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On the integral representation

of finely superharmonic functions

ABDERRAHIM ASLIMANI, IMAD EL GHAZI, MOHAMED EL KADIRI

Abstract. In the present paper we study the integral representation of nonneg-
ative finely superharmonic functions in a fine domain subset U of a Brelot P-
harmonic space 2 with countable base of open subsets and satisfying the ax-
iom D. When 2 satisfies the hypothesis of uniqueness, we define the Martin
boundary of U and the Martin kernel K and we obtain the integral represen-
tation of invariant functions by using the kernel K. As an application of the
integral representation we extend to the cone S(Uf) of nonnegative finely super-
harmonic functions in U a partition theorem of Brelot. We also establish an
approximation result of invariant functions by finely harmonic functions in the
case where the minimal invariant functions are finely harmonic.

Keywords: finely harmonic function; finely superharmonic function; fine poten-
tial; fine Green kernel; integral representation; Martin boundary; fine Riesz-
Martin kernel

Classification: 31D05, 31C35, 31C40

1. Introduction

Let Q be the space R™ if n > 3, or a domain of R? with non-polar complement,
and U a fine domain subset of €2, that is, a domain in the sense of the fine topology
on 2 (the smallest one making continuous the superharmonic functions on ).
The problem of the integral representation of fine potentials on U was studied by
B. Fuglede in [21], [22]. We denote by Gy the fine Green kernel of U defined by

GU('; y) = G(a y) - EE,‘[{7y)a

on U \ {y} and extended by fine continuity at the point y, where G is the Green
kernel of €2. The result of B. Fuglede states that for any fine potential p on U,
there is a unique Borel measure 1 > 0 on U as topological space endowed with
the trace of the initial on it such that

p(x) = /Gu(fc,y) du(y)

for any x € U.
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Let us denote by S(U) the cone of nonnegative finely superharmonic functions
on U. A function h € S(U) is said to be invariant if it belongs to the orthogonal
band to the band P(U) of fine potentials on U, in the specific order in S(U) (that
is, the order on S(U) defined by S(U)), of the band P(U) of the fine potentials
on U. The invariant functions are characterized by the fact that they are in-
variant under the sweeping on the complements of some finely open subsets V,,,
n € N, such that J,, V, = U and V, C U for any n, cf. [22, Theorem 4.4] and
[21, Theorem, page 130]. In particular, an invariant function is, following [19,
Theorem 11.13, page 127], finely harmonic in the complement of the polar set
where it takes the value co.

Every nonnegative finely superharmonic function s on U can be uniquely writ-
ten as the sum of an invariant function and a fine potential in U (Riesz decom-
position). As a consequence, for every function s € S(U) we can find a unique
Borel measure p > 0 in U and a unique invariant function h on U such that

SZ/GU(vy)dM(?J)"’h-

We deduce from this fact that the invariant functions play the role of nonnegative
harmonic functions in the Riesz decomposition of the nonnegative superharmonic
functions in a Euclidean domain subset of R”.

In [12] we defined a topology on the cone S(U) of nonnegative finely superhar-
monic functions in U in order to obtain, by using Choquet’s method, the result of
B. Fuglede of the integral representation of fine potentials and the integral repre-
sentation of invariant functions by means of extremal invariant functions, called
also minimal invariant functions.

The minimal invariant functions can be finite everywhere, that is finely har-
monic on U, or they may be infinite at some points (forming a polar set) of U,
according to a recent result of S.J. Gardiner and W. Hansen in [24]. These au-
thors have indeed shown the existence of a fine domain U of R™ of the form
U = DU 9;D, where D is a non regular domain subset of R™, n > 3, and where
0; D is the set of irregular points of 9D, and of a minimal invariant function not
finely harmonic on U. This answered in the negative two old questions posed by
B. Fuglede, namely:

1. Is every invariant function on a fine domain U the sum of a sequence of
nonnegative finely harmonic functions on U (or, equivalently, the upper
envelope of its nonnegative minorants finely harmonic)?

2. If D is a non regular Green domain subset of R™ and if s is a minimal
harmonic function in D with fine limit f-lim,_,, h(z) = oo at a non regular
point z of 8D, do we have h = aGy(:, z) for some o > 0, where U =
D U 9;D is the smallest finely regular domain containing D?

In the present work we shall consider the question of the integral representation
in S(U) in the more general framework of a fine domain U of a Brelot space with
countable base of open sets, satisfying the axiom D, admitting a Green kernel
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and a base of completely determining open subsets whose adjoint harmonic space
satisfies the axiom D and in which the adjoint fine topology is finer than the fine
topology and the adjoint base of a set contains the fine interior of that set. These
hypothesis are of course weaker than those of [22]. The method is based as in
[12] on Choquet’s theorem of integral representation in the cones with compact
base. We define in particular the Martin boundary A(U) of U, the corresponding
Martin kernel on A(U) x U and obtain the integral representation of the invariant
functions on U.

As an application of the integral representation of invariant functions, we show
that if any minimal invariant function is finely harmonic, then every invariant
function can be approximated in the sense of the topology of the cone S(U) (the
natural topology) by nonnegative finely harmonic functions in U. Finally, using
a simple property of the extremal functions of S(U) to be selfreduced on A or on
U \ A for any subset A of U (Lemma 6.1 below), we extend to the nonnegative
finely superharmonic functions a partition theorem of M. Brelot in [6].

The interest in the general context of a Brelot space is to obtain general results
that may apply to an open subset of the more general potential theory defined by
an elliptic operator on an open subset of R™ or on a Riemannian manifold (with
potential greater than 0).

The Sections 2 and 3 and a part of Section 4 are trivial generalizations of the
same results obtained in the classical case by M. El Kadiri and B. Fuglede in [14],
[15], [16]. However, the extension of the crucial Corollary 3.5 of Theorem 3.2 does
not seem to be evident. There are also some new results on the fine Green kernel
in Section 4.

