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A BINARY OPERATION-BASED REPRESENTATION
OF A LATTICE

Mourad Yettou, Abdelaziz Amroune and Lemnaouar Zedam

In this paper, we study and characterize some properties of a given binary operation on
a lattice. More specifically, we show necessary and sufficient conditions under which a binary
operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we con-
struct two new posets based on a given binary operation on a lattice and investigate some cases
that these two posets have a lattice structure. Moreover, we provide some representations of
a given lattice based on these new constructed lattices.
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1. INTRODUCTION

Binary operations are among the oldest fundamental concepts in algebraic structures.
A binary operation on a non-empty set X is any function from the Cartesian product
X ×X into X. Since their introduction, they have become the key notion in the defi-
nitions of groups, monoids, semigroups, rings, and in more algebraic structures studied
in abstract algebra [5, 16, 18, 26]. Binary operations have become essential tools in
lattice theory and its applications, several notions and properties, and the notion of the
lattice itself can be interpreted in terms of binary operations on it [7, 10, 11, 20, 24, 25].
Furthermore, it is not surprising that binary operations with specific properties appear
in various theoretical and application fields. For instance, for aggregation functions (as
specific binary operations) on bounded lattices and their wide use in various fields of
applied sciences, including, computer and information sciences, economics, and social
sciences (see, e. g. [12, 13, 14, 15, 17, 21, 22]). Also, they play an important role (as
generalization of the basic connectives between fuzzy sets) in theories of fuzzy sets and
fuzzy logic [2].

The aim of the present paper is to study and characterize some important properties
of a binary operation on an arbitrary lattice (not necessarily bounded). More specifically,
we show necessary and sufficient conditions under which a given binary operation on a
lattice coincides with its meet (resp. its join) operation. These results generalize remark-
able results of Cooman and Kerre (Proposition 3.7, [6]), and of Mesiar and Komorńıková
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(Proposition 2, [22]) to any lattice. Furthermore, we construct two new posets based
on a binary operation on a lattice, and investigate some conditions under which these
two posets have a lattice structure. In some cases, we provide representations of a given
lattice in terms of these new constructed lattices.

In addition to the theoretical importance of the obtained results in lattice theory,
there exist many more reasons for addressing this study. For instance, several extensions
of the notion of a derivation on a lattice have been introduced based on the lattice meet
and join operations. This notion of derivation was first appeared on the ring structures,
and it has many applications (see, e. g. [1]). Later, Szász [28, 29] has extended the notion
of derivation to a lattice structure, and Ferrari [9] has investigated some properties of this
notion and he has provided some interesting examples in particular classes of lattices.
After that, Xin et al. [30] have ameliorated the notion of derivation on a lattice by
reducing two required conditions to one condition based on the properties of the lattice
meet and join operations. We anticipate that these properties and characterizations
of binary operations on an arbitrary lattice are prerequisite to introduce the different
notions of (F,G)-derivation on a lattice as generalization of the notion of derivation
introduced by Xin et al. [30], where F and G are binary operations. Also, to avoid
making the precedent studies used the lattice meet and join operations.

The rest of the paper is organized as follows. In Section 2, we recall the necessary
basic concepts of binary operations and lattices. In Section 3, after recalling some
basic properties of binary operations on a lattice, we show necessary and sufficient
conditions under which a given binary operation coincides with the lattice meet (resp.
join) operation. In Section 4, we construct two new lattices based on a given binary
operation on a lattice. In Section 5, we provide some representations of a given lattice
in terms of the lattices constructed in Section 4. In order to provide deeper insights, we
also study the links between the different conditions of these representation theorems.
Finally, we present some conclusions and discuss future research in Section 6.

2. BASIC CONCEPTS

In this section, we recall some definitions and properties of binary operations and lattices
that will be needed throughout this paper.

2.1. Binary operations

A binary operation F on a nonempty set X is a function F : X×X → X. The following
properties of binary operations are of interest in this paper:

(i) commutativity: F (x, y) = F (y, x), for any x, y ∈ X;

(ii) associativity: F (x, F (y, z)) = F (F (x, y), z), for any x, y, z ∈ X;

An element e ∈ X is called

(iii) a left-neutral (resp. right-neutral) element of F , if F (e, x) = x (resp. F (x, e) = x),
for any x ∈ X;

(iv) a neutral element of F , if it is left- and right-neutral element, i. e., F (e, x) =
F (x, e) = x, for any x ∈ X.
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For further details, we refer to [8, 16, 18, 19].

2.2. Lattices

In this subsection, we recall the notions of ordered sets and lattices. Further information
can be found in [4, 7, 25, 27].

An order relation 6 on a set X is a binary relation on X that is reflexive (i. e., x 6 x,
for any x ∈ X), antisymmetric (i. e., x 6 y and y 6 x implies x = y, for any x, y ∈ X)
and transitive (i. e., x 6 y and y 6 z imply x 6 z, for any x, y, z ∈ X). A set X equipped
with an order relation 6 is called a partially ordered set (a poset, for short) and denoted
by (X,6).

Let (X,6) be a poset and A be a subset of X. An element x0 ∈ X is called a lower
bound of A if x0 6 x, for any x ∈ A. x0 is called the greatest lower bound (or the
infimum) of A if x0 is a lower bound and m 6 x0, for any lower bound m of A. Upper
bound and least upper bound (or supermum) are defined dually.

