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α-modules and generalized submodules

Rafiquddin, Ayazul Hasan, Mohammad Fareed Ahmad

Abstract. A QTAG-module M is an α-module, where α is a limit ordinal,
if M/Hβ(M) is totally projective for every ordinal β < α. In the present
paper α-modules are studied with the help of α-pure submodules, α-basic
submodules, and α-large submodules. It is found that an α-closed α-module
is an α-injective. For any ordinal ω ≤ α ≤ ω1 we prove that an α-large
submodule L of an ω1-moduleM is summable if and only ifM is summable.

1 Introduction and Preliminary Terminology
Let R be any ring. A module M in which the lattice of its submodule is totally
ordered is called a serial module; in addition, if it has finite composition length,
it is called a uniserial module. An element x ∈ M is uniform, if xR is a non-
zero uniform (hence uniserial) module, and for any R-module M with a unique
decomposition series, d(M) denotes its decomposition length.

Modules are the natural generalizations of abelian groups. The results for
abelian groups can be generalized for modules after imposing some conditions on
modules/rings. In 1976 Singh [15] started the study of TAG-modules satisfying the
following two conditions while the rings were associative with unity.

1. Every finitely generated submodule of any homomorphic image of M is a
direct sum of uniserial modules.

2. Given any two uniserial submodules U and V of a homomorphic image of M ,
for any submodule W of U , any non-zero homomorphism f : W → V can be
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extended to a homomorphism g : U → V , provided the composition length
d(U/W ) ≤ d(V/f(W )).

Later on Benabdallah, Singh, Khan etc. contributed a lot to the study of TAG-
-modules [2], [17]. In 1987 Singh made an improvement and studied the modules
satisfying only the condition 1 and called them QTAG-modules. The study of
QTAG-modules and their structure began with work of Singh in [16]. This work,
executed by many authors, clearly parallels the earlier work on torsion abelian
groups. They studied different notions and structures on QTAG-modules and de-
veloped the theory of these modules by introducing different notions and charac-
terizing different submodules of QTAG-modules. Yet there is much to explore.

Throughout this paper, all the rings are associative with unity (1 6= 0) and
modules M are unital QTAG-modules. For a uniform element x ∈ M, e(x) =
d(xR) and

HM (x) = sup

{
d

(
yR

xR

) ∣∣∣∣ y ∈M, x ∈ yR and y uniform

}
are the exponent and height of x in M, respectively. Hk(M) denotes the submodule
of M generated by the elements of height at least k and Hk(M) is the submodule
of M generated by the elements of exponents at most k. Let us denote by M1,
the submodule of M , containing elements of infinite height. The module M is
h-divisible if M =M1 =

⋂∞
k=0 Hk(M). The module M is h-reduced if it does not

contain any h-divisible submodule. In other words, it is free from the elements of
infinite height. The module M is said to be bounded, if there exists an integer n
such that HM (x) ≤ n for every uniform element x ∈M .

The sum of all simple submodules of M is called the socle of M , denoted by
Soc(M) and a submodule S of Soc(M) is called a subsocle of M . The cardinality
of the minimal generating set of M is denoted by g(M). For all ordinals α, fM (α)

is the αth Ulm invariant of M and it is equal to g
(
Soc
(
Hα(M)

)
/ Soc

(
Hα+1(M)

))
.

A submodule N of M is h-pure in M if N ∩Hk(M) = Hk(N), for every integer
k ≥ 0. For an ordinal α, a submodule N ⊆ M is an α-high submodule of M if N
is maximal among the submodules of M that intersect Hα(M) trivially.

For an ordinal α, a submodule N of M is said to be an α-pure, if Hβ(M)∩N =
Hβ(N) for all β ≤ α and a submodule N of M is said to be isotype in M , if it
is α-pure for every ordinal α [13]. For a submodule N ⊆ M , the valuation of N
induced by height in M is defined by v(x) = HM (x), the height of x in M , for all
x ∈ N and N = K ⊕ L is a valuated direct sum if v(k + `) = min{v(k), v(`)} for
all k ∈ K and ` ∈ L [5].

