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THE GRADED DIFFERENTIAL GEOMETRY

OF MIXED SYMMETRY TENSORS

Andrew James Bruce and Eduardo Ibarguengoytia

Abstract. We show how the theory of Zn2 -manifolds - which are a non-trivial
generalisation of supermanifolds - may be useful in a geometrical approach to
mixed symmetry tensors such as the dual graviton. The geometric aspects of
such tensor fields on both flat and curved space-times are discussed.

1. Introduction

Recall that differential forms are covariant tensor fields that are completely
antisymmetric in their indices. Furthermore, it is well-known that supermanifolds
offer a convenient set-up in which to deal with differential forms. In particular,
differential forms can be understood as functions on the supermanifold ΠTM
known as the antitangent bundle. This supermanifold is constructed by taking
the tangent bundle of a manifold and then declaring the fibre coordinates to be
Grassmann odd. Moreover, the antitangent bundle canonically comes equipped with
an odd vector field which ‘squares to zero’, this vector field is identified with the de
Rham differential (see for example Vaintrob [21] for details). Symmetric forms are
covariant tensor fields that are completely symmetric in their indices and can be
understood as polynomial functions on the tangent bundle of the manifold under
study. There is no symmetric analogue of the de Rham differential on an arbitrary
smooth manifold unless one invokes an affine connection. Mixed symmetry tensor
fields are covariant tensors fields with more than one set of antisymmetrised indices.
Mixed symmetry tensor fields represent a natural generalisation of differential
forms in which the tensors are neither fully symmetric nor antisymmetric. From
the perspective of differential geometry, mixed symmetry tensors are not well
studied. From a representation theory point of view, they correspond to Young
diagrams with more than one column. In physics, such tensor fields appear in the
context of higher spin fields, dual gravitons, double dual gravitons etc. as found in
various formulations of supergravity and string theory. In particular, the particle
spectrum of string theory contains beyond the massless particles of the effective
supergravity theory, an infinite tower of massive particles of higher and higher
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spin. Thus, if one wants to consider the theory beyond the effective supergravity
theory, one is forced to contend with mixed symmetry tensors. Furthermore, Hull
[14, 15] suggested that dual gravitons and double dual gravitons play a fundamental
rôle in the electromagnetic duality of gravitational theories. Alongside this, mixed
symmetry tensors naturally appear in dual double theory [3] and it is known that
in string theory certain mixed symmetry tensors couple to exotic branes [5]. To
our knowledge, the first study of mixed symmetry tensor fields was Curtright [10]
who studied a generalised version of gauge theory. For a review of mixed symmetry
tensors, including some historical remarks, the reader may consult Campoleoni [4].
Recently, Chatzistavrakidis et al. [6] showed how to reformulate Galileon action
functionals in an index-free framework using a generalised notion of a supermanifold.
The reader should also note that these results are part of Khoo’s PhD dissertation
[16]. Their theory involves two sets of Grassmann variables that mutually commute.
However, assigning a degree of one to all the Grassmann variables does not lead to
a consistent notion of a “generalised supermanifold”. For one, the commutation
rules of the coordinates are not defined by their degree. Thus, it is impossible to
make global sense of the geometry: what is the commutation rule for two arbitrary
degree one functions? These difficulties are cured by using a bi-grading and the
theory of Zn2 -manifolds with n = 2. Moreover, the formalism of bi-forms (and
multi-forms) as developed by Dubois-Violette & Henneaux [12], de Medeiros &
Hull [11], and Bekaert & Boulanger [1], is naturally accommodated within this
framework.

The locally ringed space approach to Zn2 -manifolds is currently work in progress
initially started by Covolo et al. [8, 7, 9]. However, with the basic tenets in place,
the time is ripe to seek applications and links with known constructions. Very
loosely, Zn2 -manifolds are ‘manifolds’ in which we have Zn2 -graded, Zn2 -commutative
coordinates. The sign rules are controlled by the standard scalar product on
Zn2 . Hence, in general, we have sets of coordinates that anti-commute amongst
themselves while commuting across the sets. This is exactly what we require in
order to describe mixed symmetry tensors. The one complication is that, in general,
there are also formal coordinates that are not nilpotent. This means that we must
consider formal power series and not just polynomials in the formal coordinates.
However, with the applications to mixed symmetry tensors in mind, we will not
need to dwell on this subtlety. We will concentrate on mixed tensors with two
‘blocks’ of antisymmetric indices and so we will employ very particular Z2

2-manifolds,
for the most part with no non-nilpotent formal coordinates.