Notation and definitions: If () is a Brelot harmonic space and U is a fine
domain of 2, we denote by S(U) the convex cone of nonnegative finely super-
harmonic functions on U in the sense of [17]. The cone of fine potentials on U
(that is the functions of S(U) without nonnegative finely subharmonic minorant
is denoted by P(U), it is a band of S(U). The topology of 2 and that induced by
this topology on U will be called the initial topology. We denote by B (U) the
cone of Borel functions (relative to the initial topology) on U (taking values in
[0,00]). The coarsest topology on  which is finer than the initial topology and
which makes continuous all functions of §(€2) will be called the fine topology. The
induced topology on U by the fine topology on 2 is also called the fine topology
onU. If f: U — [0,00] we denote, without distinction, by Ry or by ]?Ef, respec-
tively, the reduced or the swept out function, respectively, of f on A with respect
to U or Q (in the case of U cf. [17, Section 11] for this notion). If u € S(U) and
A C U we can write ﬁf for Ef with f:= 14u. However, we also often denote it
by U]%ﬁ to distinguish it from the swept out of u in 2. For any subset A C 2 we
denote by A the fine closure of A in €, and b(A) or b*(A), respectively, the base
or the adjoint base, respectively, when it is defined, of A in €2, that is, the set of
points of 2 where A is not thin or not adjoint thin, respectively.
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If E is a locally convex topological vector space (l.c.t.v.s. in abbreviated form),
and if K is a convex compact of E and p is a probability measure on K, we
denote by b(u) the barycenter of y and we write b(u) = [} k du(k), which means
that for any continuous affine form [ on K, we have {(b(p)) = [ (k) du(k); the
set of extreme points of K is denoted by Ext(K).

2. Construction of a resolvent associated with the cone of nonnegative
finely superharmonic functions in a fine domain

Let © be a Brelot harmonic space with countable base of open subsets, satis-
fying the domination axiom D and admitting a potential greater than 0, and U
a fine domain of €2, that is, a domain subset in the sense of fine topology of €.
Recall that the fine topology on 2 is the coarsest topology that makes continuous
the superharmonic functions in 2. For the main properties of this topology we
refer to [17, Chapter 1, Section 3]. We assume that the constant functions are
superharmonic in § (this is not really a restriction because we can always reduce
the study of superharmonic and finely superharmonic functions to this case by
considering the f-harmonic functions, where f is a suitable continuous finite func-
tion and greater than 0 on £2). We denote by S(U) the cone of nonnegative finely
superharmonic functions in U and Uy (U) = S(U) U {oo} the cone of nonnegative
finely hyperharmonic functions in U.

The set ;U of all irregular points of the fine boundary ;U of U is polar and
the set r(U) = U U Q;U is a fine domain subset of , it is the smallest regular
fine domain of © which contains U, see [17, page 10]. Furthermore, any function
of U+ (U) has a unique extension to a function of U, (r(U)) according to [17,
Theorem 9.14, page 96]. This allows us to assume throughout this paper that U
is regular.

Let p be a strict continuous and bounded potential greater than 0 on 2. Then
it is well known from [29, Theorem 2, page 362] that there exists a unique Borel
kernel V' on 2 such that

1. V1i=np.
2. For every continuous function ¢ € C}(Q), Vg is a finite and continuous
potential and harmonic in the complement of the support of ¢.

The kernel V' is associated with a resolvent (Vi )xso of Borel kernels on €2 of which
the cone of excessive functions is U4 (£2). Since the excessive functions of (V) are
Ls.c., it follows from [10, Chapter XII, no. 41] that there is a bounded Radon
measure 7 > 0 on 2 such that the resolvent (V}) is absolutely continuous with
respect to 7 (that is for each € Q and A > 0, the measure V) (z, ) is absolutely
continuous with respect to 7). The measure 7 does not charge the polar sets,
and the cone S(Q) is exactly the cone of excessive functions of the resolvent (V)
which are finite 7-a.e. (we also say that they are finite (V))-a.e.). Moreover,
7 charges all nonempty finely open subsets. Indeed, if w is a nonempty finely
open subset of  such that 7(w) = 0, then 7(r(w)) = 0 since r(w) \ w is polar,
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hence T-negligible, where r(w) = wUd;w. Then we have EE“’ = p 7-a.e. Therefore
)\V,\(ég‘”) = AVi(p) for any A > 0. By letting A — oo, we obtain ég‘” =p
everywhere, which is absurd because p is strict and w is not empty. We deduce in
particular that two superharmonic functions equal 7-a.e. are equal everywhere.

According to [9, Proposition 10.2.2, page 248], the cone of excessive functions
of the resolvent (V) is the cone Uy (Q) = S(2) U {oo} (and hence S() is the
cone of excessive functions of (V) ) which are finite (V) )-a.e.). It follows then from
[5, Theorem 4.4.6, page 136] that S(2) is a H-cone standard of functions. Define
a kernel W on U by

Wf=Vf-RY
(restricted to U) for any Borel measurable function f > 0 on U, where f denotes
the extension of f to Q equal to 0 in CU. Then by [4, Theorem 2.5] there exists
a unique resolvent family (W) of Borel measurable kernels with the potential
kernel W.

We now proceed to determine the excessive functions of the resolvent (W)).
We need to recall the following approximation theorem [20, Theorem 3, page 68]:

Theorem 2.1. Let s € S(U). Then we can find a sequence (s,) of nonnegative
superharmonic functions on 2, such that the sequence (sn - RET[{) is increasing
and
s = sup (sn — EET[{)
n

Lemma 2.2. For any function s € S§(Q2), the function s — EEU is excessive for
the resolvent (Wy).

PRrROOF: The function s is excessive for the resolvent (V), then according to [10,
Theorem 17, page 11], we can find an increasing sequence (f,,) of bounded Borel
functions on € such that s = sup,, V(f,). Then we have s — RSV = sup, W(g,)
where g, is the restriction of f, to U. Hence s — RCU is excessive for (Wy). 0O

Theorem 2.3. The cone of excessive functions of the resolvent (W) is identical
to the cone Uy (U).