A submodule B ⊆ M is a basic submodule [9] of M , if B is h-pure in M ,
B = ⊕Bi, where each Bi is the direct sum of uniserial modules of length i and
M/B is h-divisible. A fully invariant submodule L ⊆M is large [1], if L+B =M ,
for every basic submodule B in M .

Imitating [11], the submodules Hk(M), k ≥ 0 form a neighborhood system
of zero, thus a topology known as h-topology arises. Closed modules are also
closed with respect to this topology. Thus, the closure of N ⊆ M is defined as
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N =
⋂∞
k=0(N +Hk(M)). Therefore the submodule N ⊆ M is closed with respect

to h-topology if N = N .
An h-reduced QTAG-module M is summable [14] if Soc(M) =

⊕
β<α Sβ , where

Sβ is the set of all elements of Hβ(M) which are not in Hβ+1(M), where α is the
length of M . Moreover, M is called totally projective [10], if

Hα(Ext(M/Hα(M),M ′)) = 0

for all ordinal α and QTAG-modules M ′.
It is interesting to note that almost all the results which hold for TAG-modules

are also valid for QTAG-modules [13]. Our notations and terminology generally
agree with those in [3] and [4].

2 α-modules and α-basic submodules
Mehdi et al. [12] defined α-modules and introduced some new concepts for these
modules. The same type of study was continued in [6] and a number of results
have been obtained in terms of generalized submodules. Here we also continue
the similar study of α-modules that depend on the notions of summability, purity,
basic submodules, projectivity and injectivity. For facilitating the exposition and
for the convenience of the readers, we recall the definition of α-modules.

Definition 1. Let α denote the class of all QTAG-modules M such that M/Hβ(M)
is totally projective for all ordinals β < α, a limit ordinal. These modules are called
α-modules.

To develop the study, we need to prove some results, and we start with the
following.

Proposition 1. If N is an α-pure submodule of an α-module M , then N is itself
an α-module.

Proof. We actually only need that N ∩Hγ(M) = Hγ(N) for all γ < α. For then it
is a simple calculation to show that N+Hβ(M)/Hβ(M) is isotype in M/Hβ(M) for
each β < α. And therefore, N +Hβ(M)/Hβ(M) ∼= N/Hβ(N) is totally projective
for all β < α. �

As generalized the notion of a basic submodule in [12], by defining B to be an
α-basic submodule of an α-module M if B is totally projective of length at most α,
B is α-pure submodule of M , and M/B is h-divisible.

In order to establish the existence of α-basic submodules we require the follow-
ing notion for technical convenience.

Definition 2. Let α be a limit ordinal and M a QTAG-module. An α-high tower
of M is a well-ordered ascending chain {Mβ}β<α of submodules of M such that,
for each β, Mβ is a β-high submodule of M .
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Now we need to prove the following lemma.

Lemma 1. Let α be a limit ordinal and {Mβ}β<α an α-high tower of a QTAG-
-module M . If each Mβ is summable, then N =

⋃
β<αMβ is summable.

Proof. As α is a limit ordinal, we may choose a strictly increasing sequence β1 <
β2 < · · · < βn < . . . of ordinals having α as its limit. Then N =

⋃
n<ωMβn . Set

T0 = Soc(Mβ1
) and, for n > 1, let Tn be such that

Soc(Hβn(M)) = Tn ⊕ Soc(Hβn+1
(M))

with Tn ⊆ Mβn+1
. Then we have a direct-sum decomposition Soc(N) =

⊕
n<ω Tn

which is normal in the sense that

HM (t1 + · · ·+ tn) = min[HM (t1), . . . ,HM (tn)]

provided ti ∈ Ti for i = 1, . . . , n. Now each Mβ is isotype, summable, and of
countable length. Therefore, each subsocle of Mβ is a summable subsocle of M .
In particular, each Tn is a summable subsocle of M . Since the decomposition
Soc(N) =

⊕
n<ω Tn is normal, it follows that Soc(N) is a summable subsocle of M .