Let (X,6X) and (Y,6Y ) be two posets. A mapping ϕ from X into Y is called an
order isomorphism if it is surjuctive and satisfies

x 6X y if and only if ϕ(x) 6Y ϕ(y), for any x, y ∈ X .

A poset (L,6) is called a lattice if any two elements x and y have a greatest lower bound,
denoted x ∧ y and called the meet (infimum) of x and y, as well as a least upper bound,
denoted x ∨ y and called the join (supremum) of x and y. A lattice can also be defined
as an algebraic structure: a set L equipped with two binary operations ∧ and ∨ that are
idempotent, commutative, associative and satisfy the absorption laws (x ∧ (x ∨ y) = x
and x ∨ (x ∧ y) = x, for any x, y ∈ L). The order relation and the binary operations ∧
and ∨ are then related as: x 6 y if and only if x ∧ y = x; x 6 y if and only if x ∨ y = y.
Usually, the notation (L,6,∧,∨) is used.

A bounded lattice is a lattice (L,6,∧,∨) that additionally has a least element denoted
by 0 and a greatest element denoted by 1 satisfying 0 6 x 6 1 for any x ∈ L. For
a bounded lattice the notation (L,6,∧,∨, 0, 1) is used.

Let (L,6,∧,∨) and (M,�,_,^) be two lattices. A mapping ϕ from L into M is
called a ∧-homomorphism (resp. a ∨-homomorphism), if it satisfies ϕ(x ∧ y) = ϕ(x) _
ϕ(y) (resp. ϕ(x∨ y) = ϕ(x) ^ ϕ(y)), for any x, y ∈ L. A lattice homomorphism is both
∧- and ∨-homomorphism. Also, a lattice isomorphism is a bijective lattice homomor-
phism.

The following proposition shows that an order isomorphism between to lattices is
equivalent to a lattice isomorphism.

Proposition 2.1. [7] Let L, M be two lattices and ϕ be a mapping from L into M .
The following statements are equivalent:

(i) ϕ is an order isomorphism;

(ii) ϕ is a lattice isomorphism.
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3. BINARY OPERATIONS ON A LATTICE

In this section, we study and characterize some properties of binary operations on a
lattice.

3.1. Properties of binary operations on a lattice

In this subsection, we present the properties of conjunctive, disjunctive, idempotent and
increasing binary operations on a lattice. Some of these properties are adopted from
those of aggregation functions on bounded lattices (see, e. g. [12, 15, 17, 22]).

Definition 3.1. A binary operation F on a lattice (L,6,∧,∨) is called:

(i) idempotent, if F (x, x) = x, for any x ∈ L;

(ii) conjunctive (resp. disjunctive), if F (x, y) 6 x ∧ y (resp. x ∨ y 6 F (x, y)), for any
x, y ∈ L;

(iii) left-increasing (resp. right-increasing), if x 6 y, implies F (x, z) 6 F (y, z) (resp.
F (z, x) 6 F (z, y)), for any x, y, z ∈ L;

(iv) increasing, if x1 6 x2 and y1 6 y2 imply F (x1, y1) 6 F (x2, y2), for any x1, y1, x2,
y2 ∈ L.

We note that a binary operation F on a lattice is increasing if and only if it is left-
and right-increasing. Also, if F is commutative, then it holds that F is left-increasing if
and only if F is right-increasing.

Example 3.1. Let (L,6,∧,∨) be a lattice. The binary operations ∧ and ∨ are idem-
potent and increasing. Moreover, ∧ is conjunctive and ∨ is disjunctive.

Inspired by the notion of transpose of a binary aggregation function on the real
interval [0, 1] (see, e. g. [3]), the following definition extends this notion to any binary
operation on a lattice.

Definition 3.2. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. The
binary operation F t defined as F t(x, y) = F (y, x), for any x, y ∈ L, is called the transpose
of F .

The following proposition expresses the relationships between the properties of a bi-
nary operation and those of its transpose. The proof is straightforward.

Proposition 3.1. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. The
following equivalences hold:

(i) F is commutative if and only if F t = F ;

(ii) F is conjunctive if and only if F t is conjunctive;

(iii) F is disjunctive if and only if F t is disjunctive;
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(iv) F is left-increasing if and only if F t is right-increasing;

(v) F is increasing if and only if F t is increasing;

(vi) An element e ∈ L is a left-neutral element of F if and only if e is a right-neutral
element of F t;

(vii) An element e ∈ L is a neutral element of F if and only if e is a neutral element of
F t.

3.2. Characterizations of some properties of binary operations on a lattice

In this subsection, we study and characterize some properties of a binary operation
on a lattice. More precisely, we give necessary and sufficient conditions that a binary
operation on a lattice coincides with its meet (resp. its join) operation. These charac-
terizations give us alternative conditions to those known for aggregation functions on
bounded lattices (see, e. g. [3, 6, 22]).

Proposition 3.2. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. Then
it holds that

(i) If F is increasing, idempotent and conjunctive, then F (x, y)∧α = F (x∧α, y∧α) =
F (x ∧ α, y) = F (x, y ∧ α) for any x, y, α ∈ L;

(ii) If F is increasing, idempotent and disjunctive, then F (x, y)∨α = F (x∨α, y∨α) =
F (x ∨ α, y) = F (x, y ∨ α) for any x, y, α ∈ L.

