
Mathematica Bohemica

Sandeep P. Bhairat; Dnyanoba-Bhaurao Dhaigude
Existence of solutions of generalized fractional differential equation with nonlocal initial
condition

Mathematica Bohemica, Vol. 144 (2019), No. 2, 203–220

Persistent URL: http://dml.cz/dmlcz/147760

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147760
http://dml.cz


144 (2019) MATHEMATICA BOHEMICA No. 2, 203–220

EXISTENCE OF SOLUTIONS OF GENERALIZED

FRACTIONAL DIFFERENTIAL EQUATION WITH

NONLOCAL INITIAL CONDITION

Sandeep P. Bhairat, Mumbai,

Dnyanoba-Bhaurao Dhaigude, Aurangabad

Received December 7, 2017. Published online September 5, 2018.
Communicated by Alexandr Lomtatidze

Abstract. This paper is devoted to studying the existence of solutions of a nonlocal
initial value problem involving generalized Katugampola fractional derivative. By using
fixed point theorems, the results are obtained in weighted space of continuous functions.
Illustrative examples are also given.
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1. Introduction

Fractional calculus has been proved to be an adequate tool in various areas of

applied mathematics, physics and engineering. The fractional differential equations

are used to describe the abundant phenomena such as flow in nonlinear electric

circuits, properties of viscoelastic and dielectric materials, nonlinear oscillations of

earthquake, mechanics, aerodynamics, regular variations in thermodynamics, etc.

Indeed, after the appearance of the work by Bagley and Torvik (see [3]–[5]), the

fractional calculus ranged from theoretical aspect towards applications, also see [18],

[17], [24]. In past decades, considerable attention has been given to the existence

of solutions of initial and boundary value problems. For the fundamental results

in existence theory see survey papers [1], [2], the monographs by Kilbas et al. [23],

Podlubny [26], the papers [27], [7]–[15], [19], [22], [25], [28] and references therein.
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Recently, the authors in [7] discussed the existence and stability of solution of the

initial value problem (IVP)

(1)

{

(̺Dα,β
a+ x)(t) = f(t, x(t)), t ∈ Ω = [a, b],

(̺I1−γ
a+ x)(a) = c2, c2 ∈ R, γ = α+ β(1 − α)

for generalized Katugampola fractional differential equation by using Schauder fixed

point theorem and the equivalence between IVP (1) and the integral equation

(2) x(t) =
c2

Γ(γ)

( t̺ − a̺

̺

)γ−1

+

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds.

In this paper, we study the following IVP with nonlocal initial condition:

(3)







(̺Dα,β
a+ x)(t) = f(t, x(t)), 0 < α < 1, 0 6 β 6 1, t ∈ (a, T ],

(̺I1−γ
a+ x)(a+) =

m
∑

j=1

ηjx(ξj), α 6 γ = α+ β(1− α), ξj ∈ (a, T ],

where ̺Dα,β
a+ is the generalized Katugampola fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1], and ̺I1−γ
a+ is the Katugampola fractional integral with ̺ > 0,

see Section 2 for definitions. Function f : (a, T ]× R → R is a given function, ξj are

pre-fixed points satisfying 0 < a < ξ1 6 . . . 6 ξm < T and ηj , j = 1, 2, . . . ,m are

real numbers. We study the existence of solutions of nonlocal initial value problem

(NIVP) (3). First, we establish an equivalent mixed-type nonlinear Volterra integral

equation

(4) x(t) =
K

Γ(α)

( t̺ − a̺

̺

)γ−1 m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds

+
1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1

f(s, x(s)) ds,

where

(5) K =

(

Γ(γ)−

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)γ−1
)−1

for NIVP (3) in the weighted space of continuous functions C1−γ,̺[a, T ] presented

in the next section. We utilize the Kasnosel’skii fixed point theorem, Schauder fixed

point theorem and Schaefer fixed point theorem to obtain the existence results of

considered NIVP (3).

We start with some preliminaries in Section 2. We prove the equivalent integral

equation in Section 3 followed by existence results in Section 4. An illustrative

examples are given in the last section.
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2. Preliminaries

In this section, we list some definitions and lemmas required throughout the paper.

Let the Euler gamma and beta functions be defined, respectively, by

Γ(α) =

∫

∞

0

xα−1e−x dx, B(α, β) =

∫ 1

0

(1− x)
α−1

xβ−1 dx, α > 0, β > 0.

It is well known that B(α, β) = Γ(α)Γ(β)/Γ(α + β) for α > 0, β > 0, see [23].

