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Abstract. We prove that derivatives of any finite order of Donsker’s delta functionals
are well-defined elements in the space of Hida distributions. We also show the convergence
to the derivative of Donsker’s delta functionals of two different approximations. Finally,
we present an existence result of finite product and infinite series of the derivative of the
Donsker delta functionals.
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1. Introduction

In the area of Gaussian analysis, the composition of Dirac delta function δc at

point c with a stochastic process X = (Xt)t>0, i.e., δc(Xt), is a well-studied object.

Let C0(R
n) be the Banach space of continuous functions w : [0, T ] → R

n such that

w(0) = 0 endowed with the supremum norm, and P be the Wiener measure on

C0(R
n). The n-dimensional Brownian motion (Bt)t>0 on the Wiener space is given

by the projection map Bt(w) = w(t), w ∈ C0(R
n). The Donsker delta functional

of the Brownian motion is a formal composition δ(BT − c) = δ(w(T ) − c) where

δ(· − c) := δc, which can be viewed as a formal density of the n-dimensional Brownian

bridge measure PT,c
0,0 := P(·|w(T ) = c) with respect to the Wiener measure P. The

Brownian bridge measure is singular to the Wiener measure. However, it is still

useful to consider this formal density on the Wiener space, analogously as Dirac

delta functions are useful in the calculus on the Euclidean space. The Donsker delta

functional was first introduced, for the case of Brownian motion, in the framework

of white noise analysis in [12]. Later on, it has been also studied by using Malliavin

calculus techniques in [20]. Donsker’s delta functional of a stochastic process has

found many applications, for example in the context of local times of stochastic
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processes, polymer physics, Feynman path integral, and mathematical finance. For

some studies on the Donsker delta functionals and their applications we refer to [1],

[2], [3], [5], [7], [9], [14], [15], [19], [21] and references therein. The notion of the

derivative of Donsker’s delta functional has been mentioned briefly in [13]. Another

motivation for the study of the derivative of Donsker’s delta functional comes also

from the work on the derivative of self-intersection local times of stochastic process

introduced in [17]. The present work can be construed as a step towards a more

comprehensive study on the white noise approach to the derivative of Donsker’s

delta functionals and their applications.

The organization of the present paper is as follows. In Section 2 we briefly review

the necessary background of Gaussian analysis. As main results in Section 3 we

prove that the derivative of any order k ∈ N of the Donsker delta functional of a

regular random variable exists as a Hida distribution. We obtain also an explicit

expression for the Wiener-Itô chaos decomposition of the derivative of Donsker’s

delta functional. Convergence results to the derivative of Donsker’s delta functional

are also presented. Section 4 contains results on the existence of finite product and

infinite series of the derivative of Donsker’s delta functional.

2. Elements of Gaussian analysis

This section contains pertinent notions and results from Gaussian analysis used

throughout this paper. For more details we refer the interested reader to [8], [11],

[16] and the literature quoted there. We start with a real separable Hilbert space H
equipped with inner product (·, ·) and corresponding norm |·|. Let N be a nuclear
Fréchet space which is densely and continuously embedded into H, and N ′ be its

topological dual space. By identifying H with its dual space via Riesz isomorphism
we get the Gelfand triple N ⊂ H ⊂ N ′. The dual pairing between N ′ and N is

denoted by 〈·, ·〉, and considered as an extension of the inner product in H. Let us
denote by C the σ-algebra on N ′ generated by the cylinder sets. Then, the canonical

Gaussian measure µ on the measurable space (N ′, C) is established by using the
Minlos theorem via the relation

∫
N ′ e

i〈ω,η〉 dµ(ω) = e−|η|2/2, η ∈ N .
The space of square-integrable complex-valued functions over the probability space

(N ′, C, µ) will be denoted by L2(µ). The notation Eµ means the expectation with

respect to the probability measure µ. An important element of L2(µ) is the so-called

Wick exponential :e〈·,η〉: := e〈·,η〉−|η|2/2, η ∈ N . For f ∈ H we define the random
variable Xf := 〈·, f〉, which is a centered Gaussian with variance Eµ(X

2
f ) = |f |2.

We call Xf a regular random variable on Gaussian space (N ′, C, µ). From the Segal
isomorphism between L2(µ) and the complex Fock space Γ(H) :=

∞⊕
n=0

H⊗̂n
C
over the
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complexification HC over H, one has, for every f ∈ L2(µ), the so-called Wiener-Itô

chaos decomposition f(ω) =
∞∑
n=0

〈:ω⊗n:, f(n)〉, f(n) ∈ H⊗̂n
C
, where :ω⊗n: is the Wick

tensor of order n of ω ∈ N ′. Here ⊗̂ is the notation of symmetric tensor product.
The function f(n) is called the nth kernel of f .