Since each Mβ is isotype, N is itself an isotype submodule of M and consequently
N is summable. �

We continue the study with the following corollary.

Corollary 1. Let α be a limit ordinal and {Mβ}β<α an α-high tower of a QTAG-
module M , where each Mβ is totally projective, then N =

⋃
β<αMβ is totally

projective of length at most α.

Proof. As noted above, N is an isotype submodule of M and clearly N has a length
at most α. Thus Mβ is also a β-high submodule of N for each β < α. Since N is
summable by Lemma 1 implies that N is totally projective. �

Now we prove the following.

Theorem 1. Let M be a QTAG-module. Then M contains an α-basic submodule
if and only if M is an α-module.

Proof. If B is an α-pure submodule of M and if M/B is h-divisible, then it follows
that M/Hβ(M) ∼= B/Hβ(B) for all β < α. Consequently, only α-modules can have
α-basic submodules (see [12]). Suppose now that M is an α-module and select an
α-high tower {Mβ}β<α. Now

Mβ
∼=Mβ +Hβ(M)/Hβ(M) ,

and since Mβ is isotype in M , Mβ +Hβ(M)/Hβ(M) is isotype in M/Hβ(M). By
Corollary 1, B =

⋃
β<αMβ is totally projective. It is easily seen that

Soc(M) ⊆ Soc(B) +Hβ(M)
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for each β < α, and therefore B is α-pure in M . Moreover, B ∩H1(M) = H1(B)
and

Soc(M) ⊆ Soc(B) +Hβ(M)

for β < ω imply thatM/B is h-divisible. Thus, B is the required α-basic submodule
of M . �

Lemma 2. Suppose N is an isotype submodule of a QTAG-module M and that
{Nβ}β<α is an α-high tower of N , then there exists an α-high tower {Mβ}β<α of
M such that, for each β, Nβ ⊆Mβ and Nβ = N ∩Mβ .

Proof. Let us first note that Nβ = N ∩Mβ is a consequence of Nβ ⊆Mβ . Indeed,
Nβ ⊆Mβ implies Nβ ⊆ N ∩Mβ and

(N ∩Mβ) ∩Hβ(N) = (N ∩Mβ) ∩Hβ(M) = 0 .

The maximality of a β-high submodule then yields the equality. Assume now that
β < α and that for each γ < β we have a γ-high submodule Mγ of M such that
Nγ ⊆ Mγ and Mη ⊆ Mγ for all η < γ. In order to be able to choose the desired
Mβ , it suffices to show that

(Nβ +
⋃
γ<β

Mγ) ∩ Soc(Hβ(M)) = 0 .

Suppose x+ y ∈ Soc(Hβ(M)) where x ∈ Nβ and y ∈Mγ for some γ < β. Then

H(x′) = −H(y′) ∈ H1(M) ∩N ∩Mγ = H1(M) ∩Nγ = H1(Nγ) ,

where d
(
xR
x′R

)
= d
(
yR
y′R

)
= 1, and hence there is u ∈ Nγ such that

x− u ∈ Soc(N) = Soc(Nγ)⊕ Soc(Hγ(N)) .

Thus we can write x = u+ v + z where v ∈ Soc(Nγ) and z ∈ Soc(Hγ(N)). Then

u+ v + y = x+ y − z ∈ Hγ(M) ∩Mγ = 0 and x+ y = z ∈ N .

Therefore y ∈ N ∩Mγ = Nγ ⊆ Nβ and, consequently,

x+ y ∈ Nβ ∩Hβ(M) = Nβ ∩Hβ(N) = 0

as desired. �

Lemma 3. Let M be a totally projective QTAG-module such that M =
⋃
β<αMβ

where {Mβ}β<α is an α-high tower. If N is an α-pure submodule of M such that
for each β, N ∩Mβ is a β-high submodule of N , then N is a direct summand of
M .