Throughout the paper, we consider [a, T ], 0 < a < T < ∞ being a finite interval

on R
+ and ̺ > 0.

Definition 2.1 ([23]). The space Xp
c (a, T ), c ∈ R, p > 1 consists of those real-

valued Lebesgue measurable functions g on (a, T ) for which ‖g‖Xp
c
< ∞, where

‖g‖Xp
c
=

(
∫ b

a

|tcg(t)|
p dt

t

)1/p

, p > 1 and ‖g‖X∞

c
= ess sup

a6t6T
|tcg(t)|.

In particular, when c = 1/p, we see that Xc
1/p(a, T ) = Lp(a, T ).

Definition 2.2 ([25]). We denote by C[a, T ] a space of continuous functions g

on (a, T ] with the norm

‖g‖C = max
t∈[a,T ]

|g(t)|.

The weighted space Cγ,̺[a, T ], 0 6 γ < 1 of functions g on (a, T ] is defined as

Cγ,̺[a, T ] =
{

g : (a, T ] → R :
( t̺ − a̺

̺

)γ

g(t) ∈ C[a, T ]
}

(6)

with the norm

‖g‖Cγ,̺
=

∥

∥

∥

( t̺ − a̺

̺

)γ

g(t)
∥

∥

∥

C

= max
t∈[a,T ]

∣

∣

∣

( t̺ − a̺

̺

)γ

g(t)
∣

∣

∣
,

and C0,̺[a, T ] = C[a, T ].

Definition 2.3 ([25]). Let δ̺ = (t̺−1d/dt), 0 6 γ < 1. Denote Cn
δ̺,γ

[a, T ] the

Banach space of functions g which are continuously differentiable, with δ̺, on [a, T ]

upto order (n− 1) and have the derivative δn̺ g on (a, T ] such that δn̺ g ∈ Cγ,̺[a, T ]:

Cn
δ̺,γ [a, T ] = {δk̺g ∈ C[a, T ], k = 0, 1, . . . , n− 1, δn̺ g ∈ Cγ,̺[a, T ]}, n ∈ N

with the norm

‖g‖Cn
δ̺,γ

=
n−1
∑

k=0

‖δk̺g‖C + ‖δn̺ g‖Cγ,̺
, ‖g‖Cn

δ̺

=
n
∑

k=0

max
t∈Ω

|δk̺g(t)|.

In particular, for n = 0 we have C0
δ̺,γ

[a, T ] = Cγ,̺[a, T ].
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Definition 2.4 ([20]). Let α > 0 and f ∈ Xp
c (a, T ), where X

p
c is as in Defini-

tion 2.1. The left-sided Katugampola fractional integral ̺Iαa+ of order α is defined as

̺Iαa+f(t) =

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1 f(s)

Γ(α)
ds, t > a.(7)

Definition 2.5 ([21]). Let α ∈ R
+ \ N and n = [α] + 1, where [α] is the integer

part of α. The left-sided Katugampola fractional derivative ̺Dα
a+ is defined as

(8) ̺Dα
a+f(t) = δn̺ (

̺In−α
a+ f(s))(t)

=
(

t̺−1 d

dt

)n
∫ t

a

s̺−1
( t̺ − s̺

̺

)n−α−1 f(s)

Γ(n− α)
ds.

Definition 2.6 ([25]). The left-sided generalized Katugampola fractional deriva-

tive ̺Dα,β
a+ of order 0 < α < 1 and type 0 6 β 6 1 is defined as

(̺Dα,β
a+ f)(t) = (̺I

β(1−α)
a+ δ̺

̺I
(1−β)(1−α)
a+ f)(t)(9)

for the functions for which the right-hand side expression exists.

Lemma 2.7. Suppose that α > 0, β > 0, p > 1 and ̺, c ∈ R such that ̺ > c.

Then for f ∈ Xp
c (a, T ), the semigroup property of Katugampola integral is valid.

This is

̺Iαa+
̺Iβa+f(t) =

̺Iα+β
a+ f(t).(10)

Lemma 2.8 ([21]). Suppose that α > 0, 0 6 γ < 1 and f ∈ Cγ,̺[a, T ]. Then for

all t ∈ (a, T ],
̺Dα

a+
̺Iαa+f(t) = f(t).