PrROOF: Let £(U) be the cone of excessive functions of the resolvent (Wy). The
inclusion S(U) C &(U) follows easily from Theorem 2.1 and Lemma 2.2. Since
every function u € Uy (U) is the supremum of an increasing sequence (s;) of
functions of S(U) (it suffices to take s, = s A n for any integer n), it follows
that U (U) C E(U). Let us prove the opposite inclusion. Let s € E(U), then,
according to [10, Theorem 17, page 11], s is the supremum of an increasing se-
quence (W(f,)), where (f,) is an increasing sequence of bounded Borel functions

nonnegative in U. For any integer n we have W(f,) = V(f,,) — E[‘:}{f ) As V(f,)

is finite and continuous on U, the function é‘c/ijf ) is finely harmonic on U by [17,

Theorem 11.13], and hence W(f,,) € S(U). Congequently7 we have s e U (U). Tt
follows that £(U) C U, (U), and hence E(U) = U4 (V). O
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Remark 2.4. The excessive functions in the sense of [5, page 16] of (Wy) are
the excessive functions of (W)) that are finite (W) )-a.e. In this sense the cone of
excessive functions of (W) ) is the cone S(U).

As the resolvent (W)) is subordinated to the resolvent (Vy), then it is basic
and transient (cf. [10, Chapter XII]). The finely open U is assumed to be regu-
lar, then it is a Radonian space, that is, embeddable in a compact metric space

as a universally measurable subspace, which enables us to apply the results of
Chapter 12 of [10, pages 74-75].

Corollary 2.5. The cone S(U) is a standard H-cone of functions on U.

PRrOOF: The corollary follows from the previous theorem and [5, Theorem 4.4.6).
O

3. Topology of cone S(U) and integral representation of nonnegative
finely superharmonic functions

In order to simplify the notations, we shall use the same notations to denote
the reduced and the swept out in the cones S(2) and S(U) and introduce the
necessary details if there is a risk of confusion.

Following [5, Section 4.5, page 141}, we endow S(U) by the natural topology.
This topology is induced on S(U) by that of a locally convex vector space in which
S(U) is a well capped convex cone (that is, S(U) is the union of its caps in the
Choquet sense). This will be sufficient to the study of the integral representation
of finely superharmonic functions nonnegative, however, we show a stronger result,
namely that the cone S(U) has a compact base. This result is very important
because it allows us, in the case of proportionality of potentials of the same
punctual carrier (support) to define the Martin boundary A(U) of U and the
integral representation of invariant functions by means of a Martin kernel K on
U x A(U) (see [14] and Section 5 of the present paper).

Since S(U) is a standard H-cone, we can find an increasingly dense countable
set D = {s, € S(U): n € N} in S(U). That is, any element s of S(U) (and
also any element of U (U)) is the upper envelope of an (increasing) sequence of
elements of D. Thus for any s € S(U), we have s = sup{t € D: t < s}.

Lemma 3.1. For any x € U, there is a fine neighborhood K, of x, compact in
the initial topology, such that the restriction of any function s € S(U) to K, is
L.s.c. in initial topology.

PROOF: According to [19, Lemma, page 114], any point  of U has a finely
compact neighborhood K, in initial topology such that the restriction of any
function s, of D to K, is continuous in the initial topology. Since any function
s € S(U) is the upper envelope of an increasing sequence of elements of D, then
its restriction to K, is l.s.c. (in initial topology). O
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Theorem 3.2. There is a sequence (K,) of compacts (in the initial topology
of Q) contained in U and a polar set P such that
1. U=, K|, UP, where K], denotes the fine interior of K.
2. For any n, the restriction to K, of any function of S(U) is Ls.c. in the
initial topology.

PROOF: According to Lemma 3.1, any point = of U has a fine neighborhood K,
compact in the initial topology, such that the restriction of any function t € S(U)
to K is L.s.c. On the other hand, it follows from the quasi-Lindeltf property of
the fine topology that we can find a sequence (z;) of points of U and a polar set P
such that U = Uj K;j UP. The compact subsets K; = K, satisfy the conditions
of the theorem. (|

Remark 3.3. The existence of a sequence (K;) of compact subsets of U and
a polar set P with U = PUJ ; K such that a given finely continuous function
(in particular a superharmonic function) is continuous relative to each K follows
from the pioneering work of Le Jan [26], [27], [28], which applies more generally
to the excessive functions of the resolvent associated with the Hunt process. The
weaker form of condition 1. in our Theorem 3.2 in which U = PUJ K ]' is replaced
by the condition U = PU|J K, is a consequence of [3, Corollaire 1.6] together with
the existence of a family of universally continuous elements which is increasingly
dense in S(U). In the present case our Theorem 3.2 is stronger than that of
L. Beznea and N. Boboc. In fact, our result is not a consequence of that of
L. Beznea and N. Boboc because for a nest (k) of U the set |J; K; \ |J; K is
not necessarily polar, as it is seen by the following example in [14, Remark 2.10]:

Example. Let A be a compact non-polar subset of 2 with empty fine interior (for
example A can be a compact ball in some hyperplane in R” such that A C Q). Let
Q = QA Then ; is open and there exists an increasing sequence (B;) of open
subsets of 2y such that B; C ; for every j (B; denotes the Euclidean closure
of Bj) and that (J; Bj = 1. For any j write K; = B; U A. Clearly, (Kj;) is
an increasing sequence of compact subsets of 0 with Uj K; = Uj BjUA =
Q1 UA = Q. It suffices to show that K C B; for every j, for then {J; K} C
U; Bj = 1 = @~ A with A non-polar. Let z € K. If z € Athen V :=Q~\ B; is
an open neighborhood of  and VN B; = (. On the other hand, W := Kj is a fine
neighborhood of z contained in K;. Then W NV C K; and (WNV)NB; =0,
hence z € WNV C A. But W NV is finely open and A" = §), so actually z ¢ A,
and since x € K} C K; = B; U A we have x € B;. Because this holds for every
z € K’ we indeed have K C Bj.

Remark 3.4. The finely open subsets K/, are regular because for any integer n
the set K, is compact (in initial topology).

Corollary 3.5. There is a sequence (H,,) of compact subsets of U, each is non-
thin at any of its points, and a polar set P such that
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1. U=, H,UP.
2. For any integer n, the restriction of any function of S(U) to H, is Ls.c.
in initial topology.