Proof. We need only show that M/N is totally projective having length at most α.
Since N ∩Mβ is (β + 1)-pure in N and N is α-pure in M , N ∩Mβ is (β + 1)-pure
in M and, a fortiori, (β + 1)-pure in Mβ . Since Mβ is totally projective, Mβ is
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β-projective. Therefore, there is direct decomposition Mβ = (N ∩Mβ) ⊕ Kβ for
each β < α. Now

M/N =
⋃
β<α

Mβ +N/N and Mβ +N/N ∼=Mβ/(Mβ ∩N) ∼= Kβ

is totally projective for each β. By Corollary 1, it is enough to show that Mβ+N/N
is a β-high submodule of M/N whenever ω ≤ β < α. Since N is α-pure in M , we
have

Soc(Hβ(M/N)) = Soc(Hβ(M)) +N/N

for β < α and it then easily follows that

Soc(M/N) = Soc(Mβ +N/N)⊕ Soc(Hβ(M/N)) .

Because of this direct decomposition, it is enough to show that Mβ + N/N is an
h-pure submodule of M/N for β ≥ ω.

Now

Soc(Mβ +N) = Soc(Kβ ⊕N)

= Soc(Kβ)⊕ Soc(N)

= Soc(Kβ)⊕ Soc(N ∩Mβ)⊕ Soc(Hβ(N))

= Soc(Mβ)⊕ Soc(Hβ(N)).

If β ≥ ω and if x ∈ Soc(Mβ +N), then we can write x = y+ z where y ∈ Soc(Mβ)
and z ∈ Soc(Hβ(N)) ⊆ Hω(N). If x has finite height in M , then this height is just
the height of y in M (= height of y in Mβ) and thus just the height of x = y + z
in Mβ + N . On the other hand, if x has infinite height in M , then y has infinite
height in Mβ and x = y+ z has infinite height in Mβ +N , it follows that Mβ +N
is an h-pure submodule of M . Thus Mβ +N/N is h-pure in M/N . �

Proposition 2. Let N be an α-pure submodule of an α-module M such that N is
totally projective of length at most α. Then there exists a submodule K of M such
that N ⊕K is an α-basic submodule of M .

Proof. Since N is totally projective of length ≤ α, N is the union of an α-high
tower {Nβ}β<α of itself. By Lemma 2, there exists an α-high tower {Mβ}β<α of M
such that Nβ = N∩Mβ for each β. Let B =

⋃
β<αMβ . By the proof of Theorem 1,

B is an α-basic submodule of M . But {Mβ}β<α is also an α-high tower of B, and
by Lemma 3 we have the required direct decomposition B = N ⊕K. �

Now we prove the following result.

Theorem 2. If N is an α-pure submodule of an α-module M , then M/N is an
α-module.

Proof. Let B be an α-basic submodule of N and choose K such that B ⊕K is an
α-basic submodule of M . Now if x ∈ Soc(N ∩K), we can write for each β < α,
x = yβ + zβ , where yβ ∈ Soc(N) and zβ ∈ Hβ(N). Thus

−yβ + x ∈ Hβ(B ⊕K) = Hβ(B)⊕Hβ(K)
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and
x ∈

⋂
β<α

Hβ(K) = Hα(K) = 0 .

We then have a direct decomposition N ⊕K. If H1(a
′) ∈ N ⊕K, then H1(a

′) =
y +H1(b

′) + c, where d
(
aR
a′R

)
= d
(
bR
b′R

)
= 1, y ∈ B, b ∈ N and c ∈ K. Since

H1(M) ∩ (B ⊕K) = H1(B ⊕K) ,

we conclude that
H1(M) ∩ (N ⊕K) = H1(N ⊕K) .