For our purpose we need a Gelfand triple around the Hilbert space L2(µ), namely

the Hida triple (N ) ⊂ L2(µ) ⊂ (N )′. Here (N ) is called the space of Hida test

functions and can be constructed by taking the intersection of a family of Hilbert

subspaces of L2(µ). It is equipped with the projective limit topology and has the

structure of nuclear countably Hilbert space. Moreover, the topology on (N ) is

uniquely determined by the topology on N . The space of Hida distributions (N )′ is

defined as the topological dual space of (N ). The Wiener-Itô chaos decomposition

can be extended to elements of (N )′, that is, for any Φ ∈ (N )′ it holds that

(2.1) Φ =
∞∑

n=0

〈:·⊗n:,Φ(n)〉, Φ(n) ∈ N ⊗̂n
C

.

E x am p l e 2.1. By choosing the Hilbert space H = L2(R) of Lebesgue square-

integrable functions, nuclear space N = S(R) of Schwartz test functions, and N ′ =

S ′(R), the space of Schwartz distributions, one gets the concrete Gelfand triple

S(R) ⊂ L2(R) ⊂ S ′(R). The probability space (S ′(R), C, µ) is known as the white
noise space. A standard Brownian motion on the white noise space is given by

Bt := 〈·, ind1[0,t]〉, where ind1A denotes the indicator function of A ⊂ R. Within

this setting, white noise at each time t is a well-defined mathematical object given

by Wt := d/dtBt = 〈·, δt〉, where the convergence takes place in (N )′ with respect

to the inductive limit topology. Here δt denotes the Dirac delta function at t. Fur-

ther, all derivatives of any order of Brownian motion are Hida distributions with

the represention B
(k)
t = (−1)k−1〈·, δ(k−1)

t 〉, where δ(n)t is the notation for the nth

distributional derivative of the Dirac delta function at t.

The S-transform of Φ ∈ (N )′ is the mapping from N into C given by SΦ(η) :=

〈〈Φ, :e〈·,η〉:〉〉, η ∈ N . Here 〈〈·, ·〉〉 denotes the bilinear dual pairing on (N )′×(N ) which

extends the inner product on L2(µ). Since the Wick exponentials {:e〈·,η〉:, η ∈ N}
form a total set in (N ), we have that elements of (N )′ are characterized by their

S-transform. Moreover, the S-transform of Φ ∈ (N )′ also extends to NC. If Φ is

given via the chaos decomposition (2.1), then its S-transform can be calculated by

(SΦ)(η) =
∞∑
n=0

〈Φ(n), η
⊗n〉. We define also the generalized expectation of Φ ∈ (N )′

as Eµ(Φ) := (SΦ)(0) = Φ(0).
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We will use the following three important results on the characterization of Hida

distributions via S-transform. We only state the theorems, while for details and

proofs we refer the reader to [11].

Theorem 2.2. A mapping F : N → C is the S-transform of an element in (N )′

if and only if it is a U -functional, that is,

(1) for all ξ, η ∈ N , the mapping λ 7→ F (η + λξ) from R into C has an entire

extension to λ ∈ C, and

(2) for some continuous quadratic form Q on N there exist constants C,K > 0

such that for all η ∈ N and z ∈ C it holds that |F (zη)| 6 CeK|z|2|Q(η)|.

Theorem 2.3. Let (Ω,F , ν) be a measure space, and λ 7→ Φλ a mapping from Ω

to (N )′. If Fλ := SΦλ fulfils the two conditions:

(1) for every η ∈ N the mapping λ 7→ Fλ(η) is measurable,

(2) there exists a continuous norm |·|∗ on N such that for all λ ∈ Ω, η ∈ N ,
z ∈ C, Fλ satisfies the bound |Fλ(zη)| 6 C(λ)eK(λ)|z|2|η|2

∗ with C(λ) ∈ L1(ν)

and K(λ) ∈ L∞(ν),

then Φλ is Bochner integrable with respect to some Hilbertian norm which topol-

ogizes (N )′. Thus, in particular,
∫
ΩΦλ dν(λ) ∈ (N )′, and the S-transform and

Bochner integral commute.

Theorem 2.4. Let Φn ∈ (N )′, n ∈ N. If Fn := SΦn satisfies the two conditions:

(1) (Fn(η))n∈N is a Cauchy sequence for all η ∈ N ,
(2) there exists a continuous norm |·|∗ on N and C,K > 0 such that for all η ∈ N ,

z ∈ C and for almost all n ∈ N it holds that |Fn(zη)| 6 CeK|z|2|η|2
∗ ,

then (Φn)n∈N converges in the strong topology to a unique Φ ∈ (N )′.