We liken the current situation to the early days of supersymmetry and in
particular the initial works on superspace methods. In particular, physicists worked
rather formally with commuting and anticommuting coordinates largely unaware of
that the mathematical theory of supermanifolds was concurrently being developed
in the Soviet Union by Berezin and collaborators. We speculate that Zn2 -manifolds
will shed light on various aspects of theoretical physics and here we suggest just
one potentially useful facet.
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Arrangement: In Section 2 we present the very basics of the theory of Zn2 -manifolds
needed for the rest of this paper. We then proceed in Section 3 to discuss how to
use Z2

2-manifolds to understand bi-forms over Minkowski space-time. It is shown
that the algebra of bi-forms over Minkowski space-time comes canonically equipped
with a pair of de Rham differentials. Generalising the constructions to the setting of
curved space-times is the subject of Section 4. In particular, the analogues of the de
Rham differentials require the use of the Levi-Civita connection due to the non-fully
antisymmetric nature of bi-forms. This means that in general, we have a pair of
‘non-homological vector fields’ and cannot construct a genuine bi-complex. However,
such vector fields still define infinitesimal diffeomorphisms that we interpret as
‘supersymmetries’. In Section 5 we show how to extend our formalism to include
bi-forms that take their values in a vector bundle. For instance, this leads to the
notion of twisted bi-forms where the vector bundle is the density bundle on the
curved space-time. We conclude in Section 6 with some remarks.

2. Basics of Zn2 -geometry

The first reference to Zn2 -manifolds (coloured manifolds) is Molotkov [18] who
developed a functor of points approach. The locally ringed space approach to
Zn2 -manifolds is presented in [8]. We will draw upon this heavily and not present
proofs of any formal statements. We work over the field R and in our notation
Zn2 := Z2 × Z2 × Z2 (n-times). A Zn2 -graded algebra is an R-algebra with a decom-
position into vector spaces A := ⊕γ∈Zn2Aγ , such that the multiplication respect the
Zn2 -grading, i.e., Aα ·Aβ ⊂ Aα+β . Furthermore, we will always assume the algebras
to be associative and unital. If for any pair of homogeneous elements a ∈ Aα and
b ∈ Aβ we have that

(2.1) a · b = (−1)〈α,β〉b · a ,

where 〈−,−〉 is the standard scalar product on Zn2 , then we have a Zn2 -commutative
algebra.

The basic objects we will employ are smooth Zn2 -manifolds. Essentially, such
objects are ‘manifolds’ equipped with both standard commuting coordinates and
formal coordinates of non-zero Zn2 -degree that Zn2 -commute according to the general
sign rule (2.1). Note that in general - and in stark contrast to the n = 1 case of
supermanifolds - we have formal coordinates that are not nilpotent.

In order to keep track of the various formal coordinates, we need to introduce a
convention on how we fix the order of elements in Zn2 , we do this lexicographically.
For example, with this choice of ordering

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} .

Note that other choices of ordering have appeared in the literature. A tuple
q = (q1, q2, . . . , qN ), where N = 2n − 1 provides all the information about the
formal coordinates. We can now recall the definition of a Zn2 -manifold.

Definition 2.1. A (smooth) Zn2 -manifold of dimension p|q is a locally Zn2 -ringed
space M := (M,OM ), which is locally isomorphic to the Zn2 -ringed space Rp|q :=
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(Rp, C∞Rp [[ξ]]). Local sections of M are formal power series in the Zn2 -graded variables
ξ with smooth coefficients,

OM (U) ' C∞(U)[[ξ]] :=
{ ∞∑
α̂∈NN

ξα̂fα̂ | fα̂ ∈ C∞(U)
}
,

for ‘small enough’ open domains U ⊂ M . Morphisms between Zn2 -manifolds are
morphisms of Zn2 -ringed spaces, that is, pairs Φ = (φ, φ∗) : (M,OM ) → (N,ON )
consisting of a continuous map φ : M → N and sheaf morphism φ∗ : ON → OM ,
i.e., a family of Zn2 -algebra morphisms φ∗V : ON (V )→ OM (φ−1(V )), where V ⊂ N
is open. We will refer to the global sections of the structure sheaf OM as functions
on M and denote them as C∞(M) := OM (M).