Now
Soc(M) ⊆ Soc(B ⊕K) +Hβ(M) ⊆ Soc(N ⊕K) +Hβ(M)

for all β < α, and therefore N ⊕K is an α-pure submodule of M . Consequently,
N ⊕K/N is α-pure in M/N . Also

N ⊕K/N ∼= K

and
(M/N)/(N ⊕K/N) ∼= (M/B ⊕K)/[(N ⊕K)/(B ⊕K)]

is h-divisible. We have constructed an α-basic submodule of M/N and we conclude
that M/N is indeed an α-module. �

As a consequence of the above theorem, we have the following striking analog
of a familiar property of h-pure submodules.

Corollary 2. Let N be a submodule of an α-module M . Then N is an α-pure sub-
module of M if and only if N +Hβ(M)/Hβ(M) is a direct summand of M/Hβ(M)
for all β < α.

Proof. N + Hβ(M)/Hβ(M) being a direct summand of M/Hβ(M) implies that
N+Hβ(M)/Hβ(M) is β-pure in M/Hβ(M), which is equivalent to N being β-pure
in M . Since α is a limit ordinal, N is α-pure in M if and only if N is β-pure in M
for all β < α.

Conversely, assume that N is α-pure in M . Then M/N is an α-module and
therefore, for β < α,

(M/N)/Hβ(M/N) = (M/N)/(Hβ(M) +N/N)
∼= (M/Hβ(M))/(N +Hβ(M)/Hβ(M))

is totally projective of length at most β. Since N + Hβ(M)/Hβ(M) is β-pure in
M/Hβ(M), N +Hβ(M)/Hβ(M) is a direct summand of M/Hβ(M). �

Proposition 3. If N is an α-pure submodule of an α-module M , and if Hβ(N) is
a direct summand of Hβ(M) for some β < α, then N is a direct summand of M .

Proof. Assuming the conditions of the Theorem 2, we have for some β < α:
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(i) (M/N)/Hβ(M/N) is totally projective;

(ii) N ∩Hβ(M) = Hβ(N);

(iii) N +Hβ(M)/Hβ(M) is a direct summand of M/Hβ(M); and

(iv) Hβ(M) = Hβ(N)⊕K.

It follows that M = N ⊕ L where L ⊇ K. �

As a corollary, we have the following generalization of the well-known fact that
bounded h-pure submodules are direct summands.

Corollary 3. If N is an α-pure submodule of an α-module M and if Hβ(N) = 0 for
some β < α, then N is a direct summand of M .

As defined in [10], a QTAG-module M is fully transitive if for every pair of
uniform elements x, y ∈ M, HM (xi) ≤ HM (yi) for all i ≥ 0 implies that there
exists an endomorphism of M that maps x onto y. Here d

(
xR
xiR

)
= d
(
yR
yiR

)
= i.

The next corollary tells us that α-modules of length α are fully transitive (see
[6]). This, of course, is merely a reflection of the fact that modules of length ≤ α
behave in the α context exactly as modules without elements of infinite height in
the classical situations.

Corollary 4. If M is an α-module of length α, then every finite subset of M is
contained in a countably generated direct summand.

Proof. Let S be a finite subset of M . Then S ⊆ T for some countably generated,
α-pure submodule T of M . We may assume that T has length α. Then T is a
direct sum of modules of length less than α. Consequently, T is contained in a
direct summand K of T having length less than α. By the preceding corollary, K
is a direct summand of M . �

For a limit ordinal α, an α-module M is an α-projective if

Hα(Ext(M,M ′)) = 0

for all α-modules M ′, that is, there exists a submodule N bounded by α such that
M/N is totally projective, and an α-module M is an α-injective if

Hα(Ext(M
′,M)) = 0

for all α-modules M ′, that is, it is a direct summand of every α-module in which
it occurs as an α-pure submodule.