Lemma 2.9 ([21]). Suppose that α > 0, 0 6 γ < 1, f ∈ Cγ,̺[a, T ] and
̺I1−α

a+ f ∈

C1
γ,̺[a, T ]. Then

̺Iαa+
̺Dα

a+f(t) = f(t)−
̺I1−α

a+ f(a)

Γ(α)

( t̺ − a̺

̺

)α−1

.
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Lemma 2.10. Suppose ̺Iαa+ and
̺Dα

a+ are defined as in Definitions 2.4 and 2.5,

respectively. Then

̺Iαa+

( t̺ − a̺

̺

)σ−1

=
Γ(σ)

Γ(σ + 1)

( t̺ − a̺

̺

)α+σ−1

, α > 0, σ > 0, t > a,

̺Dα
a+

( t̺ − a̺

̺

)α−1

= 0, 0 < α < 1.

R em a r k 2.11. For 0 < α < 1, 0 6 β 6 1, the generalized Katugampola frac-

tional derivative ̺Dα,β
a+ can be written in terms of Katugampola fractional deriva-

tive as

̺Dα,β
a+ = ̺I

β(1−α)
a+ δ̺

̺I1−γ
a+ = ̺I

β(1−α)
a+

̺Dγ
a+, γ = α+ β(1− α).

Lemma 2.12 ([25]). Let α > 0, 0 < γ 6 1 and f ∈ C1−γ,̺[a, b]. If α > γ, then

(̺Iαa+f)(a) = lim
x→a+

(̺Iαa+f)(t) = 0.

To discuss the existence of a solution of NIVP (3), we need the following spaces:

(11) Cα,β
1−γ,̺[a, T ] = {g ∈ C1−γ,̺[a, T ] :

̺Dα,β
a+ g ∈ C1−γ,̺[a, T ]}, 0 < γ 6 1

and

Cγ
1−γ,̺[a, T ] = {g ∈ C1−γ,̺[a, T ] :

̺Dγ
a+g ∈ C1−γ,̺[a, T ]}, 0 < γ 6 1.

Since ̺Dα,β
a+ g = ̺I

β(1−α)
a+

̺Dγ
a+g, it is obvious that C

γ
1−γ,̺[a, T ] ⊂ Cα,β

1−γ,̺[a, T ].

Lemma 2.13. Let α > 0, β > 0 and γ = α+ β − αβ. If g ∈ Cγ
1−γ,̺[a, T ], then

̺Iγa+
̺Dγ

a+g(t) =
̺Iαa+

̺Dα,β
a+ g(t) = ̺D

β(1−α)
a+ g(t).
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3. Equivalent integral equation

To establish the equivalence between NIVP (3) with Volterra integral equation (4),

we recall the following lemma.

Lemma 3.1 ([25]). Let 0 < α < 1, 0 6 β 6 1, γ = α+β−αβ. If f : (a, T ]×R → R

is a function such that f(·, x(·)) ∈ C1−γ,̺[a, T ] for any x ∈ C1−γ,̺[a, T ], then x ∈

Cγ
1−γ,̺[a, T ] satisfies IVP (1) if and only if x satisfies the nonlinear Volterra integral

equation (2).

Using the aforementioned equivalence, we prove a new equivalent mixed-type in-

tegral equation for NIVP (3).

Lemma 3.2. Consider 0 < α < 1, 0 6 β 6 1 and γ = α + β − αβ. Suppose

that f : (a, T ] × R → R is a function such that f(·, x(·)) ∈ C1−γ,̺[a, T ] for any

x(·) ∈ C1−γ,̺[a, T ]. Function x(·) ∈ Cγ
1−γ,̺[a, T ] is a solution of NIVP (3) if and

only if x(·) is a solution of the mixed-type nonlinear Volterra integral equation (4).

P r o o f. First, we prove the necessary condition. In the light of Lemma 3.1, a

solution of NIVP (3) can be expressed as

(12) x(t) =
̺I1−γ

a+ x(a+)

Γ(γ)

( t̺ − a̺

̺

)γ−1

+

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds.

A substitution t = ξj in (12) yields

(13) x(ξj) =
̺I1−γ

a+ x(a+)

Γ(γ)

(ξ̺j − a̺

̺

)γ−1

+

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds

and by multiplying both sides of (13) by ηj , we obtain

ηjx(ξj) =
̺I1−γ

a+ x(a+)

Γ(γ)
ηj

(ξ̺j − a̺

̺

)γ−1

+ ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds.