3. Main results

Now we prove our main results on the derivative of Donsker’s delta functional using

tools from Gaussian analysis. Instead of using the Wiener-Itô chaos decomposition

approach as in [13], we established the existence of the derivative of Donsker’s delta

functional via Bochner integration in (N )′. As a starting point we use a formal

Fourier-transform representation of the derivatives of Dirac delta function δ(k)(x) :=
1
2π

−1
∫
R
ikλkeixλ dλ, where k ∈ N ∪ {0} with the convention δ(0) := δ. In the rest of

the paper, by pε and Hk we denote the heat kernel pε(x) := e−x2/2ε/
√
2πε, ε > 0
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and the Hermite polynomial of order k defined by the Rodrigues formula Hk(x) =

(−1)kex
2

(dk/dxk)e−x2

, respectively.

Theorem 3.1. Let f be a nonzero element of H. For any c ∈ R the Bochner

integral

δ(k)c (Xf ) :=
1

2π

∫

R

ikλkeiλ(〈·,f〉−c) dλ, k ∈ N ∪ {0}

exists as a Hida distribution with the S-transform given by

S(δ(k)c (Xf ))(η) = p|f |2(〈f, η〉 − c)

( −1√
2|f |2

)k

Hk

( 〈f, η〉 − c√
2|f |2

)
, η ∈ N .

The generalized expectation of δ
(k)
c (Xf ) is given by

Eµ(δ
(k)
c (Xf )) = p|f |2(c)

(
1√
2|f |2

)k

Hk

(
c√
2|f |2

)
.

P r o o f. Let us define Fλ(η) := S(ikλkeiλ(〈·,f〉−c))(η), η ∈ N . Then,

Fλ(η) = 〈〈ikλkeiλ(〈·,f〉−c), :e〈·,η〉:〉〉 =
∫

N ′

ikλkeiλ(〈ω,f〉−c)e〈ω,η〉−|η|2/2 dµ(ω)

= ikλke−|η|2/2e−icλ

∫

N ′

e〈ω,iλf+η〉 dµ(ω) = ikλke−|η|2/2e−icλe|iλf+η|2/2

= ikλke−|λ|2|f |2/2eiλ(〈f,η〉−c).

The mapping λ 7→ Fλ(η) is continuous for all η ∈ N , and hence it is measurable with
respect to the Lebesgue measure dλ. Furthermore, for z ∈ C and η ∈ N we have

|Fλ(zη)| = |λk|e−|λ|2|f |2/2|eiλ(〈f,η〉)| 6 |λk|e−|λ|2|f |2/2e|z||〈f,λη〉|

6 |λk|e−|λ|2|f |2/4e(|z|
2|〈f,λη〉|2)/(|λ|2|f |2) 6 |λk|e−|λ|2|f |2/4e|z|

2|η|2 .

The first factor C(λ) := |λk|e−|λ|2|f |2/4 is an integrable function of λ, while the second

factor K(λ) := e|z|
2|η|2 is constant function of λ. Hence, according to Theorem 2.3

δ(k)(〈·, f〉−c) is well-defined as a Bochner integral in (N )′. To obtain its S-transform

we integrate 1
2π

−1Fλ over R as follows:

S(δ(k)c (Xf ))(η) =
1

2π

∫

R

S(ikλkeiλ(〈·,f〉−c))(η) dλ

=
1

2π

ik
∫

R

λke−|λ|2|f |2/2eiλ(〈f,η〉−c) dλ

=
1√
2π

e−(〈f,η〉−c)2/(2|f |2) (−1)kk!

|f |2k+1
(〈f, η〉 − c)k

⌊ k
2 ⌋∑

l=0

1

(k − 2l)! l!

(
− |f |2
2(〈f, η〉 − c)2

)l

.
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In the last equality we have used a particular definite integral of the product of an

exponential function and a polynomial, see e.g. formula 3.462 (2) in [6]. By recalling

the explicit formula for Hermite polynomial

Hk(x) = k!

⌊ k
2 ⌋∑

l=0

(−1)l

(k − 2l)! l!
(2x)k−2l,

we obtain

S(δ(k)c (Xf ))(η) =
1√

2π|f |2
e−(〈f,η〉−c)2/(2|f |2) (−1)k2−k/2

|f |k Hk

( 〈f, η〉 − c√
2|f |2

)
.