Example 2.2 (The local model). The locally Zn2 -ringed space Up|q :=
(
Up, C∞Up [[ξ]]

)
,

where Up ⊆ Rp is naturally a Zn2 -manifold – we refer to such Zn2 -manifolds as
Zn2 -superdomains of dimension p|q. We can employ (natural) coordinates (xa, ξα)
on any Zn2 -superdomain, where xa form a coordinate system on Up and the ξα are
formal coordinates.

Many of the standard results from the theory of supermanifolds pass over to
Zn2 -manifolds. For example, the topological space M comes with the structure of a
smooth manifold of dimension p, hence our suggestive notation. Moreover, there
exists a canonical projection ε : O(M)→ C∞(M). What makes Zn2 -manifolds a very
workable form of noncommutative geometry is the fact that we have well-defined
local models. Much like the theory of manifolds, one can construct global geometric
concepts via the glueing of local geometric concepts. That is, we can consider a
Zn2 -manifold as being cover by Zn2 -superdomains together with specified glueing
information given by coordinate transformations, composed by homomorphisms

Ψβα := Ψ−1
β Ψα : Ψ−1

α (Ψα(Uα) ∩Ψβ(Uβ))→ Ψ−1
β (Ψα(Uα) ∩Ψβ(Uβ)) ,

which are labelled by the different local models (Uα, C∞(Uα)[[ξ]]), {Ψα : Uα →
Ψα(Uα) ⊂M}, whenever Uα ∩ Uβ 6= ∅; and a graded unital R−algebra morphism
Ψ∗βα : C∞(Uβ)[[ξ′]] −→ C∞(Uα)[[ξ]].

We have the chart theorem ([8, Theorem 7.10]) that basically says that morphisms
between Zn2 -superdomains can be completely described by local coordinates and
that these local morphisms can then be extended uniquely to morphisms of locally
Zn2 -ringed spaces. This allows one to proceed to describe the theory much as
one would on a standard smooth manifold in terms of local coordinates. Indeed,
we will employ the standard abuses of notation when dealing with coordinate
transformations and morphisms. In particular, the explicit way of computing
change of coordinates concerning any geometrical object are well understood and
work identically as in classical differential geometry. In essence, one need only take
into account that Zn2 -degree needs to be preserved under any permissible changes
of coordinates. For example, vector fields are defined as Zn2 -graded derivations of
the global sections, X ∈ Der(C∞(M) ⊂ End(C∞(M)), that are compatible with
restrictions. That is, given some open subset U ⊂M , we can always ‘localise’ the
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vector field, i.e., X|U = XU ∈ Der(OM (U)). Furthermore, if this open is ‘small
enough’, we can employ local coordinates (xa, ξα) and write

XU = Xa(x, ξ) ∂

∂xa
+Xα(x, ξ) ∂

∂ξα
.

Under changes of local coordinates

xa
′

= xa
′
(x, ξ) , ξα

′
= ξα

′
(x, ξ) ,

remembering the abuses of notation and that Zn2 -degree is preserved, the induced
transformation law on the components of the vector field follow from the chain rule
and are given by

Xa′ = Xb ∂x
a′

∂xb
+Xβ ∂x

a′

∂ξβ
, Xα′ = Xb ∂ξ

α′

∂xb
+Xβ ∂ξ

α′

∂ξβ
.

See Covolo et al. [9, Lemma 2.2] for details. The reader can easily verify that the
Zn2 -graded commutator of two vector fields is again a vector field and that the
obvious Zn2 -graded version of the Jacobi identity holds.

As is customary in classical differential geometry, we will not write out the
restrictions of geometric objects explicitly and simply write objects in terms of
their components in some chosen local coordinate system. In other words, one
can work locally on Zn2 -manifolds in more-or-less the same way as one works on
classical manifolds and indeed, supermanifolds. The glaring exception here is the
theory of integration on Zn2 -manifolds which is expected to be quite involved (see
Poncin [19] for work in this direction).

3. Mixed symmetry tensors over Minkowski space-time

Consider D-dimensional Minkowski space-time M = (RD, η). The Poincaré
transformations we write as

xµ 7→ xµ
′

= xνΛ µ′

ν + aµ
′
.

We now wish to construct a Z2
2-manifold built from M in a canonical way. In

particular, consider
M := TM [(0, 1)]×M TM [(1, 0)] ,

where we have indicated the assignment of the Z2
2-grading to the fibre coordinates

on each tangent bundle. It is straightforward to see that we do indeed obtain a
Z2

2-manifold in this way by using coordinates (see [8, Proposition 6.1]). Specifically,
we can always employ (global) coordinates of the form(

xµ︸︷︷︸
(0,0)

, ξν︸︷︷︸
(0,1)

, θρ︸︷︷︸
(1,0)

)
,

where we have signalled the assignment of Z2
2-grading. Note that we have the

non-trivial Z2
2-commutation rules
ξµξν = −ξνξµ , θµθν = −θνθµ , ξµθν = +θνξµ .