PROOF: One may write U = | J,, K], U P as in Theorem 3.2. For any integer n,
let (U™) be the sequence of fine components of K. The finely open subsets
U are necessarily regular according to Remark 3.4. Let p > 0 be a strict,
finite and continuous potential on Q (cf. [9, page 166]). Then according to [9,
Proposition 7.2.2] we have for any pair of integers (m,n),

m ACU::L
b(CU) ={z€Q: Ry " (z) =p(2)}.
Since U™ is regular then we have
m ~CU™
Ul ={zeQ: Ry " (z) <px)}.

For any pair of integers (m,n) and for any integer [ > 0, put

~eum 1
Hymi = {:r eU: p(x) — R]EU” (x) > 7}

Then the sets H,, ,,,; are compact in the initial topology and each one of them is
non-thin at any of its points and we have U = J,, ,,, ; Hn,m,i U P. The restriction
of any function s € S(U) to H,, m,, is indeed ls.c. in the initial topology. O

We shall use the sequence (H,,) of the previous corollary to define by analogy
with [30] a locally compact topology on the cone S(U). For any n we denote by
Ci(H,,) the cone of l.s.c. functions on H,, with values in R, and we endow it with
the topology of the convergence in graph (cf. [30]). It is known that C;(H,) is
a compact and metrizable space for this topology. Let d,, be a distance compatible
with this topology. We define a distance d on U, (U) by putting

1

d(u;v) = ; m dn(u|Hna'U|Hn)

for any pair (u,v) of functions of U4 (U), where 6(C;(Hy,)) denotes the diameter
of C;(H,). Since two finely hyperharmonic functions are identical if they coincide
T-a.e., it follows that d is a distance on U4 (U). We denote by T the topology
defined on U(U) by the distance d.

Let F be a filter on U4 (U), put

liminfz = sup inf .
MeFueM

Theorem 3.6. The cone U4 (U) of finely hyperharmonic functions nonnegative
on U is compact in the topology T. For any ultrafilter G on U, (U) we have

lién = lim in/\fg.
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Proor: We will copy word by word (with necessary modifications) the proof of
the same result in [12], corresponding to the case where 2 is a Green open subset
of R™. Let G be an ultrafilter on U4 (U). For any M € G, put up = inf,ens u.
Then the bases of ultrafilters G,,, images of G by restrictions to the compacts H,,
converge, in the compact spaces C;(Hy), to the functions w, = sup,,c;, U,
where u" denotes the 1.s.c. regularization of the restriction of u to H,,. Let M € G
and n be an integer, then the finely Ls.c. regularized uy; of uys is Ls.c. on H,
according to Theorem 3.2 and minorizes uys, then uy; < Uy in H,. On the
other hand, according to the axiom D, there is a polar subset A of £ such that
upm = upr in U N A, then up;" < ups on Hy, . A. Otherwise, if x € A, we have
unr(z) < upr(x) because upy is finely continuous on U and z belongs to the
fine closure of H,, . A since H,, is not thin at the point x. Hence u,, = lim in/\fg
in H,, for any n, and since the function v = lim i;l\fg belongs to Uy (U) by [17,
Theorem 12.9], we see that the ultrafilter G converges to u with respect to the
topology T. Hence U, (U) is compact in the topology T. O

Corollary 3.7. The topology of the convergence in graph coincides with the
natural topology on S(U).

PROOF: According to Theorem 3.6 and Theorem 4.5.8 of [5], the natural topology
on S(U) is coarser than the topology of convergence in graph on S(U). Let G be
an ultrafilter on S(U) which converges with respect to the natural topology to
s € S(U), then, always according to the previous theorem, G converges in graph
to s. We deduce that the topology in graph on S(U) is coarser than the natural
topology of S(U). So both topologies are identical on S(U). O

Corollary 3.8. Let F be a filter on S(U), which converges with respect to the
topology of the convergence in graph. Then we have limr = lim inf £.

PRrOOF: The corollary follows from Corollary 3.7 and from [5, Theorem 4.5.2]. O

Corollary 3.9. The cone S(U) endowed with the natural topology has a compact
base.

ProOOF: The natural topology on S(U) is locally compact, then it follows from
a theorem by Klee, see [1, Theorem I1.2.6], that S(U) has a compact base. O

Corollary 3.10. For any x € U and for any subset A of U, the functions
u + u(x) and u — RA(z), with values in [0,00], are affine and l.s.c. with re-
spect to the natural topology on S(U).

PROOF: It is clear that the map u — I?Ef(ac) is affine for fixed point z € U. Let
(uj) be a sequence in S(U) which converges naturally (i.e. in natural topology)
to u € S(U). For any integer k we have

inszkuj
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Both members of this inequality increase with k& and we have when k — oo,

limkinfﬁfk () > limkin/\f Ef (z) > RY — (z) > RA(x),

— " liminfug

and then the function u — R (z) is Ls.c. on S(U). For the function u +— u(z) it
suffices to take A =U. O

Let B be a compact base of the cone S(U) and p a probability measure
on B. For any € U and any subset A of U, the integrals [ p(z)du(p) and
I Eﬁ(m)du(p) are well defined because the functions u — R2(x) are Borel
functions and nonnegative on B according to the previous corollary. We de-
note by [ pdu(p) and fB EA du( ) the functions u and v defined on U by u(z) =

[ p(x) dp(p) and v(x fB . (z) du(p) for every x € U. Let s be the barycen-

ter of u, A C U and x € U. The functlons p — p(x) and p — Rf( ) are non-
negative affine functions and l.s.c. on B, then, according to [1, Corollary 1.1.4],
there are increasing sequences (f,) and (g,) of continuous affine forms on B
such that p(x) = sup,, fn(p) and I?Ef(x) = supn gn(p) for any p € B. Thus
we have s(z) = sup,, fn(s) = sup,, [5 fu(p) du(p) = [ p(x) ) and RA(z) =
sup,, gn(s) = sup,, [ 9n(p)du(p) = [5 ﬁ;‘ wu(p) by monotone convergence

theorem. We deduce that u = s and v = ]%;4 and consequently, u,v € S(U).
Thus, we have proved the following theorem:

Theorem 3.11. Let B be a compact base of S(U), 1 a Radon measure on B
and A a subset of U, and let s = prdu(p). Then s is a finely superharmonic

function in U and RA I R dp(p). In particular the function [, é;‘ du(p) is
finely superharmonic in U.