By the initial condition of NIVP (3),

̺I1−γ
a+ x(a+) =

m
∑

j=1

ηjx(ξj) =
̺I1−γ

a+ x(a+)

Γ(γ)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)γ−1

+

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds,
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which implies

̺I1−γ
a+ x(a+)

(

Γ(γ)−

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)γ−1
)

=
Γ(γ)

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds

i.e.

̺I1−γ
a+ x(a+) =

Γ(γ)

Γ(α)
K

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds,(14)

where K is as in (5). Substituting (14) into (12), we obtain the integral equation (4).

Now we prove the sufficient condition. Applying ̺I1−γ
a+ on both sides of the integral

equation (4), we get

̺I1−γ
a+ x(t) = ̺I1−γ

a+

( t̺ − a̺

̺

)γ−1

K

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds

+ ̺I1−γ
a+

̺Iαa+f(t, x(t)),

using Lemmas 2.7 and 2.10, we have

̺I1−γ
a+ x(t) =

Γ(γ)

Γ(α)
K

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds+ ̺I
1−β(1−α)
a+ f(t, x(t)).

Since 1− γ < 1− β(1 − α), Lemma 2.12 can be utilized and limit t → a+ yields

(15) ̺I1−γ
a+ x(a) =

Γ(γ)

Γ(α)
K

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds.

A substitution t = ξj in (4) gives us

x(ξj) =
K

Γ(α)

(ξ̺j − a̺

̺

)γ−1 m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds

+
1

Γ(α)

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds.
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Further,

(16)

m
∑

j=1

ηjx(ξj)

=
K

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)γ−1

+
m
∑

j=1

ηj
1

Γ(α)

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds

=

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds

(

1 +K

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)γ−1
)

=
Γ(γ)

Γ(α)
K

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds.

Linking (15) and (16), it follows that

̺I1−γ
a+ x(a+) =

m
∑

j=1

ηjx(ξj).

Applying ̺Dγ
a+ to both sides of (4), from Lemmas 2.10 and 3.1 if follows that

(17) ̺Dγ
a+x(t) =

̺D
β(1−α)
a+ f(t, x(t)).

Since x ∈ Cγ
1−γ,̺[a, T ], from the definition of C

γ
1−γ,̺[a, T ] we have

̺Dγ
a+x ∈ C1−γ,̺[a, T ] then

̺D
β(1−α)
a+ f = δ̺

̺I
1−β(1−α)
a+ f ∈ C1−γ,̺[a, T ].

For f ∈ C1−γ,̺[a, T ], obviously
̺I

1−β(1−α)
a+ f ∈ C1−γ,̺[a, T ], then

̺I
1−β(1−α)
a+ f ∈

C
δ̺
1−γ,̺[a, T ]. This means f and

̺I
1−β(1−α)
a+ f satisfy the conditions of Lemma 2.9.

Lastly, applying ̺I
1−β(1−α)
a+ to both sides of (17), Lemma 2.9 helps us to obtain

̺Dα,β
a+ x(t) = f(t, x(t))−

̺I
1−β(1−α)
a+ f(a)

Γ(β(1 − α))

( t̺ − a̺

̺

)β(1−α)−1

.

By Lemma 2.12, it is easy to see that ̺I
1−β(1−α)
a+ f(a) = 0. Hence, it reduces to

̺Dα,β
a+ x(t) = f(t, x(t)).

Hence, the sufficiency is proved. This completes the proof of the lemma. �
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4. Existence of solutions

In this section, we state and prove the main results concerning the existence of a

solution of NIVP (3). We consider the following hypotheses:

(H01) f : (a, T ] × R → R is a function such that f(·, x(·)) ∈ C
β(1−α)
1−γ,̺ [a, T ] for any

x ∈ C1−γ,̺[a, T ] and there exists a positive constant L > 0 such that for all

x, x̄ ∈ R,

|f(t, x(t))− f(t, x̄(t))| 6 L|x− x̄|.

(H02) The constant

θ =
Γ(γ)L

Γ(γ + α)

(

|K|

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

+
(T ̺ − a̺

̺

)α
)

< 1,

where K is as in (5).

Now we prove the first existence result for NIVP (3) by using Kasnosel’skii fixed

point theorem.

Theorem 4.1. Suppose that (H01) and (H02) are satisfied. Then NIVP (3) has

at least one solution in Cγ
1−γ,̺[a, T ] ⊂ Cα,β

1−γ,̺[a, T ].