Thus, while each ‘species’ of non-zero degree coordinate are themselves nilpotent,
across ‘species’ they commute. This is, of course, very different from the case of
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standard supermanifolds. The Poincaré transformations induce the obvious linear
coordinate transformations on the formal coordinates

ξν
′

= ξνΛ ν′

ν , θρ
′

= θρΛ ρ′

ρ .

Clearly, these transformation laws respect the assignment of Z2
2-grading and satisfy

(rather trivially) the cocycle condition. Thus, we do indeed obtain a Z2
2-manifold in

this way. As the coordinate transformations respect the obvious bundle structure
and do not ‘mix’ the non-zero degree coordinates we have an example of a so-called
split Z2

2-manifold [7]. The fact that we do not, in this case, have non-zero degree
coordinates that are not nilpotent means that we only deal with polynomials in
the formal coordinates.

The space of (p, q)-forms on M we define as

Ω(p,q)(M) := C∞(M)(p,q) ,

where we naturally have the N× N-grading given by the polynomial order in each
formal coordinate. As we are considering linear coordinate changes only, this order is
well-defined. By considering all possible degrees we obtain a unital Z2

2-commutative
algebra

Ω(M) := C∞(M) =
(D,D)⊕

(p,q)∈N×N

Ω(p,q)(M) ,

which we refer to as the algebra of bi-forms: which we can view as the algebra of
‘differential forms with values in differential forms’. Note that we naturally have a
C∞(M) = Ω(0,0)(M) module structure on the space of all bi-forms.

In coordinates, any (p, q)-form can be written as

ω(p,q)(x, ξ, θ) = 1
p!q! θ

ν1 . . . θνpξµ1 · · · ξµq ωµq...µ1|νq...ν1(x) .

Due to the Z2
2-commutation rules, we have the relation that ω[µq···µ1]|[νq···ν1] =

ωµq···µ1|νq···ν1 and ω[µq···µ1]|[νq···ν1] = ω[νq···ν1]|[µq···µ1] Note that we will not insist
on any further relations in general.

Example 3.1. The dual graviton in D-dimensions is a (1, D − 3)-form and so is
given in coordinates as

C(x, ξ, θ) = 1
(D − 3)! θ

νξµ1 . . . ξµD−3 CµD−3...µ1|ν(x) .

Similarly, the double dual graviton in D-dimensions of a (D − 3, D − 3)-form and
so is given in coordinates as

D(x, ξ, θ) = 1
(D − 3)!(D − 3)! θ

ν1 . . . θνD−3ξµ1 . . . ξµD−3 DµD−3...µ1|νD−3...ν1(x) .

See Hull [14, 15] for details of the rôle of dual gravitons and double dual gravitons
in electromagnetic duality of gravitational theories.

Canonically, the algebra of bi-forms on D-dimensional Minkowski space-time
comes equipped with a pair of de Rham differentials. These differentials we consider
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as homological vector fields on the Z2
2-manifold M. That is, they ‘square to zero’,

i.e., 2d2 = [d,d] = 0. In coordinate we have

d(0,1) = ξµ
∂

∂xµ
, d(1,0) = θµ

∂

∂xµ
.

It is important to note that do indeed have a pair of vector fields in this way. In
particular, the partial derivatives change under Poincaré transformations as

∂

∂xµ′
= Λ µ

µ′
∂

∂xµ
,

∂

∂ξν′
= Λ ν

ν′
∂

∂ξν
,

∂

∂θρ′
= Λ ρ

ρ′
∂

∂θρ
.

Thus, the pair of de Rham differentials are well-defined. It is also clear that they
Z2

2-commute, i.e.,

[d(1,0),d(0,1)] := d(1,0) ◦ d(0,1) − d(0,1) ◦ d(1,0) = 0 .

In this way, we obtain a de Rham bi-complex. Also, note that the interior product
and Lie derivative can also be directly ‘doubled’.

Canonically we also have a pair of vector fields of Z2
2-degree (1, 1), given by

∆(0,1) = ξµ
∂

∂θµ
, ∆(1,0) = θν

∂

∂ξν
.