P r o o f . Let x, y, α ∈ L.

(i) We only prove that F (x, y) ∧ α = F (x ∧ α, y ∧ α), as the other equalities can be
proved similarly. Since F is increasing, it follows that F (x∧α, y∧α) 6 F (x, y). The
fact that F is conjunctive implies that F (x∧α, y∧α) 6 α. Hence, F (x∧α, y∧α) is
a lower bound of {F (x, y), α}. On the other hand, let m ∈ L another lower bound
of {F (x, y), α}, i. e., m 6 F (x, y) and m 6 α. Since F is conjunctive, it follows
that m 6 x and m 6 y. Hence, m 6 x ∧ α and m 6 y ∧ α. Since F is idempotent
and increasing, it holds that m = F (m,m) 6 F (x∧α, y∧α). Thus, F (x∧α, y∧α)
is the greatest lower bound of {F (x, y), α}, i. e., F (x, y) ∧ α = F (x ∧ α, y ∧ α).

(ii) The proof is analogous to that of (i).

�
The following lemma generalizes a remarkable result of Cooman and Kerre (Propo-

sition 3.7 in [6]) to an arbitrary lattice.

Lemma 3.1. Let (L,6,∧,∨) be a lattice. If an idempotent binary operation F on L is
increasing and conjunctive (resp. disjunctive), then F can not be other than the meet
operation ∧ (resp. the join operation ∨) of L.
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P r o o f . Suppose that F is idempotent, increasing and conjunctive binary operation on
L. From Proposition 3.2 it follows that F (x, y) ∧ (x ∧ y) = F (x ∧ (x ∧ y), y ∧ (x ∧ y)) =
F (x ∧ y, x ∧ y) = x ∧ y, for any x, y ∈ L. Hence, (x ∧ y) 6 F (x, y), for any x, y ∈ L.
Now, the fact that F is conjunctive guarantees that F (x, y) = x ∧ y, for any x, y ∈ L.
Thus, F = ∧.

In similar way, we prove that F is the join operation ∨ of L. �

The following proposition shows an equivalent condition to both properties of increas-
ing and conjunctive binary operation on a lattice.

Proposition 3.3. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F
is idempotent, then the following conditions are equivalent:

(i) F is increasing and conjunctive;

(ii) F (x, y) ∧ α = F (x ∧ α, y ∧ α) = F (x ∧ α, y) = F (x, y ∧ α), for any x, y, α ∈ L.

P r o o f . (i)⇒ (ii): The proof is directly from Proposition 3.2.
(ii) ⇒ (i): First, we prove that F is conjunctive. Let x, y ∈ L, from (ii) it follows
that F (x, y) ∧ x = F (x ∧ x, y) = F (x, y) and F (x, y) ∧ y = F (x, y ∧ y) = F (x, y).
Hence, F (x, y) 6 x and F (x, y) 6 y. Thus, F (x, y) 6 x ∧ y. Consequently, F is
conjunctive. Second, we prove that F is increasing. Let x, y, t, z ∈ L such that x 6 y.
Since F is idempotent, it follows that F (x, z) ∧ F (y, z) = F (F (x, z) ∧ y, F (x, z) ∧ z) =
F (F (x ∧ y, z), F (x, z ∧ z)) = F (F (x, z), F (x, z)) = F (x, z). Hence, F (x, z) 6 F (y, z).
Thus, F is left-increasing. Moreover, F (t, x) ∧ F (t, y) = F (F (t, x) ∧ t, F (t, x) ∧ y) =
F (F (t ∧ t, x), F (t, x ∧ y)) = F (F (t, x), F (t, x)) = F (t, x). This implies that F (t, x) 6
F (t, y). Hence, F is right-increasing. Now, since F is left- and right-increasing, it holds
that F is increasing. �

In the same line, we obtain the following proposition.

Proposition 3.4. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F
is idempotent, then the following conditions are equivalent:

(i) F is increasing and disjunctive;

(ii) F (x, y) ∨ α = F (x ∨ α, y ∨ α) = F (x ∨ α, y) = F (x, y ∨ α), for any x, y, α ∈ L.

The following theorem shows a necessary and sufficient condition that a binary op-
eration on a lattice coincides with its meet (resp. its join) operation. We note that this
result generalizes the well known result that a binary operation F on a bounded lattice is
an idempotent semi-norm (resp. semi-conorm) if and only if F is the lattice meet (resp.
join) operation (see, Propositions 3.7 in [6] and 2 in [22]). Furthermore, it establishes a
simple criterion to check; if a binary operation on a given lattice coincides with its meet
(resp. its join) operation.

Theorem 3.1. Let (L,6,∧,∨) be a lattice and F be an idempotent binary operation
on L. Then it holds that
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(i) F is the meet operation ∧ if and only if F (x, y)∧α = F (x∧α, y∧α) = F (x∧α, y) =
F (x, y ∧ α), for any x, y, α ∈ L;

(ii) F is the join operation ∨ if and only if F (x, y)∨α = F (x∨α, y∨α) = F (x∨α, y) =
F (x, y ∨ α)), for any x, y, α ∈ L.

