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Abstract. A higher order pressure segregation scheme for the time-dependent incompress-
ible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decou-
ple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic
system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann
problem is treated for the pressure. The stability is analyzed and the error analysis is ac-
complished by interpreting this segregated scheme as a higher order time discretization of
a perturbed system which approximates the MHD system. The main results are that the
convergence for the velocity and the magnetic field are strongly second-order in time while
that for the pressure is strongly first-order in time. Some numerical tests are performed to
illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.
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scheme; stability; error estimate
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1. Introduction

In this paper, we consider the numerical approximation of the incompressible

magnetohydrodynamics (MHD) equations

(1.1) ut − (Re)−1∆u+ (u · ∇)u+∇p+ Sb× curl b = f in Ω× [0, T ],

∇ · u = 0, ∇ · b = 0 in Ω× [0, T ],

bt + (Rm)−1 curl(curl b)− curl(u× b) = g in Ω× [0, T ],
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where Ω is an open bounded domain in R
d (d = 2, 3), T > 0 is the given final

time, the unknowns are the velocity u, the pressure p and the magnetic field b, the

vector-valued functions f and g represent the body forces applied to the fluid and

the known applied current with ∇·g = 0, respectively. Moreover, Re,Rm, and S are

three positive constants which denote the Reynolds number, the magnetic Reynolds

number, and the coupling number, respectively. These constants are defined by

Re := ̺U0L/µ, Rm := ησU0L, S := B2
0/(η̺U

2
0 ), where B0 denotes the characteristic

value of the magnetic field, U0 the characteristic value of the velocity, ̺ the density,

η the magnetic permeability, µ the viscosity of the fluid, σ the electric conductivity

and L the characteristic length scale. We consider the initial conditions

(1.2) u(x, 0) = u0, b(x, 0) = b0 in Ω,

and assume the no-slip boundary condition for the velocity, and the perfectly con-

ducting boundary condition for the magnetic field, namely,

(1.3) u = 0, b · n = 0, curl b× n = 0 on ∂Ω× [0, T ],

where n denotes the unit outward normal vector on ∂Ω. It is necessary to require

that u0 and b0 satisfy the compatibility conditions ∇ · u0 = 0 and ∇ · b0 = 0,

respectively.

The MHD equations (1.1)–(1.3) model incompressible, resistive and electrically

conducting fluids under electromagnetic fields. It can be seen that testing the first

equation and the third equation of (1.1) by u and Sb, respectively, and adding the

resulting equations yields the energy identity

1

2

d

dt
(‖u‖2 + S‖b‖2) +

1

Re
‖∇u‖2 +

S

Rm
‖curlb‖2 = (f ,u) + S(g,b) ∀ t > 0.

About the regularities of the weak solutions, we can see [28].

In the last decades, more and more attention has been attracted to the numerical

methods of the incompressible MHD equations. We can refer to [11] for a review of

the numerical methods of the MHD equations. For the stationary MHD equations,

various numerical approximations have been proposed, mostly concentrated on the

stabilized finite element method [10], [18], [27]. For the numerical methods of the

time-dependent MHD equations, we can refer to [3], [4], [13], [21], [26], [25], [32],

[34], [38], [39] for more details. About the long-term dissipativity of time-stepping

schemes for the time-dependent MHD equations, we can see [3], [32]. Recently,

Ravindran [25] proposed and analyzed a fully implicit, linearly extrapolated sec-

ond order backward difference time stepping scheme for solving the time dependent
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non-homogeneous MHD system. Roughly speaking, the MHD system includes not

only the incompressibility and strong nonlinearity, but also the coupling between

the Navier-Stokes equations and the Maxwell’s equations, which causes that solv-

ing the numerical solutions of the MHD equations becomes a very difficult task. If

we solve the system (1.1)–(1.3) directly, even by using the time-stepping extrapol-

ation methods [3], [32], it means that we need to find the unknown variables u, p

and b simultaneously, and a large discrete algebraic system is formed. Thus, it is

expensive to find the numerical solutions of such a large coupled system directly by

the standard Galerkin methods. For dealing with these difficulties, in the 1960s,

Chorin [9] and Temam [33] proposed the origin of the projection method for the

Navier-Stokes problems, which is a two-step scheme, solving firstly an intermedi-

ate velocity via a linear elliptic problem and secondly a velocity-pressure pair via

a solenoidal (divergence-free) L2-projection problem. For the variants of the projec-

tion methods, we can refer to [16], [15], [17], [14], [22], [31], [36]. However, there are

also some drawbacks of such projection method, for example, the end-of-step velocity

does not satisfy the exact boundary conditions and the discrete pressure satisfies an

“artificial” Neumann boundary condition. To avoid using artificial boundary condi-

tions of pressure type, some fractional-step schemes for the Navier-Stokes problems

were introduced and studied in [7], [6]. It is a two-step scheme in which the in-

compressibility and the nonlinearities of the Navier-Stokes problems are split into

different steps, and it allows the enforcement of the original boundary conditions in

all sub-steps. To the author’s best knowledge, inspired by these projection methods,

for the time-dependent MHD equations (1.1)–(1.3), Prohl [23] proposed a projec-

tion scheme. Moreover, it was proved that this scheme provides the weakly order 1
2

approximations of the velocity and the magnetic field in H1(Ω). Badia et al. [5] pro-

posed several very interesting splitting procedures based on double projection steps.

Some unconditionally energy stable numerical schemes based on the standard and

rotational pressure-correction schemes were proposed by Choi and Shen [8]. An [2]

proposed a new linearized projection scheme, which is unconditionally stable, and it

was proved that it provides the weakly first-order approximations of the velocity and

the magnetic field in H1(Ω), the strongly first-order approximations of the velocity

and the magnetic field in L2(Ω), and the weakly first-order approximation of the

pressure in L2(Ω) under some additional regularity assumptions.

On the contrary, inspired by the higher order projection methods for the Navier-

Stokes equations proposed by Shen [30] and for the natural convection problem pro-

posed by Qian and Zhang [24], we propose a higher order pressure segregation scheme

for the time-dependent MHD equations in this article. This scheme allows us to de-

couple the MHD system into two sub-problems at each time step. First, a coupled

linear elliptic system is solved for the velocity and the magnetic field. And then,
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a Poisson-Neumann problem is treated for the pressure. The stability is analyzed

and the error analysis is accomplished by interpreting this segregated scheme as

a higher order time discretization of a perturbed system which approximates the

MHD system. We prove that it provides the strongly second-order approximations

of the velocity and the magnetic field in L2(Ω), the strongly order 3
2 approxima-

tions of the velocity and the magnetic field in H1(Ω), while the strongly first-order

approximations of the pressure in H1(Ω). Numerical results in both the two and

three dimensional spaces are presented to illustrate the theoretical predictions and

demonstrate the efficiency of the method.