A direct calculation shows that the non-trivial Z2
2-commutators are

[∆(0,1),d(1,0)] = d(0,1) , [∆(1,0),d(0,1)] = d(1,0) .

Rather conveniently, we can understand the metric as a (1, 1)-form and the inverse
of the metric as a second-order differential operator given by

η := θµξνηνµ , η−1 := ηµν
∂2

∂ξν∂θµ
,

respectively.

Example 3.2. Consider the Curtright field on D = 5 Minkowski space-time [10].
Such a field is understood to be the electromagnetic dual of the graviton field. In
our language, the Curtright field is an example of a (1, 2)-form and as such can be
written in coordinates as

C(x, ξ, θ) = 1
2!θ

ρξνξµCµν|ρ(x) .

There is a further symmetry condition on the Curtright field, i.e., Cµν|ρ + Cρµ|ν +
Cνρ|µ = 0, which comes from wanting an irreducible representation of the Poincaré
group. This condition can be expressed as

∆(0,1)C = 1
2!3ξ

ρξνξµ
(
Cµν|ρ + Cρµ|ν + Cνρ|µ

)
= 0 .

Furthermore, a direct calculation shows that

F := d(0,1)C = 1
3!θ

ρξνξµξλ
(
∂Cµν|ρ

∂xλ
+
∂Cνλ|ρ

∂xµ
+
∂Cλν|ρ

∂xν

)
= 1

3!θ
ρξνξµξλFλµν|ρ(x) ,
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which we recognise (up to possible conventions) to be the Curtright field strength.
Applying d(1,0) to the Curtright field strength yields

E := d(1,0)
(
d(0,1)C

)
= 1

2!3!θ
ωθρξνξµξλ

(
∂Fλµν|ρ

∂xω
−
∂Fλµν|ω

∂xλ

)
= 1

2!3!θ
ωθρξνξµξλEλµν|ρω(x) ,

which we recognise (up to possible conventions) to be the Curtright curvature
tensor, which is fully gauge invariant, see Bekaert, Boulanger & Henneaux [2] for
details. Similarly the Curtright–Ricci tensor and its trace (again, up to conventions)
can be constructed by applying the inverse metric, i.e.,

η−1(E) = 1
2!θ

ρξµξληωνEλµν|ρω(x) = 1
2!θ

ρξµξλEλµ|ρ(x) ,

η−1(η−1(E)
)

= ξληρµEλµ|ρ(x) = ξλEλ(x) .

Remark 3.3. The procedure to describe mixed symmetry tensors with more
antisymmetric ‘blocks’ is clear. In particular, if we have n such blocks, then we
should consider the Zn2 -manifold
M := TM [(0, . . . , 0, 1)]×M TM [(0, · · · , 0, 1, 0)]×M · · · ×M TM [(1, . . . , 0, 0)] ,

where we have signalled the Zn2 -degree of the fibre coordinates. Note that we have
a canonical de Rham differential in each sector. Thus, the previous statements of
this section can be generalised verbatim.

Remark 3.4. The reader should note that a Zn2 -grading together with the standard
scalar product is enough to encode arbitrary sign rules for finitely generated
algebras [8, Theorem 2.1]. Thus, even more exotic tensors can be encoded using
Zn2 -manifolds. For example, tensors with commuting ‘blocks’ of indices that across
‘blocks’ anticommute can also naturally be formulated in the current setting. We
will however, not discuss this further here.

4. Mixed symmetry tensors over curved space-times

Directly extending the constructions to curved space-times (M, g) is not possible.
This was for sure noticed in [6], albeit with no reference to Zn2 -manifolds. The
two de Rham differentials cannot be naïvely be considered as vector fields on
M = TM [(0, 1)] ×M TM [(1, 0)]. The resolution to this problem is the standard
one: we use the Levi-Civita connection to lift the vector fields. The Z2

2-manifold
M comes equipped with natural coordinates(

xµ︸︷︷︸
(0,0)

, ξν︸︷︷︸
(0,1)

, θρ︸︷︷︸
(1,0)

)
,

where again we have signalled the assignment of Z2
2-grading. The permissible

changes of local coordinates are

xµ
′

= xµ
′
(x) , ξν

′
= ξν

∂xν
′

∂xν
, θρ

′
= θρ

∂xρ
′

∂xρ
.
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Example 4.1. The covariant Weyl curvature tensor and covariant Riemannian
curvature on any (pseudo-)Riemannian manifold are examples of (2, 2)-forms.