Theorem 3.12. Let B be a compact base of S(U) and u € S(U). Then there
exists a unique Radon measure nonnegative p on B supported by the set Ext(B)
of extreme elements of B such that u = [ pdu(p).

PROOF: We may suppose that u # 0 (u = 0 is the unique measure corresponding
to the case where u = 0), so that there is a real & > 0 such that au € B.
Since the cone S(U) is a lattice in its own order (the specific order) according
o [17, 11.15 a), page 131], then it follows from Choquet’s theorem of integral
representation that there exists a unique probability measure v on B, carried by
Ext(B) (which is a G5 set by a result of Choquet) and of barycenter v. Then we
have au = [z pdr(p). The measure p = (1/a)v satisfies the conditions of the
theorem. O

The measure p associated to u € S(U) in the previous theorem will be called
the maximal measure representing u.
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4. Fine Green kernel and integral representation of fine potentials and
invariant functions

From now on we assume that 2 is a P-Brelot harmonic space with countable
base satisfying the domination axiom and the uniqueness hypothesis, that is, the
hypothesis of proportionality of the potentials of the same support reduced to
one point. According to [25, Theorem 18.1 and Proposition 18.1], Q has a Green
kernel GG, that is, a function G: Q x Q — R such that

1. For any y € , the function G(-,y) is a potential greater than 0 in  and
harmonic on £ \ {y}.
2. Function G is l.s.c. on €2 x (2 and continuous outside the diagonal of €2 x ).

Moreover, every potential p on ) admits an integral representation p = Gpu =
J G(-,y)du(y), where p is a (nonnegative) Radon measure on Q (see [25, Théo-
réme 18.2, page 481]).

Assume further that the topology of Q has a base formed by completely deter-
mining open subsets (cf. [25, Definition, page 451]). According to R.-M. Hervé
[25, Chapter VI] we can define on Q a structure of (Brelot) adjoint harmonic
space, in which the function G* defined by G*(z,y) = G(y,x) is a Green kernel.
We also assume that the adjoint harmonic space satisfies the axiom of domina-
tion, so that we can use the notions related to the adjoint fine potential theory
on adjoint finely open subsets of 2.

To show the existence of a fine Green kernel greater than 0 on a fine domain U
of Q in [18], B. Fuglede assumes that the fine topology and the adjoint fine topol-
ogy are identical. In the following we place ourselves in a somewhat more general
framework where we only assume that the fine topology is coarser than the adjoint
fine topology, or just only that U is an adjoint finely open set (that is, an open
set relatively to the adjoint fine topology). The results of the preceding sections
apply to this framework. We shall also show that the hypothesis that U is an
adjoint finely open set is necessary (and sufficient modulo an additional condition
(see Theorem 4.5 below)) for the existence of a fine Green kernel greater than 0
in U. This situation is a bit more general than the one considered by B. Fuglede
in [18].

Let U be a fine domain of €2 and we suppose, without loss of generality, that U
is regular. For any y € U, the function REG[{y) is finely harmonic on U if {y} is not
polar, and finely harmonic in U~ {y} if {y} is polar in view of [17, Theorem 11.13,
page 127]. We denote by Gy (-, y) the finely superharmonic function in U, defined
on U ~\ {y} by

Gu(x,y) = Glz,y) — R, (x),

and eventually extended by fine continuity at the point y if {y} is a polar set (cf.
[5, Theorem 9.15, page 98]).

Lemma 4.1. Let p = [G(-,y)du(y) be a potential on €, harmonic outside
a compact subset K of ), where i is a Radon measure on 2. Then the measure
W is supported by K.
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PROOF: Let w be a relatively compact open subset of 2 such that w C Q\ K. We
havefG ,y )du(y) = [, G(,y) du(y) + [, G(-,y) du(y), and then the function
fw G(,y)du(y) is harmomc on the complement of K. On the other hand, it is
well known that the function [ G(-,y)du(y) is harmonic on Q \ @, and therefore
on a neighborhood of K. It follows that the function | G(-,y)du(y) is harmonic
in 2. Hence it is null because it minorizes the potential p. It follows then that
w(w) = 0. Since the open set w is arbitrary and the space 2 has a countable base,
then p(Q2 . K) =0, that is, p is supported by K. O

Lemma 4.2. The set A= {y € U: Gy(-,y) = 0} is polar.

PROOF: Let us first prove that A is a Borel subset of Q. In fact, let x € U, then
we have A\ {z} = {y € @~ {z}: G(z,y) = RCU (z)}. Thus A {z} is a Borel
subset of Q ~\ {z} because the functions y — G( z,y) and y — RG(~,y)( x) are
Borel measurable (the first being continuous and the second is l.s.c. on Q) and U
is a Borel subset of € since it is supposed regular. We deduce that A \ {z} is
a Borel subset of  \ {z}. Hence A is a Borel subset of 2. Let K be a compact
subset of A and p a finite, continuous and strict potential in €. Accordlng to
(25, Theoreme 18.2, page 481], there is a measure p > 0 such that RK Gu =

J G(-,y)du(y). The function R{f is harmonic in © \ K, then the measure p is
supported by K by the previous lemma. On the other hand, we have ﬁ%(f( =
‘p

S/ R du ) by [25, Théoreme 22.4, page 508] and the monotone convergence

theorem since CU is an F,. The measure y is supported by K and for any y € K
we have RG( ) = = G(-,y) because U is assumed regular, then R{f = R%%. The

function R{f is harmonic in £ \ K and the function ﬁ%(f( is finely harmonic
‘D
in U, we deduce from the above equality that ﬁf){ is finely harmonic in €2, and
hence harmonic in Q according to [17, Theorem 9.8, page 87] because it is locally
bounded. Since p is a potential and ﬁ{f < p, it follows that E{f = 0, so that K
is polar according to the polarity criterion of [25, page 434]. Thus any compact
subset contained in A is polar. It follows from Choquet’s capacitability theorem
that A is polar because it is a Borel set, then analytic in the space with countable
base €. O

Corollary 4.3. Assume that the adjoint potentials on € of the same punctual
support are proportional. Then the set A = {x € U: Gy(z,-) = 0} is polar.