The rest of the paper is organized as follows. Section 2 introduces some notation,

preliminary results and assumptions, which will be used throughout this article, and

gives out the higher order pressure segregation scheme for the time-dependent MHD

equations. Stability of the second-order pressure segregation scheme is presented

in Section 3. In Section 4, we establish rigorously the convergence of the proposed

scheme and prove that it provides the strongly second-order approximations of the

velocity and the magnetic field in L2(Ω), the strongly order 3
2 approximations of the

velocity and the magnetic field in H1(Ω), while the strongly first-order approxima-

tions of the pressure in H1(Ω). Numerical experiments are shown to confirm the

theoretical predictions and demonstrate the efficiency of the method in Section 5.

Finally, we conclude the article.

2. Mathematical preliminaries

We now describe some of the notation, definitions and preliminary lemmas which

will be used in the analysis. Let Ω ⊂ R
d (d = 2, 3) be an open, bounded convex

polygonal or polyhedral domain with Lipschitz-continuous boundary ∂Ω. We will

use (·, ·) and ‖·‖ to denote the scalar product and the norm in L2(Ω), respectively.

Let W k,p(Ω) (k ∈ N, 1 6 p 6 ∞) denote the standard Sobolev space. The space

Hk(Ω) is the standard Hilbert Sobolev space of order k with norm ‖·‖Hk . All other

norms will be clearly labeled. In addition, the vector spaces and vector functions will

be indicated by boldface type letters, e.g., the spaces Hk(Ω), Wk,p(Ω) and Lp(Ω)

represent the vector Sobolev spaces Hk(Ω)d, W k,p(Ω)d and Lp(Ω)d, respectively.

Let Z be a Banach space, we denote by Lp(0, T ;Z) the time-space function space

equipped with the norm

‖υ‖Lp(0,T ;Z) =





(∫ T

0

‖υ‖pZ dt

)1/p

if 1 6 p < ∞,

ess sup
t∈[0,T ]

‖υ‖Z if p = ∞.
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For convenience, we often use the abbreviated form Lp(Z) := Lp(0, T ;Z). We also

introduce the time discrete space lp(Z) associated with Lp(Z); lp(Z) is the space of

sequences ω := {ωn : n = 1, . . . , N} with the norm ‖ · ‖lp(Z) defined by

‖ω‖lp(Z) =






(
∆t

N−1∑

n=0

‖ωn+1‖pZ

)1/p

if 1 6 p < ∞,

max
06n6N−1

‖ωn+1‖Z if p = ∞.

Hereafter Hk and L2 denote the vector spaces Hk(Ω) and L2(Ω) or the scalar

spaces Hk(Ω) and L2(Ω), respectively.

The following Sobolev spaces are introduced by

V = H1
0(Ω) = {v ∈ H1(Ω): v = 0 on ∂Ω},

X = {v ∈ H1(Ω): v · n = 0 on ∂Ω},

M = L2
0(Ω) =

{
q ∈ L2(Ω):

∫

Ω

q dx = 0

}
.

The symbols C,C,C0, C1, . . . are used to denote generic positive constants inde-

pendent of the time step size ∆t.

In addition, we recall that the following two formulas hold:

(a × b)× c · d = (a × b) · (c× d) = −(a× b) · (d× c),(2.1) ∫

Ω

curl u · v dx =

∫

Ω

u · curl v dx+

∫

∂Ω

n× u · v dS.(2.2)

Under the above two formulas, the weak formulation of the MHD system (1.1)–

(1.3) is derived by: Find (u, p,b) ∈ (V,M,X) such that for all (v, q,w) ∈ (V,M,X),

(2.3) (ut,v) + a1(u,v) + b(u,u,v)− d(p,v) + S(b× curl b,v) = (f ,v),

d(q,u) = 0,

(bt,w) + a2(b,w)− (u× b, curl w) = (g,w),

where

a1(u,v) =
1

Re

∫

Ω

∇u : ∇v dx ∀u,v ∈ V,

a2(u,v) =
1

Rm

∫

Ω

(curlu · curl v + (∇ · u)(∇ · v)) dx ∀u,v ∈ X,

d(p,v) =

∫

Ω

p div v dx ∀v ∈ V, p ∈ M,

b(u,v,w) =

∫

Ω

(u · ∇)v ·w dx+
1

2

∫

Ω

(∇ · u)v ·w dx

=
1

2

∫

Ω

(u · ∇)v ·w dx−
1

2

∫

Ω

(u · ∇)w · v dx ∀u,v,w ∈ V.
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It is easy to verify that the trilinear form b(·, ·, ·) is skew-symmetric with respect

to its last two arguments, i.e.,

(2.4) b(u,v,w) = −b(u,w,v) ∀u,v,w ∈ V.

We will frequently use the algebraic relations

(2.5) 2(a− b, a) = |a|2 − |b|2 + |a− b|2, 2(a− b, b) = |a|2 − |b|2 − |a− b|2,

(a− b, a+ b) = |a|2 − |b|2.

The following standard skew-symmetric form for the convection term will be used:

B(u,v) = (u · ∇)v +
1

2
(∇ · u)v ∀u,v ∈ H1(Ω).

We recall the inequality ([12], page 52, Lemma 3.4)

(2.6) ‖v‖ 6 C(‖curlv‖ + ‖divv‖) ∀v ∈ X,

and the continuous embeddings [1]

(2.7) H1(Ω) →֒ Lq(Ω), q ∈ [1,∞) if d = 2,

H1(Ω) →֒ Lq(Ω), q ∈ [2, 6] if d = 3,

H2(Ω) →֒ L∞(Ω), d = 2, 3,

H2(Ω) →֒ W 1,3(Ω), d = 2, 3,

which will be frequently used in the analysis.

Furthermore, the Young’s and Poincaré’s inequalities as follows will be used fre-

quently

ab 6
ε

p
ap +

ε−q/p

q
bq, a, b, p, q, ε ∈ R,

1

p
+

1

q
= 1, p, q ∈ (1,∞), ε > 0,

‖v‖ 6 Cp‖∇v‖ ∀v ∈ V, Cp = Cp(Ω).

Let 0 = t0 < t1 < . . . < tN = T be a uniform partition of the time interval [0, T ]

with time step size ∆t = T/N (0 < ∆t < 1) and tn+1 = (n+1)∆t for 0 6 n 6 N−1.