As standard, we define a covariant derivative

∇µ := ∂

∂xµ
−ξνΓρνµ

∂

∂ξρ
−θνΓρνµ

∂

∂θρ
,

where Γρνµ are the Christoffel symbols of the Levi-Civita connection. We then define
the covariant de Rham derivatives as

∇(0,1) := ξµ∇µ = ξµ
∂

∂xµ
−ξµθνΓρνµ

∂

∂θρ
,

∇(1,0) := θµ∇µ = θµ
∂

∂xµ
−ξµθνΓρνµ

∂

∂ξρ
,

remembering that the Christoffel symbols are symmetric in the lower indices, i.e.,
the Levi–Civita connection is torsion free. Due to the transformation rules for
the Christoffel symbols both these covariant de Rham derivatives are well-defined
vector fields on M. However, in general, we lose the fact that these vector fields
are homological and that they commute. This is in stark contrast to the case of
standard differential forms where the covariant derivative (with respect to any
torsionless connection) reduces to the de Rham differential. Direct calculation
shows that

[∇(0,1),∇(0,1)] = R(0,1) = θµξλξνRρµνλ(x) ∂

∂θρ
,

[∇(1,0),∇(1,0)] = R(1,0) = ξµθλθνRρµνλ(x) ∂

∂ξρ
,

[∇(1,0),∇(0,1)] = R(1,1) = ξµθλθνRρµνλ
∂

∂θρ
(x)− θµξλξνRρµνλ(x) ∂

∂ξρ
,

where Rρµνλ is the Riemann curvature of the Levi-Civita connection (similar
expressions can be found in [13]). The vector fields ∆(0,1) and ∆(1,0) have exactly
the same local form as on Minkowski space-time. A direct calculation shows that

[∆(0,1),∇(1,0)] = ∇(0,1) , [∆(1,0),∇(0,1)] = ∇(1,0) .

where one has to take care with the signs due to the Z2
2-grading.

The covariant de Rham derivatives are canonical vector fields, once we have
fixed a (pseudo-)Riemannian metric. Associated with any (homogeneous) vector
field onM are (local) infinitesimal diffeomorphisms (see Voronov [22, Section 2.39]
for details on standard supermanifolds). For the case at hand, we have a pair of
such infinitesimal diffeomorphisms:

xµ 7→ xµ + λ ξµ , ξν 7→ ξν , θρ 7→ θρ − λ ξµθνΓρνµ(x) ,(4.1)

and

xµ 7→ xµ + η θµ , ξν 7→ ξν − η ξµθρΓνρµ(x) , θρ 7→ θρ ,(4.2)

where λ and η are “external” parameters of Z2
2-degree (0, 1) and (1, 0), respectively.

Because the parameters carry non-zero degree, such infinitesimal diffeomorphisms



132 A.J. BRUCE AND E. IBARGUENGOYTIA

can be referred to as supersymmetries. However, note that this is different to the
standard meaning of a supersymmetry in physics. The action of these supersym-
metries on (p, q)-forms is, of course, via application of the covariant de Rham
differential, i.e., a Lie derivative. Note that these supersymmetries are not directly
associated with (infinitesimal) diffeomorphisms of M , but rather come from the lar-
ger Zn2 -manifold structure. We will say that a (p, q)-form ω(p,q) is (0, 1)-covariantly
constant if and only if ∇(0,1)ω

(p,q) = 0, and similarly a (p, q)-form is said to be
(1, 0)-covariantly constant if and only if ∇(1,0)ω

(p,q) = 0.

Remark 4.2. For standard differential forms on a manifold, i.e., function on the
supermanifold ΠTM , we have the infinitesimal diffeomorphism generated by the
de Rham differential:

xµ 7→ xµ + ε dxµ , dxν 7→ dxν ,

where ε is a Grassmann odd parameter. As the de Rham differential is a homological
vector field, i.e., [d,d] = 2d2 = 0, it can be integrated to obtain an odd flow. This
produces a canonical action of the Lie supergroup R0|1 on ΠTM . Clearly, closed
differential forms are the differential forms that are invariant under this action, (see
Vaintrob [21]). While this should be kept in mind when thinking of bi-differential
forms, the covariant de Rham derivatives are not - unless we have a flat manifold -
homological vector fields. Thus, we do not expect to have a direct analogue of a
Lie supergroup action for bi-differential forms.