P r o o f . The proof can be easily obtained from Lemma 3.1, Propositions 3.3 and 3.4.
�

Next, we need the following remark.

Remark 3.1. In view of Lemma 3.1, if a binary operation F on a lattice (L,6,∧,∨) is
idempotent, conjunctive (resp. disjunctive) and increasing, then F = ∧ (resp. F = ∨).
But, if F is only left- or right-increasing, then F is not necessarily the meet (resp. the
join) operation of L. Indeed, let (L = {0, 1, 2},6) be the lattice given by the Hasse
diagram in Figure 1, and F,G be two binary operations on L defined by the following
tables:

F (x, y) 0 1 2
0 0 0 0
1 0 1 0
2 0 1 2

G(x, y) 0 1 2
0 0 1 2
1 2 1 2
2 2 2 2

One can easily verify that the binary operation F is left-increasing, conjunctive and idem-
potent, but it is not the lattice meet operation ∧. Analogously, F t is right-increasing,
conjunctive and idempotent, but also it is not the meet operation ∧. Moreover, the
binary operation G (resp. Gt) is left-increasing (resp. right-increasing), disjunctive and
idempotent, but it is not the join operation ∨.

Fig. 1. The Hasse diagram of the lattice (L = {0, 1, 2},6).

4. LATTICE STRUCTURES CONSTRUCTED BY A BINARY OPERATION

In this section, we construct two posets based on a binary operation on a lattice. Fur-
thermore, we study some cases that these posets have lattice structures. These lattices
will turn out to be useful technical tools in the following section.
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4.1. Posets constructed by a binary operation on a lattice

Let (L,6,∧,∨) be a lattice and F be a binary operation on L. For any α ∈ L, we define
two specific F -based functions fα and fα from L into L as:

fα(x) = F (α, x) and fα(x) = F (x, α), for any x ∈ L .

We denote by A`F (L) to the set of fα functions and by A`F (L) to the set of fα functions,
i. e.,

A`F (L) = {fα | α ∈ L} and ArF (L) = {fα | α ∈ L}.

The following proposition is immediate.

Proposition 4.1. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F
is commutative, then A`F (L) = ArF (L).

Remark 4.1. The converse of the above proposition does not hold in general. Indeed,
consider the lattice (L = {0, 1, 2},6) given by the Hasse diagram in Figure 1. Let F be
the binary operation on L defined by the following table:

F (x, y) 0 1 2
0 1 1 2
1 2 1 1
2 1 2 1

From the above table, one can see that f0 = f1, f1 = f2 and f2 = f0. Indeed,

x 0 1 2
f0(x) F (0, 0) = 1 F (0, 1) = 1 F (0, 2) = 2
f1(x) F (0, 1) = 1 F (1, 1) = 1 F (2, 1) = 2
f1(x) F (1, 0) = 2 F (1, 1) = 1 F (1, 2) = 1
f2(x) F (0, 2) = 2 F (1, 2) = 1 F (2, 2) = 1
f2(x) F (2, 0) = 1 F (2, 1) = 2 F (2, 2) = 1
f0(x) F (0, 0) = 1 F (1, 0) = 2 F (2, 0) = 1

Then A`F (L) = ArF (L). But, since F (0, 1) = 1 6= F (1, 0) = 2, it holds that F is not
commutative.

Proposition 4.2. Let (L,6,∧,∨) be a lattice, F be a binary operation on L and α, β ∈
L. If F has a neutral element e ∈ L and fα = fβ , then α = β.

P r o o f . Suppose that F has a neutral element e ∈ L. Let α, β ∈ L such that fα = fβ .
Then F (α, x) = F (x, β), for any x ∈ L. Setting x = e, we obtain that α = β. �

In view of Remark 4.1, the following proposition states a sufficient condition that the
converse implication in Proposition 4.1 holds.

Proposition 4.3. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F
has a neutral element e ∈ L and A`F (L) = ArF (L), then F is commutative.
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P r o o f . Suppose that F has a neutral element e ∈ L and A`F (L) = ArF (L). Let α, β ∈
L, we will show that F is commutative, i. e., F (α, β) = F (β, α). Since fα ∈ A`F (L) and
A`F (L) = ArF (L), it follows that exists γ ∈ L such that fα = fγ . From Proposition 4.2,
it follows that α = γ. This implies that fα = fα. Hence, F (α, β) = fα(β) = fα(β) =
F (β, α). Thus, F is commutative. �

The sets A`F (L) and ArF (L) equipped with the usual order of functions have poset
structures. We denote by 6` the usual order of functions defined on A`F (L) as:

fα 6
` fβ if and only if fα(x) 6 fβ(x), for any x ∈ L .

In the same way, we denote by 6r the usual order of functions defined on ArF (L) as:

fα 6r fβ if and only if fα(x) 6 fβ(x), for any x ∈ L .

Remark 4.2. In general, the posets (A`F (L),6`) and (ArF (L),6r) are not necessarily
lattices. Indeed, consider the lattice (D(6), |, gcd, lcm) given by the Hasse diagram in
Figure 2, and F the binary operation on D(6) defined by the following table:

F (x, y) 1 2 3 6
1 3 2 3 2
2 2 1 6 3
3 6 2 6 6
6 2 3 6 6

The Hasse diagrams given in Figure 2 show that (A`F (D(6)),6`) and (ArF (D(6)),6r)
are not lattices.