The proposed higher order pressure segregation scheme is the following two-step

scheme:
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A l g o r i t hm 2.1 (Higher order pressure segregation scheme). Let p0 be given,

and taking u0 = u0, b
0 = b0, we find un+1, pn+1, bn+1 by the following two-step

scheme:

Step 1. Find un+1 and bn+1 such that

(2.8)
un+1 − un

∆t
−

1

Re
∆un+1/2 +B(un,un+1/2) + Sbn

× curl bn+1/2 +∇pn = f(tn+1/2) in Ω,

bn+1 − bn

∆t
+

1

Rm
curl(curlbn+1/2)− curl(un+1/2 × bn) = g(tn+1/2) in Ω,

∇ · bn+1 = 0 in Ω,

un+1 = 0, bn+1 · n = 0, curl bn+1 × n = 0 on ∂Ω,

where un+1/2 = 1
2 (u

n+1 + un), bn+1/2 = 1
2 (b

n+1 + bn).

Step 2. Given un+1 from Step 1, find pn+1 such that

(2.9) α∆t(∆pn+1 −∆pn) = ∇ · un+1 in Ω,

∇(pn+1 − pn) · n = 0 on ∂Ω,

where α is a constant to be determined.

R em a r k 2.1. Notice that p0 is not part of the initial data of our problem.

Under suitable compatibility and smoothness assumptions on the initial data and

forcing terms, this quantity can be computed by solving a Poisson equation

∆p0 = div(f0 − (u0 · ∇)u0 − Sb0 × curl b0) in Ω,

∇p0 · n =
(
f0 +

1

Re
∆u0 − (u0 · ∇)u0 − Sb0 × curl b0

)
· n on ∂Ω.

For convenience, we assume p0 is exact or p0 = p0 in our analysis, here p0 denotes

the initial value of pressure.

R em a r k 2.2. The numerical solution of the velocity un+1 solved by (2.8) may

not belong to the divergence-free function space. Then we improve it from (2.9).

Since pn and pn+1 are two successive iterative solutions, the difference between ∆pn

and ∆pn+1 tends to zero as n → ∞, therefore we know that ∇·un+1 → 0 as n → ∞.

R em a r k 2.3. Algorithm 2.1 avoids solving an intermediate velocity, which

causes that it can save a large amount of computation cost. What’s more, the

constant α only must satisfy α > 1
4 , this choice is more flexible than the other

projection schemes [29].
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R em a r k 2.4. The linear extrapolation method is used in (2.8), we only need

to solve a linear problem at each time step, which avoids using the nonlinear it-

eration. Noticing that the velocity and pressure in (2.8)–(2.9) are decoupled from

each other, the space discretizations for the velocity and the pressure can be chosen

independently, and they need not satisfy the inf-sup stable condition.

The purpose of this paper is to prove some temporal error estimates for the time-

discrete scheme (2.8)–(2.9), and hence we assume that the initial data and the reg-

ularities of the solution (u, p,b) satisfy:

‖u0‖H2 + ‖b0‖H2 +

∫ T

0

(‖f(t)‖ + ‖g(t)‖) dt 6 C,(A1)

sup
t∈[0,T ]

(‖u(t)‖H2 + ‖b(t)‖H2 + ‖ut(t)‖H1 + ‖bt(t)‖H1 + ‖∇pt(t)‖) 6 C,(A2)

∫ T

0

(‖utt(t)‖H2 + ‖btt(t)‖H2 + ‖∇ptt(t)‖H1(A3)

+ ‖uttt(t)‖L2 + ‖bttt(t)‖L2) dt 6 C.

3. Stability analysis

Now, we give out the a priori energy estimates of Algorithm 2.1 in the following

theorem, which shows that Algorithm 2.1 is conditionally stable.

Theorem 3.1. Under the assumption (A1), let (un+1, pn+1,bn+1) ∈ (V,M,X0)

be the solution of Algorithm 2.1 if the initial discrete pressure p0 satisfies

∆t‖∇p0‖2 6 C0, where C0 is a constant. Then, for α > 1
4 and all 0 6 l 6 N − 1,

there exists a constant C1 = C1(Re,Rm, S, f ,g,u0,b0, C0, Cp, α, T ) > 0 such that

(3.1)
(
1−

1

4α

)
‖ul+1‖2 + S‖bl+1‖2

+∆t

l∑

n=1

( 1

Re
‖∇un+1/2‖2 +

S

Rm
‖curlbn+1/2‖2

)
6 C1.

P r o o f. Testing the first equation and the second equation of (2.8) by 2∆tun+1/2

and 2S∆tbn+1/2, respectively, and applying the identities (2.5) and the formula (2.2)

along with (2.4), one has

(3.2) ‖un+1‖2 − ‖un‖2 +
2∆t

Re
‖∇un+1/2‖2 + 2∆tS(bn × curl bn+1/2,un+1/2)

+ 2∆t(∇pn,un+1/2) = 2∆t(f(tn+1/2),u
n+1/2),
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and

(3.3) S[‖bn+1‖2 − ‖bn‖2] +
2S∆t

Rm
‖curlbn+1/2‖2

− 2∆tS(un+1/2 × bn, curl bn+1/2) = 2S∆t(g(tn+1/2),b
n+1/2).

Next, taking the sum of (2.9) for two consecutive time-steps, we have

α∆t(∆pn+1 −∆pn−1) = ∇ · (un+1 + un) in Ω,

∇(pn+1 − pn−1) · n = 0 on ∂Ω.

Thus, by integration by parts, (2.4) and (2.8), we deduce

(3.4) 2∆t(∇pn,un+1/2)

= ∆t(∇pn,un+1 + un)

= −∆t(pn,∇ · (un+1 + un)) (by integration by parts)

= − α∆t2(pn,∆pn+1 −∆pn−1) (by (2.8))

= α∆t2(∇pn,∇pn+1 −∇pn−1) (by integration by parts)

=
α∆t2

2
[(‖∇pn+1‖2 + ‖∇pn‖2)− (‖∇pn‖2 + ‖∇pn−1‖2)

− ‖∇pn+1 −∇pn‖2 + ‖∇pn −∇pn−1‖2] (by (2.4)).

Making use of the vector identity

(3.5) (u× curl v,w) = (w × u, curl v) ∀u,v,w ∈ H1(Ω)

and (3.4), and adding equations (3.2) and (3.3), we obtain

(3.6) ‖un+1‖2 − ‖un‖2 +
2∆t

Re
‖∇un+1/2‖2

+ S[‖bn+1‖2 − ‖bn‖2] +
2S∆t

Rm
‖curlbn+1/2‖2

+
α∆t2

2
[(‖∇pn+1‖2 + ‖∇pn‖2)− (‖∇pn‖2 + ‖∇pn−1‖2)]

=
α∆t2

2
(‖∇pn+1 −∇pn‖2 − ‖∇pn −∇pn−1‖2)

+ 2∆t(f(tn+1/2),u
n+1/2) + 2S∆t(g(tn+1/2),b

n+1/2).

