn), εn) > 1− λn .
Since both {tn} and {H(tn, xn)} have convergent subsequences, without loss of
generality, we still denote these subsequences by {tn} and {H(tn, xn)} and tn → t0,
H(tn, xn)→ q as n→∞. By (FN5), we have

N(p− xn + q, ε) ≥ T
(
N
(
p− xn +H(tn, xn), ε2

)
, N(q −H(tn, xn), ε2)

)
,

it follows that xn → p+ q ∈ ∂Ω as n→∞. Thus we have
p = (I −H(t0, ·))(p+ q) ,

which is a contradiction. Therefore the assertion is true.
Besides, by virtue of Lemma 2.2, there exist a finite dimension subspace X(n) ⊂

X and a finite dimension-valued compact continuous mapping Qn : [0, 1]×Ω→ X(n)

such that
H(t, x)−Qn(t, x) ∈ u(ε, λ) , (t, x) ∈ [0, 1]× Ω .

Letting qt(x) = x−Qn(t, x) and Ωn = X(n) ∩ Ω, then we have
Deg (I −H(t, ·),Ω, p) = degn(qt,Ωn, p), t ∈ [0, 1] .

If there exist x0 ∈ ∂Ωn, t0 ∈ [0, 1] such that qt0(x0) = p, then we have
N(x0 −H(t0, x0)− p, ε) = N(x0 −H(t0, x0)− x0 +Qn(t0, x0), ε) > 1− λ ,

which is a contradiction. Therefore, we know that p /∈ qt(∂Ω) for all t ∈ [0, 1] and
hence we have

Deg (I −H(t, ·),Ω, p) = degn(qt,Ωn, p) = a constant .
(d) Since Ω \ (Ω1 ∪ Ω2) is a closed subset, R(Ω \ (Ω1 ∪ Ω2)) is also a closed subset.
Hence there exists a neighborhood of θ, u(ε, λ), such that

(p+ u(ε, λ)) ∩R(Ω \ (Ω1 ∪ Ω2)) = ∅ .
Consequently, we can a finite dimension subspace X(n) of X and a finite dimension-
-valued continuous compact Rn : Ω→ X(n) such that for any x ∈ Ω, Sx− Snx ∈
u(ε, λ). Letting

Rn = I − Sn , Ωn = X(n) ∩ Ω1 , Ω(1)
n = X(n) ∩ Ω1 , Ω(2)

n = X(n) ∩ Ω2 ,

it follows from Definition 2.4 that
Deg (R,Ω, p) = degn(Rn,Ωn, p) ,

Deg (R,Ω1, p) = degn(Rn,Ω(1)
n , p) ,

Deg (R,Ω2, p) = degn(Rn,Ω(2)
n , p) .
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It is obvious that Ω(1)
n ∩ Ω(2)

n = ∅. If p ∈ Rn(Ωn \ (Ω(1)
n ∪ Ω(2)

n )), then there exists
an x0 such that Rn(x0) = p. However, since we have

N(x0 − Sx0 − p, ε) = N(x0 − Sx0 − x0 + Snx0, ε) > 1− λ ,
this contradicts

(p+ u(ε, λ)) ∩R(Ω \ (Ω1 ∪ Ω2)) = ∅ .
Hence we have p /∈ Rn(Ωn \ (Ω(1)

n ∪ Ω(2)
n )) and so

degn(Rn,Ωn, p) = degn(Rn,Ω(1)
n , p) + degn(Rn,Ω(2)

n , p) ,
that is to say,

Deg (R,Ω, p) = Deg (R,Ω1, p) + Deg (R,Ω2, p).
The conclusion (f) Can be obtained from (d) immediately. This achieves the
proof. �

Theorem 2.6. The topological degree defined by (2.2) has the following properties:
(i) If there exist the degrees of R1 and R2 such that p ∈ X \ R1(∂Ω) and

R1(x) = R2(x) for all x ∈ ∂Ω, then
Deg (R1,Ω, p) = Deg (R2,Ω, p),

(ii) If p varies on every connected component of X \ R(∂Ω), then the degree
Deg (R,Ω, p) is a constant.