P r o o f. In the light of Lemma 3.2, it is sufficient to prove the existence of a

solution for mixed-type integral equation (4). Define N : C1−γ,̺[a, T ] → C1−γ,̺[a, T ]

by

(Nx)(t) =
K

Γ(α)

( t̺ − a̺

̺

)γ−1 m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds(18)

+
1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1

f(s, x(s)) ds.

Clearly, the operator N is well defined.

Set f(s) = f(s, 0) and

̟ =
Γ(γ)

Γ(γ + α)

(

|K|
m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

+
(T ̺ − a̺

̺

)α
)

‖f‖C1−γ,̺
.

Consider a ball

Br = {x ∈ C1−γ,̺[a, T ] : ‖x‖C1−γ,̺
6 r}, where r >

̟

1− θ
, θ < 1.
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Now, we subdivide the operator N into two operators P and Q on Br as follows:

(19) (Px)(t) =
K

Γ(α)

( t̺ − a̺

̺

)γ−1 m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds

and

(20) (Qx)(t) =
1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1

f(s, x(s)) ds.

The proof is given in the following several steps:

Step 1. For any x, x̄ ∈ Br we prove Px + Qx̄ ∈ Br. For operator P, multiplying

both sides of (19) by ((t̺ − a̺)/̺)1−γ , we have

(Px)(t)
( t̺ − a̺

̺

)1−γ

=
K

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

f(s, x(s)) ds,

then

∣

∣

∣
(Px)(t)

( t̺ − a̺

̺

)1−γ∣
∣

∣
6

|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

|f(s, x(s))| ds

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

(|f(s, x(s)) − f(s, 0)|+ |f(s, 0)|) ds

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

(L|x(s)|+ |f(s)|) ds

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1(s̺ − a̺

̺

)γ−1

×
((s̺ − a̺

̺

)1−γ

L|x(s)|+
(s̺ − a̺

̺

)1−γ

|f(s)|
)

ds

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1(s̺ − a̺

̺

)γ−1

× (L‖x‖C1−γ,̺
+ ‖f‖C1−γ,̺

)

=
|K|

Γ(α)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1
∫ 1

0

(1 − u)α−1uγ−1 du

× (L‖x‖C1−γ,̺
+ ‖f‖C1−γ,̺

)

=
|K|

Γ(α)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

B(α, γ)(L‖x‖C1−γ,̺
+ ‖f‖C1−γ,̺

).
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This gives

(21) ‖Px‖C1−γ,̺
6

Γ(γ)|K|

Γ(α+ γ)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

(L‖x‖C1−γ,̺
+ ‖f‖C1−γ,̺

).

For operator Q,

( t̺ − a̺

̺

)1−γ

(Qx)(t) =
1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1( t̺ − a̺

̺

)1−γ

f(s, x(s)) ds

using the same fact that we used in the case of operator P again, we obtain

∣

∣

∣
(Qx)(t)

( t̺ − a̺

̺

)1−γ∣
∣

∣

6
1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1( t̺ − a̺

̺

)1−γ

|f(s, x(s))| ds

6

( t̺ − a̺

̺

)1−γ 1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1

(L|x(s)|+ |f(s)|) ds

6
B(α, γ)

Γ(α)

(T ̺ − a̺

̺

)α

(L‖x(s)‖C1−γ,̺
+ ‖f(s)‖C1−γ,̺

).

This implies

(22) ‖Qx‖C1−γ,̺
6

Γ(γ)

Γ(α+ γ)

(T ̺ − a̺

̺

)α

(L‖x(s)‖C1−γ,̺
+ ‖f(s)‖C1−γ,̺

).

Linking (21) and (22) for every x, x̄ ∈ Br we obtain

‖Px+Qx̄‖C1−γ,̺
6 ‖Px‖C1−γ,̺

+ ‖Qx̄‖C1−γ,̺
6 θr +̟ 6 r,

which infers that Px+Qx̄ ∈ Br.

Step 2. Operator P is a contraction mapping. Let x, x̄ ∈ Br, for operator P we

have

((Px)(t) − (P x̄)(t))
( t̺ − a̺

̺

)1−γ

=
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

(f(s, x(s))− f(s, x̄(s))) ds

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

(|f(s, x(s))− f(s, x̄(s))|) ds

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

L|x(s)− x̄(s)| ds

6
L|K|B(α, γ)

Γ(α)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

‖x− x̄‖C1−γ,̺
,
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which is

‖Px− P x̄‖C1−γ,̺
6

L|K|Γ(γ)

Γ(α+ γ)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

‖x− x̄‖C1−γ,̺
6 θ‖x− x̄‖C1−γ,̺

.