539



For the last two terms on the right-hand side of (3.6), applying the Cauchy-Schwarz,

Young’s and Poincaré’s inequalities and (2.6), we arrive at

2∆t(f(tn+1),u
n+1) 6 2Cp∆t‖f(tn+1/2)‖‖∇un+1/2‖(3.7)

6
∆t

Re
‖∇un+1/2‖2 +ReC2

p∆t‖f(tn+1/2)‖
2,

2S∆t(g(tn+1),b
n+1) 6 2S∆t‖g(tn+1/2)‖‖curlb

n+1/2‖(3.8)

6 2SC∆t‖g(tn+1/2)‖‖b
n+1/2‖

6
S∆t

Rm
‖curlbn+1/2‖2 + CRmS∆t‖g(tn+1/2)‖

2.

Taking the sum of (3.6) from n = 1 to l (1 6 l 6 N − 1) and using (3.7) and (3.8),

we have

(3.9) ‖ul+1‖2 + S‖bl+1‖2 +∆t

l∑

n=1

( 1

Re
‖∇un+1/2‖2 +

S

Rm
‖curlbn+1/2‖2

)

+
α∆t2

2
(‖∇pl+1‖2 + ‖∇pl‖2)

6 ‖u1‖2 + S‖b1‖2 +
α∆t2

2
‖∇pl+1 −∇pl‖2 −

α∆t2

2
‖∇p1 −∇p0‖2

+
α∆t2

2
(‖∇p1‖2 + ‖∇p0‖2) +ReC2

p∆t

l∑

n=1

‖f(tn+1/2)‖
2

+ CRmS∆t

l∑

n=1

‖g(tn+1/2)‖
2.

Choosing n = l in (2.9), and testing (2.9) by pl+1 − pl, one has

α∆t‖∇pl+1 −∇pl‖2 = (ul+1,∇pl+1 −∇pl) 6 ‖ul+1‖‖∇pl+1 −∇pl‖

6
α∆t

2
‖∇pl+1 −∇pl‖2 +

1

2α∆t
‖ul+1‖2.

This leads to

(3.10) α∆t2‖∇pl+1 −∇pl‖2 6
1

α
‖ul+1‖2.

Thus, we find

(3.11)
α∆t2

2
‖∇pl+1 −∇pl‖2 6

1

4α
‖ul+1‖2 +

α∆t2

2
(‖∇pl+1‖2 + ‖∇pl‖2).
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Noticing that

(3.12) −
α∆t2

2
‖∇p1 −∇p0‖2 6 α∆t2(‖∇p1‖2 + ‖∇p0‖2),

and then substituting (3.11) and (3.12) into (3.9), yields that

(3.13)
(
1−

1

4α

)
‖ul+1‖2 + S‖bl+1‖2

+∆t

l∑

n=1

( 1

Re
‖∇un+1/2‖2 +

S

Rm
‖curlbn+1/2‖2

)

6 ‖u1‖2 + S‖b1‖2 +
3α∆t2

2
(‖∇p1‖2 + ‖∇p0‖2)

+ReC2
p‖f‖

2
l2(L2) + CRmS‖g‖2l2(L2).

To complete the proof of the theorem, we need to bound ‖u1‖2, ‖b1‖2, and

∆t2‖∇p1‖2. Testing the first equation and the second equation of (2.8) at n = 0

by 2∆tu1/2 and 2∆tb1/2, respectively, and then adding the resulting equations and

applying (3.5), we have

(3.14) ‖u1‖2 − ‖u0‖2 +
2∆t

Re
‖∇u1/2‖2 + S(‖b1‖2 − ‖b0‖2) +

2S∆t

Rm
‖curlb1/2‖2

= − 2∆t(∇p0, ·u1/2) + 2∆t(f(t1/2),u
1/2) + 2S∆t(g(t1/2),b

1/2)

6
∆t

Re
‖∇u1/2‖2 +

S∆t

Rm
‖curlb1/2‖2 + 2ReC2

p∆t‖∇p0‖2

+ 2ReC2
p∆t‖f(t1/2)‖

2 + CRmS∆t‖g(t1/2)‖
2.

Thus, it holds that

(3.15) ‖u1‖2 + S‖b1‖2 +
∆t

Re
‖∇u1/2‖2 +

S∆t

Rm
‖curlb1/2‖2

6 ‖u0‖2 + S‖b0‖2 + 2ReC2
p∆t‖∇p0‖2

+ 2ReC2
p∆t‖f(t1/2)‖

2 + CRmS∆t‖g(t1/2)‖
2.

Under the condition ∆t‖∇p0‖2 6 C0, we obtain

(3.16) ‖u1‖2 + S‖b1‖2 +
∆t

Re
‖∇u1/2‖2 +

S∆t

Rm
‖curlb1/2‖2

6 ‖u0‖2 + S‖b0‖2 + 2ReC2
pC0

+ 2ReC2
p‖f‖

2
l2(L2) + CRmS‖g‖2l2(L2).

Taking l = 0 for (3.10), we can deduce

(3.17) ∆t2‖∇p1‖2 −∆t2‖∇p0‖2 6 ∆t2‖∇p1 −∇p0‖2 6
1

α2
‖u1‖2.

541



Combining (3.16) and (3.17) with (3.13), we obtain the desired estimate and complete

the proof. �

4. Error analysis

In this section, we will obtain error estimates for the velocity, the pressure and

the magnetic field. For this, let tn+1/2 = (n+ 1
2 )∆t. For any function w(t) and any

sequence of functions {fn}Nn=0 we define

w̃(tn+1/2) =
1

2
(w(tn+1) + w(tn)), fn+1/2 =

1

2
(fn+1 + fn),

and the errors at t = tn (n = 0, 1, . . . , N) by

enu := u(tn)− un, enb := b(tn)− bn, enp := p(tn)− pn.