To characterize the α-injective modules we must generalize the notion of a closed
module. Mimicking [12], for any QTAG-module M , the submodules {Hk(M)}k,
k = 0, 1, 2, . . . ,∞ from a neighborhood system of zero, giving rise to h-topology. If
k is replaced by an arbitrary limit ordinal less than or equal to α, then h-topology
may be extended to α-topology, and all the definitions and results which hold for
h-topology may be extended for α-topology. In α-topology, for any submodule N
of M , the closure of N as

⋂
β<α(N +Hβ(M)) denoted by N .
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Definition 3. We call a QTAG-module an α-closed module if it is the maximal
closed submodule of its closure in the α-topology.

With the help of the above discussion, we are able to infer the following.

Proposition 4. Let M be an α-closed α-module. Then M is an α-injective.

Proof. We first show that Hα(Ext(T,M)) = 0 for all α-modules T . Assume that M
is an α-pure submodule of M ′ with M ′/M ∼= T for all α-modules M ′. Since α is a
limit ordinal, it follows that M ′ = Hβ(M

′)+M for all β < α. Therefore, if y ∈M ′,
we can find for each β < α a xβ ∈ M such that y − xβ ∈ Hβ(M

′). Moreover, we
can assume that the exponent of xβ does not exceed that of y. Indeed, if y has
exponent n, then

Hn(x
′
β) ∈ Hβ+n(M

′) ∩M = Hβ+n(M) ,

where d
(xβR
x′
βR

)
= n and Hn(x

′
β) = Hn(z

′
β), where d

(xβR
x′
βR

)
= d

( zβR
z′βR

)
= n for some

zβ ∈ Hβ(M). Then xβ = xβ−zβ has an exponent at most n and y−xβ ∈ Hβ(M
′).

But {xβ : β < α} is a chain in M with elements uniformly bounded in exponent
and, therefore, converges to some x ∈M . Hence

y − x ∈
⋂
β<α

Hβ(M
′) = Hα(M

′) .

We conclude that M ′ =M ⊕Hα(M
′).

Now let M ′ be an arbitrary α-module and let B be an α-basic submodule of M ′.
We then have the exact sequence

Hα(Ext(M
′/B,M)) −→ Hα(Ext(M

′,M)) −→ Hα(Ext(B,M)).

The left-hand term of the above sequence vanishes since M ′/B is isomorphic to a
direct sum of copies of T and the right-hand term vanishes since B is an α-pro-
jective. Thus, Hα(Ext(M

′,M)) = 0 and we conclude that M is an α-injective.
�

We can now show that there are enough α-injective modules and that an α-in-
jective module is the sum of an α-closed module and an h-divisible module.

Theorem 3. Let M be an α-module. Then M is an α-pure submodule of an α-
injective module and M is an α-injective module if and only if M is the direct sum
of an h-divisible module and an α-closed α-module.

Proof. It is evident from Proposition 4 that the direct sum of an h-divisible mod-
ule and an α-closed α-module is necessarily an α-injective. Next, we need the
observation that every α-module M of length at most α can be imbedded as an
α-pure submodule of an α-closed module TM (α) such that TM (α)/M is h-divisible.
Indeed, TM (α) may be taken as the maximal closed submodule of the closure of M
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in the α-topology. It follows, by the same reasoning as in the proof of Theorem 1,
that

TM (α)/Hβ(TM (α)) ∼=M/Hβ(M)

for all β < α, and therefore that TM (α) is an α-module.
Now let M be an arbitrary α-module. Let D be a minimal h-divisible module

containing Hα(M). Take P to be the amalgamated sum of M and D over Hα(M).
Then P = M ′ ⊕D where M ′ ∼= M/Hα(M) and M ′ ∩M is an α-high submodule
of M . Also, P/M is h-divisible and

Soc(P ) ⊆ Soc(M) +Hβ(P )

for all β < α. It follows that M is an α-pure submodule of P . By the transitivity
of α-purity, M is an α-pure in the α-injective TM ′(α)⊕D.