By using the expression for the heat kernel we arrive at the desired expression. To

compute the generalized expectation of δ(k)(〈·, f〉−c) we simply substitute the value

η = 0 in the expression of the S-transform. This finishes the proof. �

In the following theorem we derive the Wiener-Itô chaos decomposition of the

derivative of Donsker’s delta functional.

Theorem 3.2. For f ∈ H \ {0}, c ∈ R and k ∈ N ∪ {0} it holds that

δ(k)c (Xf ) = p|f |2(c)
∞∑

n=0

1

n!

(
1√
2|f |2

)n+k

Hn+k

(
c√
2|f |2

)
〈:·⊗n:, f⊗n〉

in (N )′.

P r o o f. We begin with the Bochner integral representation as in Theorem 3.1

and make use of the generating function of the Hermite polynomial to infer that

δ(k)c (Xf ) =
1

2π

∫

R

ikλkeiλ(〈ω,f〉−c) dλ

=
1

2π

ik
∞∑

n=0

in|f |n
n!2n/2

Hn

( 〈·, f〉√
2|f |2

)∫

R

λn+ke−|f |2λ2/2−icλ dλ

=

(
1

2π

ik
∞∑

n=0

in|f |n
n! 2n/2

Hn

( 〈·, f〉√
2|f |2

))
e−c2/(2|f |2)

√
2π

|f |n+k+1
(−i)n+k2−(n+k)/2

× (n+ k)!

⌊n+k
2 ⌋∑

l=0

(−1)l

(n+ k − 2l)! l!

(√
2
c

|f |
)n+k−2l

=
1√
2π

e−c2/(2|f |2)
∞∑

n=0

1

n!

2−(n+k)/2

|f |n+k+1
Hn+k

(
c√
2|f |2

)( |f |n
2n/2

Hn

( 〈·, f〉√
2|f |2

))
.
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In the computation above we use again formula 3.462 (2) in [6]. Moreover, by using

the identity 〈:·⊗n:, f⊗n〉 = |f |n2−n/2Hn(〈·, f〉/
√
2|f |2), see e.g. [8], [13], we arrive at

the stated expression. In addition, the nth kernel of δ(k)(〈·, f〉 − c) is given by

δ
(k)
c,(n)(Xf ) := p|f |2(c)

1

n!

(
1√
2|f |2

)n+k

Hn+k

(
c√
2|f |2

)
f⊗n.

One can check easily that the zeroth kernel is exactly the generalized expectation

obtained in Theorem 3.1. �

We give some remarks.

(1) By taking k = 0 in the above result we recover the classical result on Donsker’s

delta functional and its S-transform as in, for example, [8], [14]. The generalized

expectation of Donsker’s delta functional is the heat kernel. The complex-scaled

Donsker’s delta functional has been also of interest, since it formally gives the

Schrödinger kernel, see e.g. [14].

(2) Consider the expression for the S-transform of δ(k)(〈·, f〉 − c). It is analytic in

the parameter c ∈ R. Therefore, we can extend it to complex parameter c ∈ C

and the resulting expression is still a U -functional. Hence, Theorem 2.2 enables

us to define δ(k)(〈·, f〉 − c) for c ∈ C.

(3) The same argument holds if we extend it to f ∈ HC. In order to avoid problems

with complex square root we cut the complex plane along the negative axis. So

we have to exclude f ∈ HC with negative value of (f, f)HC
. So, again using

Theorem 2.2, it is possible to define δ(k)(〈·, f〉 − c) for complex parameters c

and f .

Definition 3.3. Let f be a nonzero element of HC, arg(f, f) 6= π, c ∈ C and

k ∈ N ∪ {0}. The generalized function δ
(k)
c (Xf ) defined via its S-transform

S(δ(k)c (Xf ))(η) =
1√
2π

e−(〈f,η〉−c)2/(2|f |2) i2k2−k/2

(f, f)(k+1)/2
Hk

( 〈f, η〉 − c√
2(f, f)

)
, η ∈ NC

is called the derivative of order k of Donsker’s delta functional.

We have constructed the derivative of any finite order of Donsker’s delta functional

as a Bochner integral in (N )′. In the following theorem we show that it can be

approximated by a sequence of square integrable functions. Precisely speaking, the

sequence consists of Bochner integrals in L2(µ). We need the following well-known

Bochner integrability criterion whose proof can be found in, e.g., [10].

Proposition 3.4. Let X be a Banach space with norm ‖·‖ and (A,A, ̺) be

a measure space. If f : A → X is separably-valued and weakly measurable, and∫
A
‖f(a)‖ d̺(a) < ∞, then f is Bochner integrable.
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Theorem 3.5. For f ∈ H\ {0}, c ∈ R and k ∈ N∪{0} the following convergence
holds in (N )′ :

δ(k)c (Xf ) = lim
n→∞

1

2π

∫ n

−n

ikλkeiλ(〈·,f〉−c) dλ.