Proof. (i) can be obtained immediately.
(ii) Let V be a connected component of X \R(∂Ω) and p ∈ V . Then there exists a
neighborhood of θ, u(ε0, λ0), such that (p+ u(ε0, λ0)) ∩R(∂Ω) = ∅. Take positive
numbers ε1, λ1 with ε1 < ε0, λ1 < λ0, q ∈ V (p+ u(ε1, λ1)), and write

qt(x) = R(x)− t(q − p), 0 ≤ t ≤ 1 , x ∈ Ω .

If there exist t0 ∈ [0, 1], x0 ∈ ∂Ω such that R(x0)− t0(q − p) = p, then we have
N(R(x0)− p, ε0) = N(t0(q − p), ε0) > 1− λ0 ,

which is a contradiction. Thus it follows that p /∈ qt(∂Ω) for all t ∈ [0, 1]. Therefore
we have

Deg (R,Ω, p) = Deg (R− (q − p),Ω, p)
= Deg (S − q,Ω, θ) = Deg (R,Ω, q) .

This implies that the mapping Θ: p→ Deg (R,Ω, p) is a continuous mapping on
V . By a well-known result of general topology, we know that Θ(V ) is a connected
component. Since Θ is an integer-valued function, for any p ∈ V , Deg (R,Ω, p) has
the same value. This achieves the proof. �

Theorem 2.7. Let S and S1 be two compact continuous mappings from Ω into X.
If p /∈ R1(∂Ω), p /∈ R(∂Ω), R1 = I − S1, R = I − S and the following condition is
satisfied:
(2.4) N(S1x− Sx, t) ≥ N(x− Sx− p, t) , t > 0, x ∈ ∂Ω ,
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then
Deg (R− 1,Ω, p) = Deg (R,Ω, p) .

Proof. Letting
qt(x) = x− Sx− t(S1x− Sx) , t ∈ [0, 1] , x ∈ Ω ,

we are going to prove p /∈ qt(∂Ω) for all t ∈ [0, 1]. Suppose that this is not the
case. Then there exist some t0 ∈ [0, 1] and an x0 ∈ ∂Ω such that qt0(x0) = p.
It follows from the assumptions of theorem that t0 6= 0 and t0 6= 1. In view of
x0 − Sx0 − p = t0(S1x0 − Sx0), we have

(2.5) N(x0 − Sx0 − p, t) = N
(
S − 1x0 − Sx0,

t

t0

)
, t > 0 .

It follows from (2.5) and the conditions of this theorem that

N(S1x0−Sx0, t) = N
(
S1x0−Sx0,

t

t0

)
= · · · = N

(
S1x0−Sx0,

t

tn0

)
, n = 1, 2, . . . .

This implies that N(S1x0 − Sx0, t) = 1 for all t > 0. By (2.5), we have
N(x0 − Sx0 − p, t) = 1 , t > 0 ,

which shows that p = x0 − Sx0, i.e., p ∈ R(∂Ω). This contradicts p /∈ R(∂Ω). Thus
p /∈ qt(∂Ω) for all t ∈ [0, 1] and so we have

Deg (R1,Ω, p) = Deg (R,Ω, p) .
This achieves the proof. �

Corollary 2.8. If θ ∈ Ω, S1 : Ω→ X is a continuous compact mapping satisfying
the conditions:

x 6= S1x , N(S1x, t) ≥ N(x, t) , t > 0, x ∈ ∂Ω .

Then
Deg (I − S1,Ω, θ) = 1 .

Theorem 2.9. Let Ω be an open set with θ ∈ Ω and let Ω be symmetric with respect
to θ. Suppose that S : Ω→ X is a continuous compact mapping and R = I − S. If

S(−x) = −S(x) , Sx 6= x , x ∈ ∂Ω ,

then Deg (R,Ω, θ) is an odd number.
Proof. Imitating the proof of Lemma 2.2, for any neighborhood of θ, u(ε, λ), ε > 0,
λ > 0, we can make a finite dimension-valued continuous compact mapping Sn
satisfying the following conditions:

(a) Sn(−x) = −Sn(x) for all x ∈ ∂(Ω ∩X(n)),
(b) Sx− Snx ∈ u(ε, λ) for all x ∈ Ω.