PRrROOF: It suffices to apply the previous lemma to the kernel G* and use the
relation between the balayage and adjoint balayage (cf. [25, page 550]), and the
fact that the polar sets and the adjoint polar sets in Q are identical by [25,
Theorem 32.1]. O

Proposition 4.4. Suppose in addition that U is [also] an adjoint finely open
subset of Q. Then we have Gy (z,y) > 0 for any pair (x,y) € UZ.
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PrOOF: Let & € U. According to Lemma 4.2, the set A = {z € U:
Gu(z,z) = 0} = {z € U: Gy(-,2) = 0} is polar. Since the polar sets and
the adjoint polar sets are identical by [25, Theorem 32.1], it follows that A is
adjoint polar, then the interior of A with respect to the adjoint fine topology is
empty. Let w be an adjoint finely connected component of U, then w ~ A # 0,
and hence there exists z € w such that Gy (x, z) > 0. The function y — Gy (zx,y)
is adjoint finely superharmonic and nonnegative on U \ {z} according to [25,
Lemma 30.1 and Theorem 31.1] and [17, Theorem 11.13, page 127]. It is not
identically zero on w\ {z}, and hence Gy (x,y) > 0 for any y € w~ {z} according
to [17, Theorem 12.6, page 150]. We deduce that Gy (z,y) > 0 for any y € U.
The proposition is proved. (I

The following theorem can then be proved exactly as [18, Theorem, page 203]:

Theorem 4.5. Suppose that U is an adjoint finely open subset of U and, more-
over, that for any subset A of U, A’ C b*(A). Then for any y € U, the function
x — Gu(z,y) is a fine potential in U finely harmonic on U \ {y}. Every fine
potential verifying this condition is of the form aGy(-,y) for some o > 0.

Remark 4.6. Without the additional condition that for every A C €2, one has
A" C b*(A), we can only prove that Gy(-,y) is a fine potential in U (finely
harmonic in U \ {y} by definition of Gy). Indeed, let y € U and let s be
a finely subharmonic function in U such that s < Gy(-,y), and ¢ a finite po-
tential in Q. Then for any integer n we have for any z € 9;U, s < G(-,y) —
RtU

G(-y)Ang
liminfaey o, Hg(_ﬁymnq(ac) = G(z,y) — G(z,y) A nq(z), where the last equal-
ity follows from [17, Theorem 14.7]. We get limsup, ¢y, s(x) < 0 by letting
n — oo. It follows that s < 0 by the minimum principle [17, Theorem 10.8].
Hence Gy (+,y) is a fine potential.

= G(,y) — Hg(,yy)/\nq on U, so that limsup,;_,, s(z) < G(z,y) —

Remark 4.7. Similarly, if again U is an adjoint finely open subset of €2, then for
any x € U, the function y — Gy (z,y) is an adjoint fine potential in U.

Definition 4.8. The function Gy : (z,y) — Gu(z,y) defined on U? is called the
fine Green kernel of U.

Proposition 4.9. The following statements are equivalent:

1. The function Gy (-,y) > 0 for any y € U.
2. The set U is an adjoint finely open subset of §2.

PRrROOF: The implication 2. = 1. was established in the proof of Proposition 4.4.
Let us prove the opposite implication. Suppose that Gy (-, y) > 0 for any y € U.
Let us put U, = {y € @\ {z}: G(z,y) > ﬁg{y)(z)} for any « € U. Then U,
is an adjoint finely open subset of Q because the functions y — G(z,y) and y —
]?Eg{y)(ac) are adjoint superharmonic by [25, Proposition 30.1], then continuous

in adjoint fine topology. Let x1,xz2 € U such that x; # x2, then we have for
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example y # x; and hence y € U,,. Anyway U = U,, U U,,, and hence U is an
adjoint finely open subset of (). ([

A function h € S(U) is said to be invariant if it is orthogonal for the specific
order (order defined on the cone S(U)) to the band P(U) of all fine potentials
on U. The set of invariant functions of S(U) is denoted by H;(U). It is a convex
cone and a band of S(U). Every function v € S(U) has a unique decomposition
of the form u = p+ h, where p is a finely potential and h is an invariant function
on U. This decomposition is called the Riesz decomposition of nonnegative finely
superharmonic functions. Then the invariant functions play (for the nonnegative
finely superharmonic functions) the role of nonnegative harmonic functions in the
Riesz decomposition of nonnegative superharmonic functions on an open subset
with respect to the initial topology of €.

We shall say that a function u € S(U) is extremal if it belongs to an extreme ray
of the cone S(U). It follows from the Riesz decomposition of finely superharmonic
functions that every extremal function of S(U) is either an invariant function or
a fine potential.

Proposition 4.10. Under the hypotheses of Theorem 4.5, the function Gy (-, y)
is extremal for any y € U.

PROOF: Let uy,us € S(U) such that u; +us = Gy (-, y), then uy and us are fine
potentials finely harmonic in U \ {y}. Hence, according to Theorem 4.5, u; and
ug are proportional to Gy (-, y), thus Gy (-,y) is extremal. O

The Lemma 2.1 in [12] contains, as well as its proof, some imperfections, and
the proofs of Theorem 2.3 and Theorem 2.4 in [12] are also incomplete and need
the following correct version of this lemma

Proposition 4.11. Let u,s € S(U) such that s is finely harmonic outside a polar
set. Then s < u if and only if s < u.

PROOF: Suppose that s < u. There is a polar set £ C U such that s is finely
harmonic on U\ E, and hence u— s is finely superharmonic nonnegative on U\ E.
According to [17, Theorem 9.14], u — s extends by fine continuity to a function
t € S(U) such that t +s = u on U \ E and hence on all of U, whence h < u. The
converse is obvious. O

Corollary 4.12. Let u € S(U) and h be an invariant function. Then h < u if
and only if h < u.