Example 4.3. Consider a bi-form ω ∈ Ω(1,0)(M). Clearly, such a bi-form can be
considered as a genuine differential form on M . In local coordinates we have that
ω = θρωρ(x). Now, let us consider the pair of supersymmetries:

ω 7→ ω + λ∇(0,1)ω

= θρωρ(x) + λ θνξµ
(∂ων(x)

∂xµ
− Γρµνωρ(x)

)
,

and

ω 7→ ω + η ∇(1,0)ω

= θρωρ(x)− η θνθµ
(∂ων(x)

∂xµ
− ∂ωµ(x)

∂xν

)
.

In order for ω to be (0, 1)-covariantly constant - in the classical framework - it
must be parallel (with respect to the Levi-Civita connection). Note that this
automatically implied that ω is closed and so it is also (1, 0)-covariantly constant.
The converse need not be true. Naturally, the same is true of any (p, 0)-form and
(0, q)-form.

Example 4.4. A symmetric rank two covariant tensor can naturally be considered
as a (1, 1)-form. In local coordinates we have that ω = θµξνων|µ(x). Now, let us
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consider the pair of supersymmetries:

ω 7→ ω + λ∇(0,1)ω

= θµξνων|µ(x) + λ
1
2!θ

νξµξρ
(
∇µωρ|ν(x)−∇ρωµ|ν(x)

)
,

and

ω 7→ ω + η ∇(1,0)ω

= θµξνων|µ(x) + λ
1
2!θ

νθµξρ
(
∇νωρ|µ(x)−∇µωρ|ν(x)

)
.

Then, due to the obvious symmetry, a (1, 1)-form is invariant under the pair of
supersymmetries if and only if

∇µων|ρ(x)−∇νωµ|ρ(x) = 0 .

As a specific example, the metric tensor g = θµξνgνµ is invariant under the
supersymmetries as ∇µgνρ = 0, i.e., we are using the Levi-Civita connection. Thus,
for Einstein manifolds, e.g., de Sitter and anti de Sitter space-time, where the Ricci
tensor is proportional to the metric, Ricc = θµξνRνµ = k θµξνgνµ (k ∈ R×) is
invariant under the pair of supersymmetries.

Example 4.5. The covariant Riemann tensor is an example of a (2, 2)-form on
(M, g):

R(x, ξ, θ) = 1
2!2!θ

νθµξσξρ Rρσ|µν(x) ,

here Rρσ|µν := gρλR
λ
σµν and Rλσµν is the Riemann curvature of the Levi–Civita

connection. A direct computation shows that the first Bianchi identity can be
written as

∆(0,1)R = 1
3!θ

νξρξµξσ
(
Rνσ|µρ +Rνµ|ρσ +Rµρ|σµ

)
= 0 .

Similarly, direct computation shows that the second Bianchi identity can be written
as

∇(0,1)R = 1
2!3!θ

νθρξµξσξλ
((∂Rσµ|ρν

∂xλ
−ΓωνλRσµ|ρω−ΓωρλRσµ|νω

)
+
(∂Rµλ|ρν
∂xσ

− ΓωνσRµλ|ρω − ΓωρσRµλ|νω
)

+
(∂Rλσ|ρν
∂xµ

−ΓωνµRλσ|ρω − ΓωρνRλσ|νω
))

= 0 .

Clearly, the second Bianchi identity can also be written as ∇(1,0)R = 0 as the cova-
riant Riemann tensor is a (2, 2)-form. Thus, we see that on any (pseudo-)Riemannian
manifold, the covariant Riemann tensor is a canonical example of a (0, 1)-covariantly
constant and (1, 0)-covariantly constant (2, 2)-form. In other words, the covariant
Riemann tensor is preserved under the supersymmetries (4.1) and (4.2).
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5. Vector bundle-valued mixed symmetry tensors

Consider a vector bundle π : E →M over a space-time (M, g) of dimension D.
Similarly, to the previous sections we canonically build a Z2

2-manifold, but now
incorporating the dual vector bundle

ME := TM [(0, 1)]×M TM [(1, 0)]×M E∗[(1, 1)] .
Natural coordinates here are(

xµ︸︷︷︸
(0,0)

, ξν︸︷︷︸
(0,1)

, θρ︸︷︷︸
(1,0)

, za︸︷︷︸
(1,1)

)
,

where we take the permissible changes of coordinates to be as before, but now
including

za′ = T b
a′ (x) zb ,

which is inherited from the linear changes of fibre coordinates on the vector bundle
E. Again, we have a split Z2

2-manifold in this way [7]. In fact, the reader should
note that up to the assignment of the Zn2 -grading, we have a decomposed double
vector bundle, (see Pradines [20] for the classical description and Voronov [23]
for the coordinate description using graded manifolds). By construction, we have
a well-defined Z2

2-manifold with formal coordinates that are not nilpotent. This
means that we must consider formal power series in the coordinates z and not
simply polynomials.