Since the value of degree deg(Rn,Ω, θ) is odd, the value of degree Deg (R,Ω, θ) is
also odd, where Ωn = X(n) ∩ Ω. �

Now, we shall utilize the theory of topological degree to study some fixed point
theorems for mappings in fuzzy normed spaces. Let us assume that the t-norm T
satisfies the condition T (t, t) ≥ t for all t ∈ [0, 1].
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Theorem 2.10. Let Ω be an open convex subset of X and S : Ω→ X be a compact
continuous mapping such that S(∂Ω) ⊂ Ω. Then S has a fixed point in Ω.

Proof. Without loss of generality, we can assume that Sx 6= x for all x ∈ ∂Ω
(otherwise the conclusion of Theorem has been proved). Taking x0 ∈ Ω and letting
H(t, x) = tSx+ (1− t)x0, we know that H : [0, 1]×Ω→ X is a continuous compact
mapping. Letting qt(x) = x−H(t, x), we prove that

θ /∈ qt(∂Ω) , t ∈ [0, 1] .
Suppose this is not the case. Then there exist an t1 ∈ [0, 1] and an x1 ∈ ∂Ω such
that qt1(x1) = θ, i.e.,

x1 = t1Sx1 + (1− t1)x0 .

It is obvious that t1 6= 0 and t1 6= 1. Since Ω is an open set, there exist ε0 > 0,
λ0 > 0 such that x0 + u(ε, λ) ⊂ Ω. Because Sx1 ∈ Ω, we have x0 ∈ Ω and

(2.6) Sx1 − z0 ∈
1− t1
t1

u(ε0, λ0) .

Next we prove that
(2.7) t1z0 + (1− t1)x0 + (1− t1)u(ε0, λ0) ⊂ Ω .

In fact, if x ∈ t1z0 +(1−t1)x0 +(1−t1)u(ε0, λ0), then there exists some z ∈ u(ε0, λ0)
such that

x = t1z0 + (1− t1)x0 + (1− t1)z = t1z0 + (1− t1)(x0 + z) .
Since x0 + u(ε0, λ0) ⊂ Ω, x0 + z ∈ Ω. Next since z0 ∈ Ω and Ω is a convex set, we
have x ∈ Ω. This shows that (2.7) is true. Hence we have

x1 = t1Sx1 + (1− t1)x0 = t1z0 + (1− t1)x0 + t1(Sx1 − z0) .
It follows from (2.6) that t1(Sx1 − z0) ∈ (1− t1)u(ε0, λ0). By (2.7), it follows that
x1 ∈ Ω. This contradicts x1 ∈ ∂Ω and hence θ /∈ qt(∂Ω) for all t ∈ [0, 1]. Therefore
we have

Deg (I − S,Ω, θ) = Deg (I − x0,Ω, θ) = 1 ,
which implies that S has a fixed point in Ω. This achieves the proof. �

Theorem 2.11. Let Ω be an open subset of X with θ ∈ Ω. If Ω is symmetric with
respect to θ and if S : ∂Ω → X is a compact continuous mapping satisfying the
following condition:

S(−x) = −Sx, x ∈ ∂Ω .

Then S has a fixed point in Ω.

Proof. The assertion follows from Theorem 2.9 immediately. �

Moreover, from Corollary 2.8, we can obtain the following:

Theorem 2.12. Let Ω be an open subset of X with θ ∈ Ω. If S : ∂Ω → X is a
compact continuous mapping satisfying the following condition:

N(Sx, t) ≥ N(x, t) , x ∈ ∂Ω, t > 0 .
Then S has a fixed point in Ω.
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Theorem 2.13. Let Ω1, Ω2 be two open subsets of an infinite dimension fuzzy
normed space (X,N, T ), θ ∈ Ω1, Ω1 ⊂ Ω2, where the t-norm T satisfies the
condition: T (t, t) ≥ t for all t ∈ [0, 1]. Suppose that S : Ω2 → X is a continuous
compact mapping. If one the following conditions holds:

(i) for any x ∈ ∂Ω1, N(Sx, t) ≥ N(x, t) for all t ≥ 0, and for any x ∈ ∂Ω2,
N(Sx, t) ≤ N(x, t) for all t ≥ 0,

(ii) for any x ∈ ∂Ω1, N(Sx, t) ≤ N(x, t) for all t ≥ 0, and for any x ∈ ∂Ω2,
N(Sx, t) ≥ N(x, t) for all t ≥ 0.

Then S has at least a fixed point in Ω2 \ Ω1.