P r o o f. For n ∈ N let us define Ψn := 1
2π

−1
∫ n

−n
ikλkeiλ(〈·,f〉−c) dλ and G :

[−n, n] → L2(µ) by G(λ) := ikλkeiλ(〈·,f〉−c). Note that [−n, n] ∋ λ 7→ (g,G(λ))L2(µ)

is a continuous mapping for all g ∈ L2(µ) and therefore measurable. It is clear

that G is separably-valued. Moreover, for each λ ∈ [−n, n] we have ‖G(λ)‖2L2(µ) =∫
N ′ |ikλkeiλ(〈·,f〉−c)|2 dµ(ω) = |λ|2k. This implies

∫ n

−n

‖G(λ)‖L2(µ) dλ =
2nk+1

k + 1
< ∞.

By using Proposition 3.4 we know that for any n ∈ N, Ψn exists as a Bochner integral

in L2(µ). Next, we prove that the sequence (Ψn)n∈N converges in (N )′. We have

the S-transform of Ψn at η ∈ N :

SΨn(η) =
1

2π

∫ n

−n

S(ikλkeiλ(〈·,f〉−c))(η) dλ

=
ik

2π

∫

R

ind
1[−n,n]

(λ)λke−|λ|2|f |2/2eiλ(〈f,η〉−c) dλ.

Observe that for each λ ∈ R the integrand in the last integral converges pointwise

to λke−|λ|2|f |2/2eiλ(〈f,η〉−c) as n → ∞. Moreover, it is bounded by the function
|λk|e−|λ|2|f |2/2 which is integrable over R since it is a product of a polynomial with a

rapidly decreasing function. By using the Lebesgue dominated convergence theorem

we obtain that (Ψn)n∈N converges to
1
2 i

k
π
−1

∫
R
λke−|λ|2|f |2/2eiλ(〈f,η〉−c) dλ as n → ∞.

This means that (Ψn)n∈N is a Cauchy sequence for every η ∈ N . For η ∈ N, z ∈ C,

and n ∈ N we have

|SΨn(zη)| 6
1

2π

∫ n

−n

|λk|e−|λ|2|f |2/2 dλ 6
1

2π

e|z|
2|η|2

∫

R

|λk|e−|λ|2|f |2/4 dλ 6 Ce|z|
2|η|2 ,

where C = 2(k+1)/2k!D−k−1(0)π
−1|f |−(k+1) and Dν is the notation of the parabolic

cylinder function. The constant C is obtained by an application of formula 3.462 (1)

in [6]. This shows the boundedness condition, and the assertion of the theorem now

follows from Theorem 2.4. �

The Dirac delta function also appears as limit in the distribution sense of a se-

quence of approximale identities. Most notably, it holds that δ(x) = lim
ε→0

pε(x) =
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lim
ε→0

e−x2/2ε/
√
2πε. It is easy to see that the kth derivative of the heat kernel is

given by p
(k)
ε (x) := (−1)k(

√
2ε)−kHk(x/

√
2ε)pε(x) , k ∈ N∪{0}. This motivates the

following.

Theorem 3.6. For f ∈ H \ {0}, c ∈ R and k ∈ N ∪ {0} it holds that

δ(k)c (Xf ) = lim
ε→0

(−1)k

(
√
2ε)k

Hk

(〈·, f〉 − c√
2ε

)
pε(〈·, f〉 − c)

in (N )′.

P r o o f. First, we show that for each ε > 0,

δ(k)c,ε (Xf ) :=
(−1)k

(
√
2ε)k

Hk

(〈·, f〉 − c√
2ε

)
pε(〈·, f〉 − c)

is a square-integrable function. To this end we compute its L2(µ)-norm:

‖δ(k)c,ε (Xf )‖2L2(µ) =

∫

N ′

∣∣∣ (−1)k

(
√
2ε)k

Hk

(〈·, f〉 − c√
2ε

) 1√
2πε

e−(〈·,f〉−c)2/(2ε)
∣∣∣
2

dµ(ω)

=
1

(
√
2ε)2k

1

2πε

1√
2π|f |2

∫

R

H2
k

(x− c√
2ε

)
e−(x−c)2/εe−x2/(2|f |2) dx

=
1

(
√
2ε)2k−1

1

2πε

1√
2π|f |2

e−c2/(2|f |2)

×
∫

R

H2
k(x)e

−(2+ε/|f |2)x2−xc
√
2ε/|f |2 dx.