ProoF: By [17, Theorem 10.10] there is a polar set £ C U such that h is finely
harmonic in U \ F, hence h < u by Proposition 4.11. (Il

Remark 4.13. Let u,v € S(U) such that v < v, that is v = u + w for some
w € S(U). Then the function w is unique, we denote it by v — u. Furthermore
we have w(x) = u(z) — v(z) for every x € {v < co}.
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Proposition 4.11 applies in particular when u = sy and v = EEUW, where
s € 8(f2), because, in view of [17, Theorem 11.13, page 127], EEU is finely har-
monic outside the polar set where it takes the value co. The function s — I?EEU is
also denoted by sy. It follows from fine minimum principle (cf. [17, Theorem 10.8,
page 106]) that sy is a fine potential in U if s is a potential in .

Lemma 4.14. Let z9 € U and A C U relatively compact in §) such that
inf{Gy(zo,y):y € A} = ¢ > 0 and A C U. Then for any s € S(U) such
that s(xg) < oo, there exists a measure y on ) with support contained in A such
that s < Gu on U.

PROOF: Let p be a finite potential greater than 0 on . By Lemma 1.3 in [20]
and its proof, there is a sequence of potentials p,, in €, harmonic in  ~ A such
that (pn)u < U]?EfAnq < pn. By [25, Théoreéme 18.2, page 481], for each n € N,
there is a (Radon) measure u, on € such that p, = Gu,. The measures u,
are carried by A and we have |tn] < (1/¢)Gupn(zg) < s(xg) for every n € N.
Hence there is a subsequence (g, ) of () which converges weakly to a measure

supported by A. By letting n — oo in the inequality Uﬁ;“/\nq < Gu, we obtain
Uﬁf <liminf Gy, < Gp on U and the proof is complete. O

Let s € S(U), s > 0 and z9 € U such that s(xp) < oco. Consider a se-
quence of relatively compact open subsets w, of 2, n > 1, such that |J, w, = Q
and let us put £ = {z € U: s(x) = oo}. For each integer n > 0 we put
U, =w,N{y € U: Gu(xo,y) >1/n}, e, =U,NE and s, = m/\f{UEY e, CV C
U, : V finely open set}. Suppose that the function y — Gy (zo,y) is finely con-
tinuous on U. Then the sets U,, are finely open and for every n > 1 17; Cc U. The
functions s,, are finely harmonic outside polar subsets of U and we have s, < s
and then s, < s by Proposition 4.11. Let us also remark that by Lemma 4.14,
each function s,, is majorized on U by a potential in €.

Lemma 4.15. For any potential p on ) and any finely open set V' C VC U, one
has:

1. U]EPU\V = ]EEV onV.

2. UR%E\UV = REU onU.
PRrOOF: Without loss of generality we may suppose that the constants are har-
monic on ).

1. Let s € S(R) be such that s > p on 0V, then s > p on U \. V and hence
s> U]?Eg\v, whence ESV > Uég\v. For the opposite inequality let k be a real
number greater than 0 and s € S(U) such that s > p on U ~\ V. The function
EE/‘(k is finely harmonic in V by [17, Corollary of Lemma 9.7, page 86], thus

the function s — ]?EE‘A/k is finely superharmonic in V. For any z € 07V, we have
liminfaey . (s(z) — RE‘A/k(x)) = liminf ey o2 (s(z) — RE‘A/k(x)) =s(z) —pA
k(z) > 0. By the fine minimum principle [17, Theorem 10.8, page 106], we deduce
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that s > ﬁng and conclude that UﬁpU\V > ﬁng on V. By letting £ — oo, we
obtain URpU Vo> Rgv on V. The requested equality is now proved.
2. It suffices to apply the first equality to the potential I?EEU to obtain the

equality in V' and use the property that ﬁ%‘gU = ﬁgU q.e. on CV. O
‘D

Proposition 4.16. In addition to the hypotheses of Theorem 4.5, suppose that

the adjoint fine topology on € is finer than the fine topology. Let (U,) be an

increasing sequence of finely open subsets of U such that U, C U for every

integer n and J,, U, = U. Then for any y € U we have ﬂl\fnﬁg{”y) = ﬁg{ )

PROOF: Let y be a fixed point in U. According to Proposition 4.11 and [17,

Theorem 11.13, page 127], we have ﬁg{y) =< m/\anEG[{"y) and then m/?nﬁg[{”y) -

]%g{ 0 < Gy (-, y). It follows by Remark 4.6 that ﬂl\fnﬁg{"y) — ﬁg{ y) 1S a fine
potential on U, finely harmonic on U \ {y}. In view of Theorem 4.5 there is a real
a € [0,1] such that infnRg%y) - REG[{ ») = aGu (-, y) and hence
(4.1) inf, BBV = aG(,y) + (1 — )R

' "G () Y Gl
For any integer m and any = € U,,, * # y, x outside a polar subset e of U,

LU _ [ ¢ plu, CUm _ 7 nCU, CUMm
Rﬁnﬁc% = /mfnRG(.yy) de, —1nfn/RG(.7y) de,

by Lebesgues convergence theorem. On the other hand we have

»LU, CU,, _ pCUn _ nlu,
[ R b = B () = R, )
for any n > m. Hence

Un

»CU, _ i+ pnt
R = 1nfnRG(_’y)

: »CUn
mfnRG(_’y)

on U \ e and therefore everywhere by fine continuity. Then it follows from (4.1)
that

=3 AU, _ T 50U S0U
inf, R,y = ainfn Ry "y + (1 — )R 4
and hence
3 olu, 5
(4.2) (1 - a)inf R = (1- ) RE ).
According to (4.1) we have a < 1 because otherwise we would have

G(y) > R > b, Y = G(-y)

and hence G(-,y) = I?Eg{"y) for any n such that y € U,, which is absurd by

Proposition 4.9. Thus it follows from (4.2) that in/\fn]’%g{fly) = EEG({ )" |
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Corollary 4.17. For any nonnegative Borel measure y on U such that ¢ =
Gu # oo, we have inf,, UREIJU\U" =0gqe onU.