Fig. 2. The Hasse diagrams of the lattice (D(6), |, gcd, lcm), and the

posets (A`
F (D(6)),6`) and (Ar

F (D(6)),6r)

4.2. First lattice structure of the posets A`F (L) and ArF (L)

In this subsection, we show some cases that the posets (A`F (L),6`) and (ArF (L),6r)
have a lattice structure. First, we prove the following key results.
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Proposition 4.4. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. Then
it holds that

(i) If F is left-increasing and having a right-neutral element e ∈ L, then for any
α, β ∈ L, we obtain that

α 6 β if and only if fα 6
` fβ ;

(ii) If F is right-increasing and having a left-neutral element e ∈ L, then for any
α, β ∈ L, we obtain that

α 6 β if and only if fα 6r fβ .

P r o o f .

(i) The fact that F is left-increasing guarantees the first implication. Conversely, let
fα, fβ ∈ A`F (L) such that fα 6` fβ . This implies that F (α, x) 6 F (β, x), for any
x ∈ L. Using the fact that e is a right-neutral element of F and setting x = e, it
follows that α = F (α, e) 6 F (β, e) = β. Thus, α 6 β.

(ii) Follows from Proposition 3.1 and (i).

�

Proposition 4.4 leads to the following corollary.

Corollary 4.1. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F
is increasing and having a neutral element e ∈ L, then for any α, β ∈ L, the following
statements are equivalent:

(i) α 6 β;

(ii) fα 6` fβ ;

(iii) fα 6r fβ .

In the following result, we provide sufficient conditions that the posets (A`F (L),6`)
and (ArF (L),6r) have a lattice structure.

Theorem 4.1. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. Then it
holds that

(i) If F is left-increasing and having a right-neutral element e ∈ L, then (A`F (L),6`)
is a lattice;

(ii) If F is right-increasing and having a left-neutral element e ∈ L, then (ArF (L),6r)
is a lattice.

P r o o f .
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(i) Let fα, fβ ∈ A`F (L). Using Proposition 4.4, we obtain that fα∧β (resp. fα∨β)
is the greatest lower bound (resp. the least upper bound) of fα and fβ . Thus,
(A`F (L),6`) is a lattice.

(ii) Let fα, fβ ∈ ArF (L). From Proposition 3.1 and (i), we obtain that fα∧β and fα∨β

are respectively the greatest lower bound and the least upper bound of fα and fβ .
Thus, (ArF (L),6r) is a lattice.

�

Next, we denote by (A`F (L),6`,∧`,∨`) the lattice structure associated to the poset
(A`F (L),6`), where fα∧` fβ = fα∧β and fα∨` fβ = fα∨β , for any fα, fβ ∈ A`F (L). Also,
(ArF (L),6r,∧r,∨r) denote the lattice structure associated to the poset (ArF (L),6r),
where fα ∧r fβ = fα∧β and fα ∨r fβ = fα∨β , for any fα, fβ ∈ ArF (L).

In the following we give a counter example to show that the converse implications of
Theorem 4.1 are not necessarily hold.

Example 4.1. Let (L = {0, 1, 2},6,min,max) be the lattice given by the Hasse dia-
gram in Figure 3 and F be a binary operation on L defined by the following table:

F (x, y) 0 1 2
0 1 0 2
1 0 0 0
2 2 0 2

From Figure 3, it follows that:

(i) (A`F (L),6`,∧`,∨`) is a lattice, but F is not left-increasing and has not a right-
neutral element e ∈ L;

(ii) (ArF (L),6r,∧r,∨r) is a lattice, but F is not right-increasing and has not a left-
neutral element e ∈ L.

Remark 4.3. If (L,6,∧,∨, 0, 1) is a bounded lattice, then the lattices (A`F (L),6`

,∧`,∨`, f0, f1) and (ArF (L),6r,∧r,∨r, f0, f1) are also bounded.

4.3. Second lattice structure of the posets A`F (L) and ArF (L)

In this subsection, we show other conditions on the binary operation F that the posets
(A`F (L),6`) and (ArF (L),6r) have a lattice structure. We start by proving the following
key results.

Proposition 4.5. Let (L,6,∧,∨) be a lattice and F be an idempotent and conjunctive
or disjunctive binary operation on L. Then it holds that:

(i) If F is left-increasing, then for any α, β ∈ L, we obtain that

α 6 β if and only if fα 6
` fβ ;
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Fig. 3. The Hasse diagrams of the lattices

(L = {0, 1, 2},6,min,max), (A`
F (L),6`,∧`,∨`) and

(Ar
F (L),6r,∧r,∨r).

(ii) If F is right-increasing, then for any α, β ∈ L, we obtain that

α 6 β if and only if fα 6r fβ .

P r o o f .

(i) The proof of the direct implication is straightforward. For the converse implication,
let fα, fβ ∈ A`F (L) such that fα 6` fβ . Then F (α, x) 6 F (β, x), for any x ∈
L. Setting x = α (resp. x = β). Since F is idempotent and conjunctive (resp.
idempotent and disjunctive), it follows that α = F (α, α) 6 F (β, α) 6 β (resp.
α 6 F (α, β) 6 F (β, β) = β). Thus, α 6 β.

(ii) Follows from Proposition 3.1 and (i).