Based on an asymptotic consideration it is clear that the last integral is finite, and

hence, we can conclude the square-integrability of δ
(k)
c,ε (Xf ). Nevertheless, with a

little effort we can compute the value of the integral explicitly. By using the formula

H2
k(x) = 2k(k!)2

k∑

s=0

H2s(x)

2s(s!)2(k − s)!

(see [4]) and formula 7.374 (8) in [6] we get
∫

R

H2
k(x)e

−(2+ε/|f |2)x2−xc
√
2ε/|f |2 dx

=

k∑

s=0

2k(k!)2

2s(s!)2(k − s)!

∫

R

H2s(x)e
−(2+ε/|f |2)x2−xc

√
2ε/|f |2 dx

=
√

π 2kk! ec
2ε/(2|f |2(ε+2|f |2))

k∑

s=0

1

2s(s!)2(k − s)!

( |f |2 + ε

2|f |2 + ε

)s

×H2s

(
c

√
ε

(2|f |2 + ε)(2|f |2 + 2ε)

)
.

169



Hence,

‖δ(k)c,ε (Xf )‖2L2(µ) = ε−(k+1/2) k!

2π|f |e
−c2/(2|f |2+ε)

k∑

s=0

1

2s(s!)2(k − s)!

( |f |2 + ε

2|f |2 + ε

)s

×H2s

(
c

√
ε

(2|f |2 + ε)(2|f |2 + 2ε)

)
< ∞.

We have proved that for each ε > 0, δ
(k)
ε (〈·, f〉 − c) ∈ L2(µ). Next, we show the

convergence in (N )′ as ε → 0. By the Cameron-Martin theorem we have

Sδ(k)c,ε (Xf )(η)

=

∫

N ′

δ(k)c,ε (〈ω + η, f〉) dµ(ω)

=
(−1)k

(
√
2ε)k

1√
2πε

∫

N ′

Hk

( 〈ω, f〉+ 〈f, η〉 − c√
2ε

)
e−(〈ω,f〉+〈f,η〉−c)2/(2ε) dµ(ω)

=
(−1)k

(
√
2ε)k

1√
2πε

1√
2π|f |2

∫

R

Hk

(
x+ 〈f, η〉 − c√

2ε

)
e−(x+〈f,η〉−c)2/(2ε)e−x2/(2|f |2) dx

=
(−1)k2−k/2

√
2π|f |2

(
1

|f |2 + ε

)k/2

e−(〈f,η〉−c)2/(2(|f |2+ε))Hk

( 〈f, η〉 − c√
2(|f |2 + ε)

)
.

As ε → 0 we have that Sδ
(k)
ε (〈·, f〉 − c)(η) converges to

(−1)k2−k/2

√
2π|f |2

1

|f |k e
−(〈f,η〉−c)2/(2|f |2)Hk

(〈f, η〉 − c√
2|f |2

)
= p

(k)
|f |2(〈f, η〉 − c).

By applying the bound |Hn(x)| < α(n!)1/22n/2ex
2/2 for the Hermite polynomials, we

have for any η ∈ N , z ∈ C, and ε > 0,

|Sδ(k)c,ε (Xf )(zη)| =
2−k/2

√
2π|f |2

( 1

|f |2 + ε

)k/2

× |e−(〈f,zη〉−c)2/(2(|f |2+ε))|
∣∣∣∣Hk

( 〈f, zη〉 − c√
2(|f |2 + ε)

)∣∣∣∣

6
2−k/2

√
2π|f |2

( 1

|f |2 + ε

)k/2

× |e−(〈f,zη〉−c)2/(2(|f |2+ε))|α(k!)1/22k/2|e(〈f,zη〉−c)2/(4(|f |2+ε))|

6
α(k!)1/2√

2π

1

|f |k+1
|e−(〈f,zη〉−c)2/(4(|f |2+ε))|

170



6
α(k!)1/2√

2π

1

|f |k+1
ec

2/(2|f |2)e|〈f,zη〉|
2/(2|f |2)

6
α(k!)1/2√

2π

1

|f |k+1
ec

2/(2|f |2)e|z|
2|η|2/2.

Hence, we have shown the boundedness condition needed for the application of The-

orem 2.4. �

Note that the limit object in (N )′ obtained in Theorem 3.6 must coincide with the

Bochner integral in (N )′ in Theorem 3.1. This follows immediately from Theorem 2.2

and the fact that they have identical S-transforms.

4. Product and series of the derivative of

Donsker’s delta functional

In this section we will prove that finite products and infinite series of the derivatives

of Donsker’s delta functional are Hida distributions. We use the following notations:

~f := (f1, . . . , fn), ~c := (c1, . . . , cn), and ~λ := (λ1, . . . , λfn).