We can rewrite the first equation and the second equation of (1.1) at t = tn+1/2,

respectively, by

(4.1)
u(tn+1)− u(tn)

∆t
−

1

Re
∆ũ(tn+1/2) + (u(tn) · ∇)ũ(tn+1/2) +∇p(tn)

+ Sb(tn)× curl b̃(tn+1/2) = f(tn+1/2) +Rn+1
u ,

and

(4.2)
b(tn+1)− b(tn)

∆t
+

1

Rm
curl(curl b̃(tn+1/2))

− curl(ũ(tn+1/2)× b(tn)) = g(tn+1/2) +Rn+1
b ,

where

Rn+1
u =

[u(tn+1)− u(tn)

∆t
− ut(tn+1/2)

]
+

1

Re
(∆u(tn+1/2)−∆ũ(tn+1/2))

+ [(u(tn) · ∇)ũ(tn+1/2)− (u(tn+1/2) · ∇)u(tn+1/2)]

+ [∇p(tn)−∇p(tn+1/2)]

+ [Sb(tn)× curl b̃(tn+1/2)− Sb(tn+1/2)× curl b(tn+1/2)]

= Rn+1
u1 +Rn+1

u2 +Rn+1
u3 +Rn+1

u4 +Rn+1
u5 ,

and

Rn+1
b =

[b(tn+1)− b(tn)

∆t
− bt(tn+1/2)

]

+
1

Rm
[curl(curl b̃(tn+1/2))− curl(curlb(tn+1/2))]

+ curl(u(tn+1/2)× b(tn+1/2)− ũ(tn+1/2)× b(tn))

= Rn+1
b1 +Rn+1

b2 +Rn+1
b3 .
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Subtracting the first equation and the second equation of (2.8) from (4.1) and (4.2),

respectively, we arrive at

(4.3)
en+1
u − enu

∆t
−

1

Re
∆en+1/2

u +B(enu, ũ(tn+1/2)) +B(un, en+1/2
u ) +∇enp

+ Senb × curl b̃(tn+1/2) + Sbn × curl e
n+1/2
b = Rn+1

u ,

and

(4.4)
en+1
b − enb

∆t
+

1

Rm
curl(curl e

n+1/2
b )− curl(en+1/2

u × bn)

− curl(ũ(tn+1/2)× enb ) = Rn+1
b .

Lemma 4.1. Under the assumptions (A1)–(A3), there exists a positive constant

C > 0 such that for all 0 6 n 6 N − 1, the following estimates hold:

(4.5) ‖Rn+1
u ‖ 6 C∆t, ‖Rn+1

b ‖ 6 C∆t.

P r o o f. Set ϕ ∈ C3(0, T ). By the Taylor series expansion with integral remain-

der, we know

ϕ(tn+1)− ϕ(tn)

∆t
− ϕt(tn+1/2)

=
1

2∆t

[ ∫ tn+1

tn+1/2

(tn+1 − t)2ϕttt(t) dt−

∫ tn

tn+1/2

(tn − t)2ϕttt(t) dt

]
,

ϕ(tn+1) + ϕ(tn)

2
− ϕ(tn+1/2)

=
1

2

∫ tn+1

tn+1/2

(tn+1 − t)ϕtt(t) dt+
1

2

∫ tn

tn+1/2

(tn − t)ϕtt(t) dt,

ϕ(tn+1)− ϕ(tn) =

∫ tn+1

tn

ϕt(t) dt,

where ϕ can be replaced by u, p or b, respectively. Thus, we have

‖Rn+1
u1 ‖ 6

∥∥∥∥
1

2∆t

∫ tn+1

tn+1/2

(tn+1 − t)2uttt dt−
1

2∆t

∫ tn

tn+1/2

(tn − t)2uttt dt

∥∥∥∥

6 C∆t3/2‖uttt‖L2(tn,tn+1;L2).
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Similarly, ‖Rn+1
u2 ‖ 6 C∆t3/2‖utt‖L2(tn,tn+1;H2). Notice that

Rn+1
u3 = (ũ(tn+1/2) · ∇)ũ(tn+1/2)− (u(tn+1/2) · ∇)u(tn+1/2)

+ (u(tn)− ũ(tn+1/2)) · ∇)ũ(tn+1/2)

= (ũ(tn+1/2)− u(tn+1/2)) · ∇ũ(tn+1/2)

+ u(tn+1/2) · ∇(ũ(tn+1/2)− u(tn+1/2))

−
1

2
(u(tn+1)− u(tn)) · ∇ũ(tn+1/2),

Rn+1
u4 = (∇p(tn)−∇p̃(tn+1/2)) + (∇p̃(tn+1/2)−∇p(tn+1/2))

= −
1

2
(∇p(tn+1)−∇p(tn)) + (∇p̃(tn+1/2)−∇p(tn+1/2)),

and

Rn+1
u5 = Sb̃(tn+1/2)× curl b̃(tn+1/2)− Sb(tn+1/2)× curl b(tn+1/2)

+ S(b(tn)− b̃(tn+1/2))× curl b̃(tn+1/2)

= S(b̃(tn+1/2)− b(tn+1/2))× curl b̃(tn+1/2)

+ Sb(tn+1/2)× curl (b̃(tn+1/2)− b(tn+1/2))

−
S

2
(b(tn+1)− b(tn))× curl b̃(tn+1/2).

By the Hölder inequality and the Sobolev embeddings (2.7), we have

‖Rn+1
u3 ‖ 6 ‖ũ(tn+1/2)− u(tn+1/2)‖L6‖∇ũ(tn+1/2)‖L3

+ ‖u(tn+1/2)‖L∞‖∇(ũ(tn+1/2)− u(tn+1/2))‖

+
1

2
‖u(tn+1)− u(tn)‖L6‖∇ũ(tn+1/2)‖L3

6 C∆t3/2‖utt‖L2(tn,tn+1;H1)‖ũ(tn+1/2)‖H2

+ C∆t‖ut‖l∞(H1)‖ũ(tn+1/2)‖H2 ,

and

‖Rn+1
u4 ‖ 6

∆t

2
‖∇pt‖l∞(L2) + C∆t3/2‖ptt‖L2(tn,tn+1;H1),

‖Rn+1
u5 ‖ 6 C∆t3/2‖btt‖L2(tn,tn+1;H1)‖b̃(tn+1/2)‖H2

+ C∆t‖bt‖l∞(H1)‖b̃(tn+1/2)‖H2 .

By the regularity assumptions (A2) and (A3), we obtain ‖Rn+1
u ‖ 6 C∆t.

Next, we bound Rn+1
b . With the same techniques as above, we know ‖Rn+1

b1 ‖ 6
1
24∆t2‖uttt‖l∞(L2). Using the identity

curl curl A = ∇(∇ ·A)−∆A,
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we find

Rn+1
b2 = −

1

Rm
∆(b̃(tn+1/2)− b(tn+1/2))

and thus

‖Rn+1
b2 ‖ 6 C∆t3/2‖btt‖L2(tn,tn+1;H2).

Next, we decompose Rn+1
b3 as

Rn+1
b3 = curl((u(tn+1/2)− ũ(tn+1/2))× b(tn+1/2))

+ curl(ũ(tn+1/2)× (b(tn+1/2)− b̃(tn+1/2)))

+
1

2
curl(ũ(tn+1/2)× (b(tn+1)− b(tn))) = Rn+1

b31 +Rn+1
b32 +Rn+1

b33 .