�

Similarly to Theorem 4.1, the following result shows other sufficient conditions under
which the posets (A`F (L),6`) and (ArF (L),6r) have lattice structures.

Theorem 4.2. Let (L,6,∧,∨) be a lattice and F be an idempotent and conjunctive
or disjunctive binary operation on L. Then it holds that

(i) If F is left-increasing, then (A`F (L),6`,∧`,∨`) is a lattice;

(ii) If F is right-increasing, then (ArF (L),6r,∧r,∨r) is a lattice.

P r o o f .

(i) Let fα, fβ ∈ A`F (L). From Proposition 4.5, one can easily verify that fα∧β and
fα∨β are respectively the greatest lower bound and the least upper bound of fα
and fβ . Thus, (A`F (L),6`,∧`,∨`) is a lattice.
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(ii) Let fα, fβ ∈ ArF (L). From Proposition 3.1 and (i), it holds that fα∧β and fα∨β

are respectively the greatest lower bound and the least upper bound of fα and fβ .
Thus, (ArF (L),6r,∧r,∨r) is a lattice.

�

Note that the converse implications of Theorem 4.2 do not necessarily hold, as can
be see the following example.

Example 4.2. Let (L = {0, 1, 2, 3},6,min,max) be the lattice given by the Hasse
diagram in Figure 4. Let F and G be two idempotent binary operations on L such that
F is conjunctive and G is disjunctive, which are given by the following tables:

F (x, y) 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 1 2 0
3 0 1 2 3

G(x, y) 0 1 2 3
0 0 1 2 3
1 2 1 3 3
2 2 3 2 3
3 3 3 3 3

Figure 4 guarantees that (A`F (L),6`,∧`,∨`) and (A`G(L),6`,∧`,∨`) are lattices, but F
and G are not left- or right-increasing. Indeed, 1 6 2, but

(i) F (1, 3) = 1 
 F (2, 3) = 0 and G(1, 2) = 3 
 G(2, 2) = 2;

(ii) F (1, 1) = 1 
 F (1, 2) = 0 and G(2, 1) = 3 
 G(2, 2) = 2.

Fig. 4. The Hasse diagrams of the lattices

(L = {0, 1, 2, 3},6,min,max), (A`
F (L),6`,∧`,∨`) and

(A`
G(L),6`,∧`,∨`).

5. REPRESENTATIONS OF A LATTICE BASED ON A BINARY OPERATION

In this section, we provide some representations of a given lattice in terms of a binary
operation defined on it.
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5.1. First representation of a lattice based on a binary operation

In this subsection, we provide a representation of a given lattice in terms of the lattice
structures constructed based on a binary operation on it. More precisely, based on
Theorem 4.1, we show that any lattice (L,6,∧,∨) is isomorphic with its associated
lattices (A`F (L),6`,∧`,∨`) and (ArF (L),6r,∧r,∨r).

Theorem 5.1. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. Then it
holds that

(i) If F is left-increasing and having a right-neutral element e ∈ L, then the lattices
(L,6,∧,∨) and (A`F (L),6`,∧`,∨`) are isomorphic;

(ii) If F is right-increasing and having a left-neutral element e ∈ L, then the lattices
(L,6,∧,∨) and (ArF (L),6r,∧r,∨r) are isomorphic.

P r o o f .

(i) Theorem 4.1 guarantees that (A`F (L),6`,∧`,∨`) is a lattice. Next, let ϕ be a
mapping from L into A`F (L) such that ϕ(α) = fα, for any α ∈ L. Obvious that
ϕ is surjective. Moreover, since F is left-increasing and having a right-neutral
element e ∈ L, it follows from Proposition 4.4 that

α 6 β if and only if ϕ(α) 6` ϕ(β), for any α, β ∈ L .

Hence, ϕ is an order isomorphism between these two lattices L and A`F (L). Then
Proposition 2.1 guarantees that ϕ is a lattice isomorphism. Thus, the lattices
(L,6,∧,∨) and (A`F (L),6`,∧`,∨`) are isomorphic.

(ii) Follows from Proposition 3.1 and (i).

�

Remark 5.1. Note that Example 4.1 shows that the converse implications of Theo-
rem 5.1 do not necessarily hold.

In view of Theorem 5.1, we obtain the following result.

Theorem 5.2. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F
is increasing having a neutral element e ∈ L, then the lattices (L,6,∧,∨), (A`F (L),6`

,∧`,∨`) and (ArF (L),6r,∧r,∨r) are isomorphic.

Example 5.1. Let (L = {0, 1, 2},6,min,max) be the lattice given by the Hasse dia-
gram in Figure 5 and F be a binary operation on L defined by the following table:

F (x, y) 0 1 2
0 0 0 1
1 0 1 2
2 0 2 2

The above table guarantees that F is increasing and has 1 as a neutral element, then from
Theorem 5.2, it holds that the lattices (L = {0, 1, 2},6,min,max), (A`F (L),6`,∧`,∨`)
and (ArF (L),6r,∧r,∨r) are isomorphic. Figure 5 shows this isomorphism.
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Fig. 5. The Hasse diagrams of the lattices

(L = {0, 1, 2},6,min,max), (A`
F (L),6`,∧`,∨`) and

(Ar
F (L),6r,∧r,∨r).