Theorem 4.1. Let fj ∈ H be linearly independent vectors, M = (fk, fl)k,l=1,...,n

be the corresponding Gram matrix, and cj ∈ R. Then,

Φ := δ(k),n(〈·, ~f〉 − ~c) :=

n∏

j=1

δ(k)cj (Xfj )

is a Hida distribution with S-transform is given by

SΦ(η) =
(−1)nk√

(2π)n2nk(det(M))k+1
e−(〈~f,η〉−~c)TM−1(〈~f,η〉−~c)/2Hn

k

( 〈~f, η〉 − ~c√
2|~f |2

)
,

where

Hn
k

( 〈~f, η〉 − ~c√
2|~f |2

)
:=

n∏

j=1

Hk

( 〈fj , η〉 − cj√
2|fj|2

)
and η ∈ N .

The generalized expectation can be written as

Eµ(Φ) =
1√

(2π)n det(M)
e−~cTM−1~c/2

(
1√

2n det(M)

)k

Hn
k

(
~c√
2|~f |2

)
.
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P r o o f. Let η ∈ N , ~λk :=
n∏

j=1

λk
j , e

−i~λ~c := e−i
∑n

j=1 λjcj , and e〈ω,i~λ~fη〉 :=

e
∑n

j=1〈ω,iλjfj+η〉. By Fubini’s theorem, we obtain

(SΦ)(η) = S

( n∏

j=1

1

2π

∫

R

ikλk
j e

iλj(〈·,fj〉−cj) dλ

)
(η)

=
ink

(2π)n

〈〈 n∏

j=1

∫

R

λk
j e

iλj(〈·,fj〉−cj) dλ, :e〈·,η〉 :

〉〉

=
ink

(2π)n
e−|η|2/2

∫

Rn

~λke−i~λ~c

∫

N ′

e〈ω,i~λ~f+η〉 dµ(ω) dn~λ

=
ink

(2π)n
e−|η|2/2

∫

Rn

~λke−i~λ~ce|i
~λ~f+η|2 dn~λ

=
ink

(2π)n

∫

Rn

~λke−i~λ~ce〈i
~λ~f,i~λ~f〉/2+〈i~λ~f,η〉 dn~λ.

Next, we consider

〈i~λ~f, i~λ~f〉 = −
n∑

k,l=1

λkλl(fk, fl) = −~λ⊤M~λ,

where M = (fk, fl)k,l=1,...,n. This is a Gram matrix of linearly independent vectors

in H, and thus positive definite. Hence,

(SΦ)(η) =
ink

(2π)n

∫

Rn

~λke
~λ⊤M~λ/2+i~λ(〈~f,η〉−~c) dn~λ

=
ink

(2π)n

n∏

j=1

√
2πe−(〈fj ,η〉−cj)

2/(2|fj |2) i
k2−k/2

|fj |k+1
Hk

( 〈fj, η〉 − cj√
2|fj|2

)

=
(−1)nk√

(2π)n2nk(det(M))k+1
e−(〈~f,η〉−~c)TM−1(〈~f,η〉−~c)/2Hn

k

( 〈~f, η〉 − ~c√
2|~f |2

)
.

By using the same argument as in the proof of Theorem 3.6 we obtain

|SΦ(zη)| = 1√
(2π)n2nk(det(M))k+1

n∏

j=1

∣∣e−(〈fj ,η〉−cj)
2/(2|fj |2)∣∣

∣∣∣∣Hk

( 〈fj , η〉 − cj√
2|fj|2

)∣∣∣∣

6

√(α2k!

2π

)n 1

det(M)k+1

n∏

j=1

|e−(〈fj ,η〉−cj)
2/(4|fj |2)|

6

√(α2k!

2π

)n 1

det(M)k+1
e~c

⊤M−1~c/2en|z|
2|η|2/2.
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Therefore, the S-transform of Φ is analytically continued and is uniformly bounded

of second order. From Theorem 2.2 we conclude that Φ ∈ (N )′. �

Theorem 4.2. Let fj, j = 1, . . . , n be linearly independent vectors in H
and M = (fk, fl)k,l=1,...,n the corresponding Gram matrix. If F : R

n → C is in

Lp(Rn, e−~x⊤M−1~x/4 dn~x) for some p > 1, then Ψ :=
∫
Rn F (~x)δ(k),n(〈·, ~f〉 − ~x)dn~x is

a Bochner integral in (N )′.