Using the formula

(4.6) curl(u× v) = (div v)u− (u · ∇)v + (v · ∇)u− (div u)v,

we have

‖Rn+1
b31 ‖ = ‖ − (u(tn+1/2)− ũ(tn+1/2)) · ∇b(tn+1/2)

+ (b(tn+1/2) · ∇)(u(tn+1/2)− ũ(tn+1/2))‖

6 C‖u(tn+1/2)− ũ(tn+1/2)‖H1‖b(tn+1/2)‖H2

6 C∆t3/2‖utt‖L2(tn,tn+1;H2)‖b(tn+1/2)‖H2 .

Similarly,

‖Rn+1
b32 ‖ 6 C∆t3/2‖btt‖L2(tn,tn+1;H1)‖ũ(tn+1/2)‖H2 ,

‖Rn+1
b33 ‖ 6 C∆t‖bt‖l∞(H1)‖ũ(tn+1/2)‖H2 .

Thus, we know ‖Rn+1
b ‖ 6 C∆t and complete the proof. �

Theorem 4.1. Under the assumptions (A1)–(A3) and α > 1
4 , there exists a pos-

itive constant C > 0 such that for all 0 6 n 6 N − 1, the following error estimates

hold:

(4.7) ‖en+1
u ‖2 + ‖en+1

b ‖2 + ‖∆t∇en+1
p ‖2 6 C∆t4, ‖∇en+1

u ‖2 + ‖en+1
b ‖2H1 6 C∆t3,

where C depends on Re,Rm, S, α, f ,g,u0 and b0.
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P r o o f. Testing (4.3) by 2∆te
n+1/2
u and noticing that b(u,v,v) = 0 for all

u,v ∈ H1
0(Ω), we deduce

(4.8) ‖en+1
u ‖2 − ‖enu‖

2 +
2∆t

Re
‖∇en+1/2

u ‖2 +∆t(∇enp , e
n+1
u + enu)

= − 2∆tb(enu, ũ(tn+1/2), e
n+1/2
u )− 2S∆t(enb × curl b̃(tn+1/2), e

n+1/2
u )

− 2∆tS(bn × curl e
n+1/2
b , en+1/2

u ) + 2∆t(Rn+1
u , en+1/2

u ).

Similarly, testing (4.4) by 2S∆te
n+1/2
b leads to

(4.9) S[‖en+1
b ‖2 − ‖enb ‖

2] +
2S∆t

Rm
‖curle

n+1/2
b ‖2

= 2S∆t(en+1/2
u × bn, curl e

n+1/2
b )

+ 2S∆t(ũ(tn+1/2)× enb , curl e
n+1/2
b ) + 2S∆t(Rn+1

b , e
n+1/2
b ).

Adding and subtracting the terms u(tn+1), p(tn+1) in (2.9), we find

α∆t(−∆en+1
p +∆enp ) + α∆t(∆p(tn+1)−∆p(tn)) = −∇ · en+1

u .

Testing the above equation by q ∈ M , we obtain

(4.10) α∆t(∇en+1
p −∇enp ,∇q)− α∆t(∇p(tn+1)−∇p(tn),∇q) = (en+1

u ,∇q).

Choosing q = ∆tenp and using (2.5), we know

(4.11)
α∆t2

2
(‖∇en+1

p ‖2 − ‖∇enp‖
2 − ‖∇en+1

p −∇enp‖
2)− α∆t2(∇p(tn+1)

−∇p(tn),∇enp ) = ∆t(en+1
u ,∇enp ).

By adding (4.8), (4.9) and (4.11), and applying (3.5), one has

(4.12) ‖en+1
u ‖2 − ‖enu‖

2 +
2∆t

Re
‖∇en+1/2

u ‖2 +
α∆t2

2
(‖∇en+1

p ‖2 − ‖∇enp‖
2)

+ S(‖en+1
b ‖2 − ‖enb ‖

2) +
2S∆t

Rm
‖curle

n+1/2
b ‖2

= −∆t(∇enp , e
n
u) +

α∆t2

2
‖∇en+1

p −∇enp‖
2

+ α∆t2(∇p(tn+1)−∇p(tn),∇enp )− 2∆tb(enu, ũ(tn+1/2), e
n+1/2
u )

− 2S∆t(enb × curl b̃(tn+1/2), e
n+1/2
u ) + 2∆t(Rn+1

u , en+1/2
u )

+ 2S∆t(ũ(tn+1/2)× enb , curl e
n+1/2
b ) + 2S∆t(Rn+1

b , e
n+1/2
b )

=

8∑

i=1

Ii.
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Now, we estimate I1, . . . , I8, below. By the Cauchy-Schwarz and Young’s inequali-

ties, we estimate I1 as:

I1 6 ‖enu‖
2 + C∆t2‖∇enp‖

2.

For bounding I2, we set ε = α− 1
4 and choose q = en+1

p − enp in (4.10), and then we

have

α∆t‖∇en+1
p −∇enp‖

2

= (en+1
u ,∇en+1

p −∇enp ) + α∆t(∇p(tn+1)−∇p(tn),∇en+1
p −∇enp )

6
∆t(4α− 3ε)

8
‖∇en+1

p −∇enp‖
2 +

2

∆t(4α− 3ε)
‖en+1

u ‖2

+
3ε∆t

8
‖∇en+1

p −∇enp‖
2 + C∆t‖∇(p(tn+1)− p(tn))‖

2

6
α∆t

2
‖∇en+1

p −∇enp‖
2 +

2

(1 + ε)∆t
‖en+1

u ‖2 + C∆t3‖pt‖
2
l∞(H1),

which leads to

α∆t2‖∇en+1
p −∇enp‖

2 6
4

(1 + ε)
‖en+1

u ‖2 + C∆t4‖pt‖
2
l∞(H1).

Hence,

I2 =
(1 + 1

2ε)α∆t2

4
‖∇en+1

p −∇enp‖
2 +

(1− 1
2ε)α∆t2

4
‖∇en+1

p −∇enp‖
2

6
1 + 1

2ε

(1 + ε)
‖en+1

u ‖2 + C∆t4‖pt‖
2
l∞(H1) +

(1− 1
2ε)α∆t2

2
(‖∇en+1

p ‖2 + ‖∇enp‖
2).