Thus, by assumption (H02), operator P is a contraction mapping.

Step 3. Operator Q is compact and continuous. Since f ∈ C1−γ,̺[a, T ], by the

definition of C1−γ,̺[a, T ], it is obvious that Q is continuous. By Step 1, we can write

‖Qx‖C1−γ,̺
6

Γ(γ)

Γ(γ + α)

(T ̺ − a̺

̺

)α

(L‖x‖C1−γ,̺
+ ‖f‖C1−γ,̺

),

this means Q is uniformly bounded on Br.

To prove the compactness of Q, for any 0 < a < t1 < t2 6 T we have

(23) |(Qx)(t1)− (Qx)(t2)|

=

∣

∣

∣

∣

∫ t1

a

s̺−1
( t1

̺ − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds

−

∫ t2

a

s̺−1
( t2

̺ − s̺

̺

)α−1 f(s, x(s))

Γ(α)
ds

∣

∣

∣

∣

6
‖f‖C1−γ,̺

Γ(α)

∣

∣

∣

∣

∫ t1

a

s̺−1
( t1

̺ − s̺

̺

)α−1(s̺ − a̺

̺

)γ−1

ds

−

∫ t2

a

s̺−1
( t2

̺ − s̺

̺

)α−1(s̺ − a̺

̺

)γ−1

ds

∣

∣

∣

∣

6
‖f‖C1−γ,̺

Γ(γ)

Γ(α+ γ)

∣

∣

∣

( t1
̺ − a̺

̺

)α+γ−1

−
( t2

̺ − a̺

̺

)α+γ−1∣
∣

∣
.

Observe that the right-hand side of inequality (23) tends to zero as t2 → t1 either

α+γ < 1 or α+γ > 1. Thus, Q is equicontinuous. Hence, in the light of Arzelà-Ascoli

theorem, Q is compact on Br.

By Kasnosel’skii fixed point theorem, NIVP (3) has at least one solution x ∈

C1−γ,̺[a, T ]. One can easily show that this solution is actually in Cγ
1−γ,̺[a, T ] by

repeating the process from the proof of Lemma 3.2. The proof is thus complete. �

We will study the next existence result by using Schauder fixed point theorem.

For this, we modify hypothesis (H01) to the following one:

(H11) f : (a, T ] × R → R is a function such that f(·, x(·)) ∈ C
β(1−α)
1−γ,̺ [a, T ] for any

x ∈ C1−γ,̺[a, T ], and for all x ∈ R there exist L > 0 and M > 0 such that

|f(t, x)| 6 L|x|+M.

Theorem 4.2. Suppose that (H11) and (H02) hold. Then NIVP (3) has at least

one solution in Cγ
1−γ,̺[a, T ] ⊂ Cα,β

1−γ,̺[a, T ].
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P r o o f. Let Bε = {x ∈ C1−γ,̺[a, T ] : ‖x‖C1−γ,̺
6 ε} with ε > Ω/(1− θ) for

θ < 1, where

Ω =
M |K|

Γ(α+ 1)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α

+
M

Γ(α+ 1)

(T ̺ − a̺

̺

)α−γ+1

.

Consider the operatorN onBε defined in (18). We prove the theorem in the following

three steps:

Step 1. We check that N(Bε) ⊂ Bε. By assumptions (H11) and (H02), for any

x ∈ C1−γ,̺[a, T ] and ‖x‖C1−γ,̺
we have

∣

∣

∣
(Nx)(t)

( t̺ − a̺

̺

)1−γ∣
∣

∣

6

(

LΓ(γ)

Γ(α+ γ)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

+
LΓ(γ)

Γ(γ + α)

(T ̺ − a̺

̺

)α
)

‖x‖C1−γ,̺

+
M

Γ(α+ 1)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α

+
M

Γ(α+ 1)

(T ̺ − a̺

̺

)α−γ+1

.

This is

‖Nx‖C1−γ,̺
6 θε+Ω 6 ε,

which yields N(Bε) ⊂ Bε.

Now we shall prove that N is completely continuous.