P r o o f. From the proof of Theorem 4.1 we have for η ∈ N

|Sδ(k),n(〈·, ~f〉 − ~x)(η)|

6

√(α2k!

2π

)n 1

det(M)k+1
e−~x⊤M−1~x/4

n∏

j=1

e|〈fj ,zη〉|
2/(4|fj |2)eεx

2
j/|fj |2+|〈fj ,zη〉|2/(4ε|fj |2)

=

√(α2k!

2π

)n 1

det(M)k+1
e−(1/4−ε)~x⊤M−1~xen(1+|z|2|η|2/ε)/4.

Now we choose q > 1 with p−1 + q−1 = 1 and ε > 0 such that qε < 1
4 . Then, by

Hölder’s inequality

|SΨ(zη)| 6
√(α2k!

2π

)n 1

det(M)k+1
en(1+|z|2|η|2/ε)/4

∫

Rn

|F (~x|e−(1/4−ε)~x⊤M−1~x dn~x

6

√(α2k!

2π

)n 1

det(M)k+1
en(1+|z|2|η|2/ε)/4

×
(∫

Rn

|F (~x)|pe−~x⊤M−1~x/4 dn~x

)1/p(∫

Rn

e−(1/4−qε)~x⊤M−1~x dn~x

)1/q

.

The last integrals are finite by our assumptions. Hence Theorem 2.3 applies and the

proof is finished. �

Now we prove a result on a series of the derivative of Donsker’s delta functional.

Theorem 4.3. Let f ∈ H \ {0}, c ∈ R, and k ∈ N ∪ {0}. The infinite series
ϕ :=

∞∑
n=−∞

δ
(k)
c (Xf + n) is a Hida distribution with S-transform

Sϕ(η) = p|f |2(〈·, f〉 − c)

( −1√
2|f |2

)k ∞∑

n=−∞
e(2n〈f,η〉−n2)/(2|f |2)Hk

( 〈f, η〉 − c+ n√
2|f |2

)
.
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P r o o f. Let us define for N ∈ N the finite sum ϕN :=
N∑

n=−N

δ(k)(〈·, f〉 − c+ n).

It is obvious that ϕN ∈ (N )′ and its S-transform is given by

SϕN (η) =
1√
2π

(−1)k2−k/2

|f |k+1

N∑

n=−N

e−(〈f,η〉−c+n)2/(2|f |2)Hk

( 〈f, η〉 − c+ n√
2|f |2

)
.

Our goal is to show that ϕN converges in (N )′ as N → ∞. We find a uniform bound
in N as follows. Let η ∈ N and z ∈ C. Then,

|SϕN (zη)| 6 α(k!)1/2√
2π|f |k+1

N∑

n=−N

∣∣e−(〈f,zη〉−c+n)2/(4|f |2)∣∣

6
α(k!)1/2√
2π|f |k+1

e|〈f,zη〉−c|2/|f |2
N∑

n=−N

e−n2/(8|f |2)

6
α(k!)1/2√
2π|f |k+1

eβc
2/|f |2eγ|z|

2|η|2
∞∑

n=−∞
e−n2/(8|f |2)

for some constants β, γ > 0. The last series can be written in terms of the Jacobi

theta function ϑ(z, τ) =
∞∑

n=−∞
eπiτn2+2πinz , which converges for all z ∈ C and τ in

the upper half plane, see e.g. [18]. Hence,

|SϕN (zη)| 6 α(k!)1/2√
2π|f |k+1

eβc
2/|f |2eγ|z|

2|η|2ϑ
(
0,

i

8π|f |2
)
.

Now, Theorem 2.4 delivers the convergence of ϕN to ϕ in (N )′ as N → ∞. Further-
more,

Sϕ(η) =
1√
2π

(−1)k2−k/2

|f |k+1

∞∑

n=−∞
e−(〈f,η〉−c+n)2/(2|f |2)Hk

( 〈f, η〉 − c+ n√
2|f |2

)

=
1√
2π

e−(〈f,η〉−c)2/(2|f |2) (−1)k2−k/2

|f |k+1

×
∞∑

n=−∞
e(2n〈f,η〉−n2)/(2|f |2)Hk

( 〈f, η〉 − c+ n√
2|f |2

)

= p|f |2(〈·, f〉 − c)

( −1√
2|f |2

)k ∞∑

n=−∞
e(2n〈f,η〉−n2)/(2|f |2)Hk

( 〈f, η〉 − c+ n√
2|f |2

)
.

�
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In the case k = 0 we obtain a nice expression

Sϕ(η) = p|f |2(〈·, f〉 − c)ϑ
(
− i〈f, η〉
2π|f |2 ,

i

2π|f |2
)
.
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