Finally, assume that M is itself an α-injective and that we have it imbedded,
as above, as an α-pure submodule of P = TM ′(α)⊕D. Since M is an α-injective,
P = M ⊕ Q where Q ∼= P/M is obviously h-divisible, since both P/M and P/P
are h-divisible. But then Q ⊆ D, and since Soc(D) ⊆ Hα(M), we conclude that
Q = 0 and M = TM ′(α)⊕D. �

Now we are in a position to prove the following result.

Theorem 4. If M and M ′ are α-closed α-modules with the same Ulm invariants,
then M ∼=M ′.

Proof. Take B and B′ to be α-basic submodules of M and M ′, respectively. It is
easily seen that B and B′ have the same Ulm invariants as M and M ′. Therefore,
there is an isomorphism f of B onto B′. Since B is an α-pure submodule of M ,
we have the exact sequence

Hom(M,M ′)→ Hom(B,M ′)→ Hα(Ext(M/B,M ′)) = 0

Thus, there is a homomorphism f ′ : M → M ′ that extends f . Let x ∈ Kerf ′ and
assume that x 6= 0. Then x has some height β < α and we can write x = y+z where
y ∈ B and z ∈ Hβ+1(M). But then x has height β and f(y) = f ′(y) = −f ′(z) has
height at least β + 1. This, however, is a contradiction, since f is an isomorphism
of B onto B′ and B′ is an isotype submodule of M ′. We conclude that Kerf ′ = 0.
Then

f ′(M)/B′ = f ′(M)/f ′(B) ∼=M/B

is h-divisible. Hence f ′(M)/B′ is a direct summand of M ′/B′, and since B′ is an
α-pure submodule of M ′, it follows that f ′(M) is an α-pure submodule of M ′. Since
f ′(M) ∼= M is an α-injective, we have a direct decomposition M ′ = f ′(M)) ⊕ L
where L ∼=M ′/f ′(M) is h-divisible. But M ′ is h-reduced and therefore L = 0 and
f ′(M) =M ′, that is, f ′ is an isomorphism of M onto M ′. �
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3 α-large submodules of summable modules
If F is a fully invariant submodule of the α-module M , then F is called an α-large
submodule of M if M = B + F for all α-basic submodules B of M . This gen-
eralization of the concept of large submodule is studied in [12]. It is well-known
that Hβ(M) is always an α-large submodule of M provided that β < α as well as
Hβ(M) ⊆ L whenever L is an α-large submodule in M .

Likewise, It was proved that an h-reduced QTAG-module M of length ≥ α
contains a proper α-basic submodule B if and only if M is an α-module where α is
cofinal with ω. Since ω1, the first uncountable limit ordinal, is not cofinal with ω,
some additional clarifications are necessary. In fact, B is an ω1-basic submodule of
M only when B = 1 or B =M , and so L is an ω1-large submodule of M uniquely
when L =M and either L = 1 or L 6= 1 and it can take different forms; for instance
L = Hβ(M) where β < length of M ≤ ω1.

In [12] it was seen that the properties of α-large submodules for α > ω are not
preserved in general by these of the QTAG-module and conversely; for instance
the direct sum of countably generated modules. However, this is not the case for
totally projective modules.

Theorem 5 ([6], [12]). Let L be an α-large submodule of the QTAG-module M .
Then L is totally projective if and only if M is totally projective.

The main goal of this section is to strengthen the above assertion to a class
of modules, called summable modules. It is evident that direct sum of countably
generated modules are themselves summable. In [8] it was constructed a summable
ω1-module need not be a direct sum of countably generated modules. So, the
investigation of the discussed above theme for α-large submodules of summable
ω1-modules will be of interest.

Now we have accumulated all the machinery necessary to prove the following.