Step 2. N is continuous. Let xn be a sequence such that xn → x in Bε. Then for

each t ∈ (a, T ] we have

∣

∣

∣
((Nx)(xn)− (Nx)(t))

( t̺ − a̺

̺

)γ−1∣
∣

∣

6
|K|

Γ(α)

m
∑

j=1

ηj

∫ ξj

a

s̺−1
(ξ̺j − s̺

̺

)α−1

|f(s, xn(s))− f(s, x(s))| ds

+
( t̺ − a̺

̺

)1−γ 1

Γ(α)

∫ t

a

s̺−1
( t̺ − s̺

̺

)α−1

|f(s, xn(s))− f(s, x(s))| ds

6
|K|Γ(γ)

Γ(γ + α)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

‖f(·, xn(·))− f(·, x(·))‖C1−γ,̺

+
(T ̺ − a̺

̺

)α Γ(γ)

Γ(γ + α)
‖f(·, xn(·)) − f(·, x(·))‖C1−γ,̺

6
Γ(γ)

Γ(γ + α)

(

|K|

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

+
(T ̺ − a̺

̺

)α
)

× ‖f(·, xn(·))− f(·, x(·))‖C1−γ,̺
,
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this implies

‖Nxn −Nx‖C1−γ,̺
6

Γ(γ)

Γ(γ + α)

(

|K|

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

+
(T ̺ − a̺

̺

)α
)

× ‖f(·, xn(·))− f(·, x(·))‖C1−γ,̺
.

Thus, N is a continuous operator.

Step 3. N(Bε) is relatively compact. Since N(Bε) ⊂ Bε, it follows that N(Bε) is

uniformly bounded.

Furthermore, by repeating the same process as in Step 3 in Theorem 4.1, one can

easily prove that N is equicontinuous on Bε.

As α 6 γ < 1 and noting (23), for any 0 < a < t1 < t2 6 T one has

|(Nx)(t1)− (Nx)(t2)|

6
‖f‖C1−γ,̺

|K|Γ(γ)

Γ(α+ γ)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

×
(( t1

̺ − a̺

̺

)γ−1

−
( t2

̺ − a̺

̺

)γ−1)

+ |(Qx)(t1)− (Qx)(t2)|

6
‖f‖C1−γ,̺

|K|Γ(γ)

Γ(α+ γ)

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1
∣

∣

∣

∣

t2
̺ − t1

̺

(t1
̺ − a̺)(t2

̺ − a̺)

∣

∣

∣

∣

1−γ

+
‖f‖C1−γ,̺

Γ(γ)

Γ(γ + α)

∣

∣

∣

( t1
̺ − a̺

̺

)α+γ−1

−
( t2

̺ − a̺

̺

)α+γ−1∣
∣

∣
→ 0

as t2 → t1. Thus, Q is equicontinuous.

Hence, N(Bε) is an equicontinuous set and therefore N(Bε) is relatively compact.

As a consequence of Steps 1 to 3 together with Arzelà-Ascoli theorem, we can

conclude that N : Bε → Bε is completely continuous. By applying Schauder fixed

point theorem, we conclude the theorem. �

Next, we will prove the following existence theorem by using Schaefer fixed point

theorem. For this, we again change assumption (H11) into the following one:

(H21) f : (a, T ] × R → R is a function such that f(·, x(·)) ∈ C
β(1−α)
1−γ,̺ [a, T ] for any

x ∈ C1−γ,̺[a, T ], and for all x ∈ R there exist a function µ(t) ∈ C1−γ,̺[a, T ]

such that

|f(t, x)| 6 µ(t).

Theorem 4.3. Suppose that (H21) holds. Then NIVP (3) has at least one solution

in Cγ
1−γ,̺[a, T ] ⊂ Cα,β

1−γ,̺[a, T ].
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P r o o f. As in the proof of Theorem 4.2, one can repeat Steps 1 to 3 and

show that N : C1−γ,̺[a, T ] → C1−γ,̺[a, T ] defined in (18) is a completely continuous

operator. It remains to prove that S = {x ∈ C1−γ,̺[a, T ] : x = σNx for some

σ ∈ (0, 1)} is a bounded set. It follows that

∣

∣

∣
x(t)

( t̺ − a̺

̺

)1−γ∣
∣

∣
6

∥

∥

∥
(Nx)(t)

( t̺ − a̺

̺

)1−γ∥
∥

∥

6
Γ(γ)‖µ‖C1−γ,̺

Γ(α+ γ)

×

(

|K|

m
∑

j=1

ηj

(ξ̺j − a̺

̺

)α+γ−1

+
(T ̺ − a̺

̺

)α
)

= C1,

and ‖x‖C1−γ,̺
6 C1, which implies the boundedness of the set S. By using Schaefer

fixed point theorem, the proof can be completed. �

R em a r k 4.4. The results in [28] for Hilfer fractional differential equations with

nonlocal initial condition can be obtained for ̺ → 1 from the main results of this

paper.