However, we can - due to the linear nature of the coordinate changes we are
allowing - select functions on ME that are (locally) homogeneous in z. We then
define E-valued bi-forms in the following way:

Ω(p,q)(M,E) := C∞(ME)(p,q,1) .

In terms of local coordinates, any ω(p,q) ∈ Ω(p,q)(M,E) has the local form

ω(p,q)(x, ξ, θ, z) = 1
p!q! θ

ν1 · · · θνpξµ1 · · · ξµq ωaµq···µ1|νq···ν1
(x)za .

Naturally, we have the identification Ω(0,0)(M,E) ' Sec(E). By considering all the
possible degrees we obtain the vector space of all E-valued bi-forms:

Ω(M,E) :=
(D,D)⊕

(p,q)∈N×N

Ω(p,q)(M,E) ,

which has the obvious (left) module structure over the algebra of bi-forms Ω(M).
If we specify a linear connection on E, then we can construct a pair of (fully)

covariant de Rham derivatives

∇(0,1) := ξµ∇µ = ξµ
∂

∂xµ
−ξµθνΓρνµ

∂

∂θρ
+ ξν(Aµ) b

a zb
∂

∂za
,

∇(1,0) := θµ∇µ = θµ
∂

∂xµ
−ξµθνΓρνµ

∂

∂ξρ
+ θµ(Aµ) b

a zb
∂

∂za
,

where (Aµ) b
a are the components of the (local) connection one-form associated

with the linear connection.
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Example 5.1. If we take E = TM , then we obtain tangent bundle-valued bi-forms.
The degree (1, 1) coordinates we can view as “momenta” as they correspond, up to
the grading, with fibre coordinates on T∗M . naturally, the Levi-Civita connection
gives rise to a pair of covariant de Rham derivatives.

Example 5.2. If we consider the real spinor bundle over a (pseudo-)Riemannian
spin manifold (M, g), which we denote as ΣM , then we naturally have the notion
of spinor-valued bi-forms. Moreover, the Levi-Civita connection induces a linear
connection on ΣM (see [17, Chapter II, §4]) and so canonically we have a pair of
(fully) covariant de Rham derivatives acting on spinor-valued bi-forms.

Example 5.3. Consider a line bundle π : L → M , then we can build ML as
described above. The transformation law for the degree (1, 1) coordinate is of the
form z′ = φ−1(x) z, where φ(x) are the transition functions on L. As a specific
example, we can consider the density bundle and so we have the natural notion of
twisted bi-forms. Moreover, as the density bundle is trivial, we can use the covariant
de Rham derivatives as defined in the previous section, i.e., we can use the trivial
connection on L.

Again, we can consider a pair of “supersymmetries” along the same lines as (4.1)
and (4.2), but now with the additional terms

za 7→ za + λ ξµ(Aµ) b
a (x)zb , and za 7→ za + η θµ(Aµ) b

a (x)zb .

6. Concluding remarks

As remarked in the introduction, differential forms on a manifold M are naturally
understood as functions of the antitangent bundle ΠTM , which itself canonically
comes equipped with the de Rham differential, here understood as a homological
vector field. Similarly, bi-forms on a (pseudo-)Riemannian manifold (M, g), are na-
turally understood as functions on the Z2

2-manifold TM [(0, 1)]×MTM [(1, 0)], which
canonically comes equipped with the odd vector fields (generally, non-homological)
∇(0,1) and ∇(1,0). We have shown that there is a natural pair of “supersymmetries”
associated with these covariant de Rham derivatives. Moreover, the metric tensor
and the covariant Riemann tensor are invariant under these transformations. This,
in turn, implies that for Einstein manifolds, the Ricci tensor is also invariant
under these supersymmetries. Similar statements can be made for more general
multi-forms. We have also shown that this geometric framework can be extended
to cover bi-forms with values in vector bundles, which include spinor-valued and
twisted bi-forms. While the goals of this paper have been modest, we hope that
the observations made here will prove useful for future studies of mixed symmetry
tensors. In particular, the geometric aspects of mixed symmetry tensors seem to
have been largely missed within the mathematics literature.
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