Theorem 6. Suppose that M is an ω1-module with an α-large submodule L for
some ordinal α such that ω ≤ α ≤ ω1. Then M is summable if and only if L is
summable.

Proof. “ ⇒ ”. In virtue of [12] there is a countable limit ordinal τ ≤ α such that
Hτ (M) = Hω(L). Moreover, L/Hω(L) = L/Hτ (M) is an α-large submodule of
M/Hτ (M), where the latter quotient is totally projective by assumption. There-
fore, Theorem 5 applies to deduce that L/Hω(L) is totally projective, in fact, a
direct sum of uniserial modules. That is why, some high submodule N of L is a
direct sum of countably generated modules. Indeed, what suffices to show is that
N/Hω(N) is a direct sum uniserial modules because Hω(N) is bounded. In order
to do that, we observe that

(N +Hω(L))/Hω(L) ⊆ L/Hω(L)

is also a direct sum of uniserial modules as a submodule. But N is isotype in L,
whence

(N +Hω(L))/Hω(L) ∼= N/(N ∩Hω(L)) = N/Hω(L)
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which substantiates our claim. On the other hand, M being summable yields that
Hω(L) = Hτ (M) is summable, and we are done.

“⇐ ”. Same as above, Hτ (M) = Hω(L) for some countable limit ordinal τ ≤ α.
But L being summable implies that Hω(L) = Hτ (M) is summable. Likewise,
M/Hτ (M) is totally projective of countable length, hence a direct sum of countably
generated modules. Let N be a τ -high submodule of M . Since Hτ (N) is high
in Hτ (M) one may write Hτ (M) = Hτ (N) ⊕ T for some submodule T , whence
Hτ (M) = T . Moreover,

Soc(M) = Soc(N)⊕ Soc(Hτ (M)) = Soc(N)⊕ Soc(T ) .

In fact

Soc(N) ∩ Soc(T ) ⊆ N ∩ T = N ∩ (Hτ (M) ∩ T )
= (N ∩Hτ (M)) ∩ T = Hτ (N) ∩ T = 0

because N is isotype in M . Consequently, there is a valuated direct sum

Soc(Hτ (M)) = Hτ (N)⊕ Soc(T ) .

Even more,
Soc(M) = Soc(N)⊕ Soc(T )

is a valuated direct sum, where T is a valuated submodule of Hτ (M) with Soc(T ) =
Soc(Hτ (M)). Indeed, if x ∈ Soc(M) then

x ∈ Soc(M) = Soc(N)⊕ Soc(T ) .

Since Soc(T ) = Soc(Hτ (M)) and N is h-pure in M . It easily follows that

x ∈ N +Hτ (M) +M = N ⊕ T ⊕+M

because Hτ (M) = Hτ (K) ⊕ T , and by induction the desired decomposition now
follows.

If y ∈ Soc(N) and z ∈ Soc(T ) then

HM (y + z) = min{HM (y), HM (z)}

since either
HM (y) < α ≤ HM (z) or Hτ (M) = Hτ (N)⊕ T

whenHM (y) ≥ α. Therefore, Hτ (M) is summable if and only if T has this property.
Next, observe that

N ∼= N/{0} = N/Hτ (N) = N/(N ∩Hτ (M)) ∼= (N +Hτ (M))/Hτ (M) ,

where the last quotient is obviously isotype in M/Hτ (M), and thus it is a direct
sum of countably generated modules as well. It follows that N is a direct sum of
countably generated modules. Furthermore, both T and N are summable. But
Soc(M) = Soc(N) ⊕ Soc(T ) is a valuated direct sum and from this, our assertion
follows directly by the definition of summability. �
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We close the paper with a problem as follows:

Problem 1. Does it follow that if both Hβ(M) and M/Hβ(M) are σ-summable
modules (see [14]) for some ordinal β, then M is σ-summable?

For summable modules we refer to [7]. Notice also that it can be obtained some
results in this aspect under certain limitations on β which depends on n < ω.
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