By the Hölder, Cauchy-Schwarz and Young’s inequalities and the Sobolev embed-

dings (2.7), we bound the remaing terms as follows:

I3 6 α∆t2‖∇p(tn+1)−∇p(tn)‖‖∇enp‖ 6 C∆t2‖∇enp‖
2 + C∆t4‖pt‖

2
l∞(H1),

I4 6 C∆t‖enu‖
2
L6‖∇ũ(tn+1/2)‖L3‖en+1/2

u ‖

6
ε

6(1 + ε)
‖en+1/2

u ‖2 + C∆t2‖∇enu‖
2

6
ε

12(1 + ε)
‖en+1

u ‖2 +
ε

12(1 + ε)
‖enu‖

2 + C∆t2‖∇enu‖
2,

I5 6 2S∆t‖enb ‖L6‖curl b̃(tn+1/2)‖L3‖en+1/2
u ‖

6
ε

6(1 + ε)
‖en+1/2

u ‖2 + C∆t2‖enb ‖
2
H1‖b̃(tn+1/2)‖

2
H2

6
ε

12(1 + ε)
‖en+1

u ‖2 +
ε

12(1 + ε)
‖enu‖

2 + C∆t2‖enb ‖
2
H1 .
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To bound the term I7, we use (2.2) and the following formula (4.6) and derive that

I7 = 2S∆t(curl(ũ(tn+1/2)× enb ), e
n+1/2
b )

6 2S∆t‖curl(ũ(tn+1/2)× enb )‖‖e
n+1/2
b ‖

6 2S∆t(‖ũ(tn+1/2) · ∇enb ‖+ ‖(enb · ∇)ũ(tn+1/2)‖)‖e
n+1/2
b ‖

6 2S∆t(‖ũ(tn+1/2)‖L∞‖enb ‖H1 + ‖enb ‖L6‖∇ũ(tn+1/2)‖L3)‖e
n+1/2
b ‖

6 2S∆t(‖ũ(tn+1/2)‖H2‖enb ‖H1 + ‖enb ‖H1‖ũ(tn+1/2)‖H2)‖e
n+1/2
b ‖

6
S

4
‖en+1

b ‖2 +
S

4
‖enb ‖

2 + C∆t2‖enb ‖
2
H1 .

For the remaining terms, we can deduce that

I6 6 2∆t‖Rn+1
u ‖‖en+1/2

u ‖ 6
ε

12(1 + ε)
‖en+1

u ‖2 +
ε

12(1 + ε)
‖enu‖

2 + C∆t2‖Rn+1
u ‖2.

I8 6 2∆t‖Rn+1
b ‖‖e

n+1/2
b ‖ 6

S

4
‖en+1

b ‖2 +
S

4
‖enb ‖

2 + C∆t2‖Rn+1
b ‖2.

Combining the estimates I1 to I8 with (4.12), we find

(4.13)
ε

4(1 + ε)
‖en+1

u ‖2 +
S

2
‖en+1

b ‖2 +
2∆t

Re
‖∇en+1/2

u ‖2

+
α∆t2ε

4
‖∇en+1

p ‖2 +
2S∆t

Rm
‖curle

n+1/2
b ‖2

6 C(‖enu‖
2 + ‖enb ‖

2 +∆t2‖∇enp‖
2) + C∆t4‖pt‖

2
l∞(H1)

+ C∆t2(‖∇enu‖
2 + ‖curlenb ‖

2) + C∆t2(‖Rn+1
u ‖2 + ‖Rn+1

b ‖2).

Now, we prove the conclusions of Theorem 4.1 by mathematical induction.

Firstly, we prove the results hold for n = 0. Noticing that e0u = e0b = e0p = 0, and

applying (4.5), we deduce

(4.14)
ε

4(1 + ε)
‖e1u‖

2 +
S

2
‖e1b‖

2 +
2∆t

Re
‖∇e1/2u ‖2

+
α∆t2ε

4
‖∇e1p‖

2 +
2S∆t

Rm
‖curle

1/2
b ‖2

6 C(‖e0u‖
2 + ‖e0b‖

2 +∆t2‖∇e0p‖
2) + C∆t4 6 C∆t4.

From (4.14) and the triangle inequality, we deduce that

‖e1u‖
2 + ‖e1b‖

2 +∆t2‖∇e1p‖
2 6 C∆t4,

‖∇e1u‖
2 6 2(‖2∇e1/2u ‖2 + ‖∇e0u‖

2) 6 C∆t3,

‖curle1b‖
2 6 2(‖2 curl e

1/2
b ‖2 + ‖curle0b‖

2) 6 C∆t3.
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Secondly, assuming the conclusion holds for all n 6 m− 1 (m 6 N − 1), we have

‖enu‖
2 + ‖enb ‖

2 +∆t2‖∇enp‖
2
6 C∆t4,

‖∇enu‖
2 6 2(‖2∇e

n−1
2

u ‖2 + ‖∇en−1
u ‖2) 6 C∆t3,

‖curlenb ‖
2 6 2(‖2 curl e

n− 1
2

b ‖2 + ‖curlen−1
b ‖2) 6 C∆t3.

Finally, we need to prove the conclusion holds for n = m (m 6 N − 1). Let n = m

in (4.13), we know

ε

4(1 + ε)
‖em+1

u ‖2 +
S

2
‖em+1

b ‖2 +
2∆t

Re
‖∇em+1/2

u ‖2

+
α∆t2ε

4
‖∇em+1

p ‖2 +
2S∆t

Rm
‖curle

m+1/2
b ‖2

6 C(‖emu ‖2 + ‖emb ‖2 +∆t2‖∇emp ‖2)

+ C∆t4‖pt‖
2
l∞(H1) + C∆t2(‖∇emu ‖2 + ‖curlemb ‖2)

+ C∆t2(‖Rm+1
u ‖2 + ‖Rm+1

b ‖2) 6 C∆t4.