5.2. Second representation of a lattice based on a binary operation

In this subsection, we provide a second representation theorem of a given lattice based
on the second lattice structures constructed based on a binary operation on it.

Theorem 5.3. Let (L,6,∧,∨) be a lattice and F be an idempotent and conjunctive
or disjunctive binary operation on L. Then it holds that

(i) If F is left-increasing, then the lattices (L,6,∧,∨) and (A`F (L),6`,∧`,∨`) are
isomorphic.

(ii) If F is right-increasing, then the lattices (L,6,∧,∨) and (ArF (L),6r,∧r,∨r) are
isomorphic.

P r o o f .

(i) Theorem 4.2 guarantees that (A`F (L),6`,∧`,∨`) is a lattice. Let ϕ be a mapping
from L into A`F (L) such that ϕ(α) = fα, for any α ∈ L. Then the surjectivity of
ϕ is immediate. Moreover, from Proposition 4.5, we obtain that

α 6 β if and only if ϕ(α) 6` ϕ(β), for any α, β ∈ L .

Hence, ϕ is an order isomorphism between these two lattices. Then, Proposition 2.1
guarantees that ϕ is a lattice isomorphism. Therefore, the lattices (L,6,∧,∨) and
(ArF (L),6r,∧r,∨r) are isomorphic.

(ii) Follows from Proposition 3.1 and (i).

�

Theorem 5.3 leads to the following result.

Theorem 5.4. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If F is
the meet operation ∧ or the join operation ∨ of L, then the lattices (A`F (L),6`,∧`,∨`)
and (ArF (L),6r,∧r,∨r) are identical and isomorphic with (L,6,∧,∨).
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In the following, we illustrate two examples of Theorem 5.3 justifying the condition
of left-increasing (resp. right-increasing).

Example 5.2. Let (D(6), |, gcd, lcm) be the lattice given by the Hasse diagram in Fig-
ure 6 and F be a binary operation on D(6) defined by the following table:

F (x, y) 1 2 3 6
1 1 1 1 1
2 1 2 1 1
3 1 1 3 1
6 1 2 3 6

One easily verifies that F is idempotent, conjunctive and left-increasing. Then from
Theorem 5.3, we obtain the lattice (A`F (D(6)),6`,∧`,∨`) which is isomorphic with
(D(6), |, gcd, lcm). But, the poset (ArF (D(6)),6r) has not the structure of a lattice,
and then is not isomorphic with (D(6), |, gcd, lcm). The Hasse diagrams of the lattices
(D(6), |, gcd, lcm), (A`F (D(6)),6`,∧`,∨`) and the poset (ArF (D(6)),6r) are shown in
Figure 6.

Fig. 6. The Hasse diagrams of the lattices (D(6), |, gcd, lcm),

(A`
F (D(6)),6`,∧`,∨`), and the poset (Ar

F (D(6)),6r).

Example 5.3. Let (D(12), |, gcd, lcm) be the lattice given by the Hasse diagram in
Figure 7 and F be a binary operation on D(12) defined by the following table:

F (x, y) 1 2 3 4 6 12
1 1 4 6 4 12 12
2 2 2 12 4 12 12
3 3 6 3 12 6 12
4 4 4 12 4 12 12
6 6 6 6 12 6 12
12 12 12 12 12 12 12
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One easily verifies that F is idempotent, disjunctive and right-increasing. Then Theorem
5.3 guarantees that the lattice (ArF (D(12)),6r,∧r,∨r) is isomorphic with (D(12), |, gcd, lcm).
But, the poset (A`F (D(12)),6`) has not the structure of a lattice, and then is not iso-
morphic with (D(12), |, gcd, lcm). The Hasse diagrams of the lattices (D(12), |, gcd, lcm),
(ArF (D(12)),6r,∧r,∨r) and the poset (A`F (D(12)),6`) are shown in Figure 7.

Fig. 7. The Hasse diagrams of the lattices (D(12), |, gcd, lcm),

(Ar
F (D(12)),6r,∧r,∨r), and the poset (A`

F (D(12)),6`).

5.3. Links between the different conditions of the representation theorems
of a lattice based on a binary operation

In this subsection, we show the links between the different conditions of the above
representation theorems of a given lattice based on a binary operation on it. First, we
need to show the following sufficient condition for the uniqueness of a left-neutral (resp.
a right-neutral) element of a binary operation on a lattice.

Proposition 5.1. (Uniqueness) Let (L,6,∧,∨) be a lattice and F be a conjunctive
or a disjunctive binary operation on L. If F has a left-neutral (resp. a right-neutral)
element e ∈ L, then e is unique.

P r o o f . Let e1, e2 ∈ L be two left-neutral (resp. two right-neutral) elements of F . Two
cases to consider.

(i) If F is conjunctive, then it holds that e2 = F (e1, e2) 6 e1 and e1 = F (e2, e1) 6 e2
(resp. e2 = F (e2, e1) 6 e1 and e1 = F (e1, e2) 6 e2). Hence, e1 = e2.

(ii) If F is disjunctive, the proof is analogous to that of (i).

�

Proposition 5.2. Let (L,6,∧,∨, 0, 1) be a bounded lattice and F be a binary operation
on L.
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(i) If F is conjunctive and has a left- or a right-neutral element e ∈ L, then e = 1;

(ii) If F is disjunctive and has a left- or a right-neutral element e ∈ L, then e = 0.