R em a r k 4.5. The results in [16] for Cauchy problem involving Riemann-

Liouville fractional derivative with nonlocal initial condition can be obtained for

β = 0, ̺ → 1 from the main results of this paper.

R em a r k 4.6. The continuous and integrable solution of Cauchy-type problem

(see [6]) for Hilfer-Hadamard fractional differential equations with nonlocal condition

can be obtained for ̺ → 0+ from the main results of this paper.

5. Examples

We consider the following illustrative examples for the NIVP (3).

E x am p l e 5.1. Consider the nonlocal problem

(24)

{

(̺Dα,β
a+ x)(t) = f(t, x(t)), t ∈ (1, 2],

(̺I1−γ
a+ x)(1+) = 2x

(

5
3

)

, γ = α+ β(1 − α).

Denoting α = 3
4 , β = 1

2 gives γ = 7
8 . Let ̺ = 1

2 > 0 and set

f(t, x) =
( t̺ − 1

̺

)−1/16

+
1

4

( t̺ − 1

̺

)15/16

sinx.
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We can see that

( t1/2 − 1
1
2

)1/8

f(t, x(t)) =
( t1/2 − 1

1
2

)1/16

+
1

4

( t1/2 − 1
1
2

)17/16

sinx ∈ C[1, 2]

i.e. f(t, x) ∈ C1/8,1/2[1, 2].

Moreover, |f(t, x)− f(t, x̄)| 6 1
4 |x− x̄|. Some elementary computations gives us

|K| =

∣

∣

∣

∣

(

Γ(0.875)− 2

(

(53 )
1/2 − 1
1
2

)−1/8)−1∣
∣

∣

∣

≈ 0.9521 < 1

and

θ =
Γ(0.875)

4Γ(1.625)

(

|K| × 2

(

(53 )
1/2 − 1
1
2

)5/8

+

(

21/2 − 1
1
2

)3/4)

≈ 0.6763 < 1.

All the assumptions of Theorem 4.1 are satisfied with |K| ≈ 0.9521 and θ ≈ 0.6763.

Therefore, NIVP (24) has at least one solution in C1/8,1/2[1, 2].

E x am p l e 5.2. Consider the nonlocal problem

(25)

{

(̺Dα,β
a+ x)(t) = f(t, x(t)), t ∈ (1, 2],

(̺I1−γ
a+ x)(1+) = 3x

(

8
7

)

+ 2x
(

4
3

)

.

Denote α = 1
2 , β = 3

4 and ̺ = 1
2 > 0. So γ = 7

8 and (ξ1 = 8
7 ) 6 (ξ2 = 4

3 ). Set

f(t, x) = sin (13 |x|) for t ∈ (1, 2]. It is easy to see that f(t, x(t)) ∈ C1/8,1/2[1, 2] and

|f(t, x)| 6 1
3 |x|. Moreover,

|K| =

∣

∣

∣

∣

(

Γ(0.875)−

(

3

(

(87 )
1/2 − 1
1
2

)−1/8

+ 2

(

(43 )
1/2 − 1
1
2

)−1/8))−1∣
∣

∣

∣

≈ 0.1973 < 1

and

θ =
Γ(0.875)

3Γ(1.375)

(

|K| × 3

(

(87 )
1/2 − 1
1
2

)3/8

+ 2

(

(43 )
1/2 − 1
1
2

)3/8)

≈ 0.71 < 1.

With the values of |K| and θ, the NIVP (25) satisfies all the conditions of Theo-

rem 4.2. Thus, NIVP (25) has at least one solution in C1/8,1/2[1, 2].

E x am p l e 5.3. In the NIVP (25), we denote α = 1
2 , β = 3

4 , ̺ = 1
2 and change

f(t, x) into f(t, x(t)) = ((t̺ − 1)/̺)−1/8 = µ(t) for t ∈ (1, 2]. It is easy to see that f

so defined is in C1/8,1/2[1, 2] and µ(t) ∈ C1/8,1/2[1, 2]. Now we can apply Theorem 4.3

and easily deduce that NIVP (25) has at least one solution in C1/8,1/2[1, 2].
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6. Conclusions

In this paper we have obtained the existence results for a general class of fractional

differential equations with nonlocal initial condition by using fixed point theory.

Results obtained in this paper generalizes the existing results in the literature. The

existence of solution is assured and some suitable illustrative examples are given in

the support of our main results.
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