Hence, we arrive at

‖∇em+1
u ‖2 6 2(‖2∇em+1/2

u ‖2 + ‖∇emu ‖2) 6 C∆t3,

‖curlem+1
b ‖2 6 2(‖2 curl e

m+1/2
b ‖2 + ‖curlem+1

b ‖2) 6 C∆t3,

and the proof is completed. �

R em a r k 4.1. If we assume the initial data (u0, p0,b0) for the scheme (2.8)–(2.9)

satisfies

‖u0 − u0‖+ ‖b0 − b0‖ 6 C∆t2,

‖∇(u0 − u0)‖ + ‖b0 − b0‖H1 6 C∆t3/2,

‖∇(p0 − p(0))‖ 6 C∆t,

then we know that the convergence for the velocity and the magnetic field are strongly

second-order in L2(Ω), strongly of order 3
2 in H

1(Ω), and for the pressure is strongly

first-order H1(Ω), and these results are consistent with those in Theorem 4.1.
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5. Numerical experiments

In this section, we perform some numerical experiments both in two and three

dimensional spaces to validate the effectiveness of the proposed higher order pressure

segregation scheme. We first introduce the finite element approximation of the time

discrete scheme (2.8)–(2.9). Let τh = {Ωh} be a quasi-uniform partition of Ω into

triangles or tetrahedrons with diameters h (0 < h < 1). We consider the finite

element spaces Vh ⊂ V, Xh ⊂ X and Mh ⊂ M associated with a regular family of

triangulations τh. Define Ih and Jh to be the interpolation operators from L2 to Vh

and Xh, respectively. Now, we give out the full discrete scheme corresponding to the

time discrete scheme (2.8)–(2.9) as follows:

A l g o r i t hm 5.1 (Full discrete scheme). Choosing p0h as an approximation of p
0,

taking u0
h = Ihu0, b

0
h = Jhb0, we find un+1

h , pn+1
h ,bn+1

h by the following two steps:

Step 1: Find un+1
h and bn+1

h such that

(5.1)
(un+1

h − un
h

∆t
,vh

)
+ a1(u

n+1/2
h ,vh) + b(un

h ,u
n+1/2
h , vh) + (∇pnh,vh)

+ S(bn
h × curl b

n+1/2
h ,vh) = (f(tn+1/2),vh) ∀vh ∈ Vh,

(bn+1
h − bn

h

∆t
,wh

)
+ a2(b

n+1/2
h ,wh)− (u

n+1/2
h × bn

h, curl wh)

= (g(tn+1/2),wh) ∀wh ∈ Xh,

where u
n+1/2
h = 1

2 (u
n+1
h + un

h), b
n+1/2
h = 1

2 (b
n+1
h + bn

h).

Step 2: Let un+1
h be given from Step 1, then find pn+1

h such that

(5.2) α∆t(∇(pn+1
h − pnh),∇qh) = (un+1

h ,∇qh) ∀ qh ∈ Mh,

where α is a constant to be determined.

We first test the problem with the known analytical solution to confirm the es-

tablished theoretical findings. Next, the lid driven cavity flow problem in both two

and three dimensional space is simulated, and we use this physical model to verify

the efficiency of the developed numerical scheme. We choose linear polynomials to

approximate the velocity, the pressure and the magnetic field. The domain Ω is

subdivided into triangles. All simulations were run using the public finite element

software package freefem++ [19].

Firstly, we set the parameters Re = 1.0, Rm = 1.0, S = 1.0, and the domain

Ω = [0, 1]× [0, 1]. The forcing functions f and g and boundary values of (u, p,b) are
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given so that problem (1.1) has the analytical solution

u = (sin(t) sin(2πy) sin(πx)2,− sin(t) sin(2πx) sin(πy)2)⊤,

p = (sin(2πx) + sin(2πy)) exp(−t),

b = (sin(t) sin(πx) cos(πy),− sin(t) sin(πy) cos(πx))⊤.

We examine the errors and the convergence orders of the higher order pressure segre-

gation scheme. The purpose of this test is to verify the time convergence order, so we

fix the mesh width h = 1/128 and the final time T = 1.0. In Table 1, we present the

numerical results with varying time step size ∆t. From these data, we can see that

the errors become smaller and smaller as the time step size decrease. The results

in Table 1 suggest that the convergence for the velocity and the magnetic field are

second-order in L2(Ω) and of order 3
2 in H1(Ω), and for the pressure it is first-order

in H1(Ω). The numerical results are in good agreement with the convergence rates

predicted by the theoretical analysis.

∆t ‖u− un‖L2 Rate ‖u− un‖H1 Rate ‖p− pn‖H1 Rate

0.125 0.0819886 0.605373 2.17762

0.0625 0.0202001 2.02106 0.227014 1.41504 1.03106 1.07862

0.03125 0.0053656 1.91254 0.0815380 1.47723 0.543186 0.924610

0.015625 0.00145792 1.87984 0.0289970 1.49157 0.292672 0.892162

∆t ‖b− bn‖L2 Rate ‖b− bn‖H1 Rate

0.125 0.0245068 0.175177

0.0625 0.00611660 2.00238 0.0640519 1.45150

0.03125 0.00155896 1.97215 0.0225844 1.49754

0.015625 0.000442682 1.81624 0.00797788 1.50125

Table 1. The errors and convergence rates for analytical test problem by using the higher
order pressure segregation scheme.

Secondly, we consider a famous test problem used in fluid dynamics, known as

driven cavity flow. It is a model of the flow in a cavity with the lid moving in one

direction: In this example, both the 2D domain Ω = [−1, 1]2 and the 3D domain

Ω = [−1, 1]3 are considered. Set the source terms f = 0, g = 0. For the 2D case, the

boundary conditions are imposed as

u = 0 on x = ±1, y = −1,

u = (1, 0) on y = 1,

b× n = b̃0 × n on ∂Ω,
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where b̃0 = (1, 0). For the 3D case, the boundary conditions are imposed as

u = 0 on x = ±1, y = ±1, z = −1,

u = (1, 0, 0) on z = 1,

b× n = b̃0 × n on ∂Ω,

where b̃0 = (1, 0, 0).

We choose the parameters Re = 1.0, Rm = 10.0, S = 1.0 and the time step size

∆t = 0.01. The numerical results are shown in Figures 1 and 2. Figure 1 shows the

velocity field and the magnetic field at different times (t = 0.4, 0.8, 1.0) computed

with the mesh width h = 1
32 in the 2D domain. We can see that, as time goes

on, a small vortex of the velocity is formed at the lower left corner of the cavity,

and the magnetic field gradually moves to the lower right due to the coupling effect.

The solution computed with the mesh width h = 1
16 in the 3D domain is shown

in Figure 2, from which we find that the flow vectors on slice (y = 0) demonstrate

a behavior similar to the 2D case. These results confirm to the actual physical law

(see [13]), hence, the proposed numerical scheme is very efficacious for the MHD

equations.

6. Conclusions and future works

A higher order pressure segregation scheme for time-dependent MHD equations

was proposed in this article. The stability is analyzed and the error analysis is accom-

plished by interpreting this segregated scheme as a higher order time discretization

of a perturbed system which approximates the MHD system. We have proved that

this scheme provides strongly second-order approximations of the velocity and the

magnetic field in L2(Ω), strongly order 3
2 approximations of the velocity and the

magnetic field in H1(Ω), while strongly first-order approximations of the pressure

in H1(Ω). Finally, some numerical tests are performed to validate the theoretical

predictions and the efficiency of the numerical scheme. Such segregated scheme also

can be extended to other complex models, such as in [20], [35], [36], [37].
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