P r o o f .

(i) Suppose that F has a left-neutral (resp. a right-neutral) element e ∈ L. Since F
is conjunctive, it holds that 1 = F (e, 1) 6 e (resp. 1 = F (1, e) 6 e). Hence, e = 1.

(ii) The proof is similar to that of (i).

�
In view of Proposition 5.2, we obtain the following corollary.

Corollary 5.1. Let (L,6,∧,∨) be a lattice and F be a binary operation on L. If (L,6
,∧,∨) has no greatest (resp. no least) element and F is conjunctive (resp. disjunctive),
then F has no left- and no right-neutral element.

The following result characterizes the conjunction and the disjunction proprieties of
a binary operation on a bounded lattice in terms of its neutral element.

Proposition 5.3. Let (L,6,∧,∨, 0, 1) be a bounded lattice and F be a binary operation
on L. If F is increasing and having a neutral element e ∈ L, then the following statements
hold:

(i) F is conjunctive if and only if e = 1;

(ii) F is disjunctive if and only if e = 0.

P r o o f .

(i) Proposition 5.2 guarantees that if F is conjunctive, then e = 1. Conversely, sup-
pose that e = 1. Let x, y ∈ L, then x 6 e and y 6 e. Since F is increasing, it follows
that F (x, y) 6 F (x, e) = x and F (x, y) 6 F (e, y) = y. Hence, F (x, y) 6 x ∧ y.
Thus, F is conjunctive.

(ii) The proof is similar to that of (i).

�

The following propositions list some conditions for the existence and the uniqueness
of a left-neutral (resp. a right-neutral) element of a binary operation on a given lattice.

Proposition 5.4. (Existence and uniqueness) Let (L,6,∧,∨, 1) be a lattice with
the greatest element 1 ∈ L and F be a binary operation on L. If F is idempotent,
conjunctive and left-increasing (resp. right-increasing), then 1 is the unique left-neutral
(resp. the unique right-neutral) element of F .
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P r o o f . Since F is idempotent, conjunctive and left-increasing (resp. right-increasing),
it follows that x = F (x, x) 6 F (1, x) 6 x (resp. x = F (x, x) 6 F (x, 1) 6 x), for any
x ∈ L. This implies that F (1, x) = x (resp. F (x, 1) = x), for any x ∈ L. Hence,
1 is a left-neutral (resp. a right-neutral) element of F . Moreover, the fact that F is
conjunctive, it holds from Proposition 5.1 that 1 is the unique left-neutral (resp. the
unique right-neutral) element of F . �

Dually, we get the following proposition.

Proposition 5.5. (Existence and uniqueness) Let (L,6,∧,∨, 0) be a lattice with
the least element 0 ∈ L and F be a binary operation on L. If F is idempotent, disjunctive
and left-increasing (resp. right-increasing), then 0 is the unique left-neutral (resp. the
unique right-neutral) element of F .

P r o o f . The proof is analogous to that of Proposition 5.4. �

Remark 5.2. From Propositions 5.4 and 5.5, and Corollary 5.1, we conclude the follow-
ing links between the different conditions of the above representations of a given lattice
based on a binary operation on it.

(i) If (L,6,∧,∨, 1) is a lattice with the greatest element 1 and F is the meet operation
of L, then 1 is a neutral element of F . In this case, (L,6,∧,∨) can be represented
by using the both Theorems 5.2 and 5.4.

(ii) If (L,6,∧,∨) has no greatest element and F is the meet operation of L, then F
has no neutral element. In this case, (L,6,∧,∨) can be represented only by using
Theorem 5.4.

(iii) If (L,6,∧,∨, 0) is a lattice with the least element 0 and F is the join operation of
L, then 0 is a neutral element of F . In this case, (L,6,∧,∨) can be represented
by using the both Theorems 5.2 and 5.4.

(iv) If (L,6,∧,∨) has no least element and F is the join operation of L, then F has
no neutral element. In this case, (L,6,∧,∨) can be represented only by using
Theorem 5.4.

6. CONCLUSION AND FUTURE RESEARCH

In this work, we have studied and characterized some properties of a binary operation on
a lattice. We have also showed necessary and sufficient conditions that a binary operation
on a given lattice coincides with its meet (resp. its join) operation. Furthermore, we have
provided some representations of a given lattice in terms of two new lattices constructed
by means of a binary operation on that lattice.

To clarify some usefulness of this study, we anticipate that these properties and char-
acterizations of binary operations on an arbitrary lattice are prerequisite to introduce the
different notions of (F,G)-derivations on a lattice, where F and G are binary operations.
Furthermore, the representation theorems are likely to provide us with the proper tools
for characterizing a given lattice in terms of the principal (F,G)-derivations defined on
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it. These studies would not be possible without the analysis of the different properties
and characterizations of binary operations on a lattice addressed in this paper. Also, to
avoid making the precedent studies used the lattice meet and join operations.

(Received December 21, 2017)
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[22] R. Mesiar and M. Komorńıková: Aggregation functions on bounded posets. 35 Years of
Fuzzy Set Theory, Springer, Berlin, Heidelberg 261 (2010), pp. 3–17. DOI:10.1007/978-3-
642-16629-7 1
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