In order to give the proof of Theorem 2.13, we need the following lemma:

Lemma 2.14. Let Ω be an open subset of an infinite dimension fuzzy normed
space (X,N, T ) with T (t, t) ≥ t for all t ∈ [0, 1]. Suppose that S : Ω → X is a
continuous compact mapping satisfying the following conditions:

(i) θ /∈ S(∂Ω),
(ii) Sx 6= µx for all µ ∈ [0, 1] and x ∈ ∂Ω.

Then Deg (I − S,Ω, θ) = 0.

Proof. First we prove that θ /∈ ∪µ∈[0,1](µI − S)(∂Ω). Suppose this is not the case.
Then there exist xn ∈ ∂Ω, µn ∈ [0, 1] such that µnxn − Sxn → θ as n→∞. Since
S is a compact continuous mapping, there exist subsequences {µnk} ⊂ {µn} and
{xnk} ⊂ {xn} such that µnk → µ0 ∈ [0, 1], Sxnk → y0 ∈ X.

(a) If µ0 = 0, then Sxnk → θ, which contradicts condition (i).
(b) If µ0 6= 0, then xnk → y0/µ0 ∈ ∂Ω and hence we have

S
( y0

µ0

)
= y0 = µ0 ·

y0

µ0
.

This contradicts the condition (ii) and so the the assertion holds.
Therefore there exists some neighborhood of θ, u(ε, λ), ε > 0, λ > 0, such that
(2.8) u(ε, λ) ∩ ∪µ∈[0,1](µI − S)(∂Ω) = ∅.
By Lemma 2.2 and Definition 2.4, there exists a finite dimension-valued compact
continuous mapping Sn : Ω→ X(n) such that

Sx− Snx ∈ u(ε, λ) , x ∈ ∂Ω ,

Deg (I − S,Ω, θ) = deg(I − Sn,Ωn, θ) ,

where Ωn = Ω∩X(n). By assumption, (X,N, T ) is infinitely dimensional and hence
there exists an e1 6= θ and e1 /∈ X(n). Letting X(n+1) = span{e1, X

(n)}, we can
assume that Sn is a mapping from Ω into X(n+1). Put Ωn+1 = Ω ∩ X(n+1). By
Definition 2.4, it follows that
(2.9) Deg (I − S,Ω, θ) = deg(I − Sn,Ωn+1, θ) .
Next, we prove that for any x ∈ ∂Ωn+1 ⊂ ∂Ω, θ 6= µx− Snx for all µ ∈ [0, 1]. In
fact, if there exist some µ0 ∈ [0, 1] and an x0 ∈ ∂Ωn+1 such that µ0x0 − Snx0 = θ,
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then we have µ0x0 = Snx0. Since Sx − Snx ∈ u(ε, λ) for all x ∈ Ω, we have
Sx0 − µ0x0 ∈ u(ε, λ). This contradicts (2.8). Thus the assertion is true. Therefore,
on Ωn+1, we have
(2.10) deg(I − Sn,Ωn+1, θ) = deg(−Sn,Ωn+1, θ) .
However, since Sn is a mapping from Ωn+1 into X(n), we have deg(−Sn,Ωn+1, θ)
= 0. It follows from (2.9) and (2.10) that

Deg (I − S,Ω, θ) = 0 .
This achieves the proof. �

Proof of Theorem 2.13. Suppose that the condition (i) is satisfied and S has
no fixed point in ∂Ω1 ∪ ∂Ω2 (otherwise, the conclusion of theorem has been shown).
It follows from Corollary 2.8 that

Deg (I − S,Ω1, θ) = 1 .
By the assumption, for any x ∈ ∂Ω2, N(Sx, t) ≤ N(x, t) for all t ≥ 0 and hence
we have

θ /∈ S(∂Ω2) and Sx 6= µx, µ ∈ (0, 1] .
From Lemma 2.14, it follows that Deg (I − S,Ω2, θ) = 0. Besides, since

Deg (I − S,Ω2 \ Ω1, θ) = Deg (I − S,Ω2, θ)−Deg (I − S,Ω1, θ)
= 0− 1 = −1 ,

S has a fixed point in Ω2 \ Ω1.
If the condition (ii) is satisfied, in the same way, we can prove the assertion

holds too. This achieves the proof. �
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