PrOOF: We have g = qu + I?ESU on U and hence U]?Eg\U“ =U ]?EgU\U"' +U R%G\UU .

By using Lemma 4.15 this yields ]?igU =U ﬁsz\U" +V ESU on U, for each n and
therefore in/\fnégU“ = in/\fn UﬁgU\U" +U ESU on U. Following Proposition 4.16, we

— - ~ U ~
have infnRgU" =U RSU, hence inf,, RgU\U" = 0 and, by the convergence theorem

for finely hyperharmonic functions, inf,, Uﬁg; Un =0 q.e.on U. [

Theorem 4.18. Let h € S(U), xo € U be such that h(zg) < oo and (wn)n>1 an
increasing sequence of relatively compact subsets of § such that Q =, wn. For
any integer n > 1, put U,, = {y € U: Gy (xo,y) > 1/n} Nw,. Suppose that for
any x € U, the function y — Gy(xg,y) is finely continuous on U, and that the
adjoint fine topology is finer than the fine topology on 2. Then h is invariant if
and only if Uﬁg\U” = h for every n.

PROOF: Assume that h is invariant and let n € N*. We have h < U]?E,[LJ”—FUE}({\U".
By the Riesz decomposition property there exist hi,ho € S(U) such that h =
hi+ hs and hy <V ég", hy < Uég\U”. Since h is invariant we infer that h; and
ho are invariant and, by Lemma 4.14, h; is majorized by a potential in €. Let
q= ﬁzjl” in §(Q). Then q is a potential in © and hence it is of the form ¢ = GA
for some measure A on {2 carried by I_Tn according to [25, Corollaire 2, page 552]
and [17, 4.8, page 37] (indeed A is carried by the adjoint fine closure of U,, which
in turn is contained in U because the adjoint fine topology is supposed to be
finer than the fine topology). On the other hand, we have ¢ = qu + R CU on U
and gy is a fine potential in U. Hence hy = t1 + to where t1,t2 € S(U) are such
that t; < qp and to < REU. The function h; is invariant, then ¢; is invariant and
thus t; < gy following Corollary 4.12. Since gy is a fine potential, we deduce that
t; = 0. It follows that h; < ESU and hence I?ESU = q¢ = G\ and the measure A,

carried by (7;, is also carried by CU, so that A = 0 and ¢ = 0 and therefore
h=hy <U RISUn whence h =V RY>Un,

Conversely, suppose that Uﬁg\U” = h for every n > 1. By the Riesz decom-
position we have h = p+ k where p is a fine potential and k£ an invariant function
on U. It follows that Uﬁg ~Un = p for every integer n > 1 and then p is finely
harmonic outside a polar subset of U by [17, Theorem 10.2]. Let p,, n > 1,
the potentials associated with s = p, using the notations following the proof of
Lemma 4.14. Suppose that py # 0 for some k > 1: By Lemma 4.14, there is
a measure pu carried by (7; such that pr < ¢ = Gu. We have pr < p, so that
Uﬁgk\U" = pi, for any n > 1. On the other hand, we have py < qu + ﬁgU, and

hence, by Corollary 4.17, p; < U]?EgU\Un + ESU for every integer n > 1. This

U ~
implies that gy = 0 because inf, RZJ\U" = 0 according to Corollary 4.17. Hence
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]%Ef{l = Gy, which implies that p is supported by CU, so that i = 0 since p is
also supported by (7; C U, which is a contradiction with p; # 0. It follows that
pn = 0 for every n > 1. Then there exists z; € U such that for any n > 1, there is
a finely open set V,, such that e, C V,, C U,, and U]?EX" (1) < 1/2™. The function

t = ZHU]?Q‘,/Z is a fine potential in U by [17, Remark, page 105] and we have
p < tin |J,, Vi, and hence in U\‘Zl N U by fine continuity. The inequality p < ¢
inU N U\‘Zl follows by the fine minimum principle applied to the finely superhar-
monic function ¢ — p in U ~ m Putting ¢ = ]?Eg, we have p < gy + I?ESU and
hence, again by Lemma 4.15 and Corollary 4.17, p =Y ﬁg\U" < UR[]JU\U" + REU

for every integer n > 1. By proceeding as above for pg, we show that ¢ = 0 and
therefore p = 0, so that h = k is invariant. [l

Proposition 4.19. Let p be an extremal fine potential in U, majorized on U by
a potential in Q. Then p is of the form aGy (-,y) for some a > 0 and y € U.

PROOF: We may suppose p > 0. By the hypothesis the function P = ég is
a potential on Q and we have p < P on U. Let P;,P, € S(2) be such that
P =P, + P, and P, # P,. By the Riesz decomposition property there are two
potentials py,p2 on U such that p = p; 4+ p2 and p; < P; and p2 < P,. Since p
is extremal, there is a real § € [0, 1] such that p; = 8p and po = (1 — 8)p. Thus
we have P < RU + RU < Py + P, = P an hence P, = BP and P, = (1 - B)P
because P; > ]?Egl = BP and P, > é;@ = (1 — B)P. It follows that P is extremal
in §(2) and thus it is of the form aG(-, y) for some o > 0 and y € Q. By the Riesz
decomposition property applied to the inequality p < oGy (-,y) + Oéﬁ(;(,,y), we
get y € U and p = aG(+,y)y = oGy (-,y) because p is a fine potential on U. [

Theorem 4.20. Suppose that, in addition of the hypotheses of Theorem 4.5, for
every x € U, the function y — Gy (z,y) is finely continuous on U. Then a fine
potential p on U is extremal if and only if it is of the form aGy(-,y) for some
y € U and a real a > 0.

PROOF: Suppose that p is not majorized on U by a potential in 2 and let g € U
such that p(z¢) < oo, and (U, )n>1 the sequence of finely open subsets of U from
Theorem 4.18. For any integer n > 1 we have p <V ﬁgn +U ﬁg\Uﬂ, and by the
Riesz decomposition property there are p1,ps € S(U) such that p = p; + p2 and
p1 < Uﬁgn and ps < Uﬁg\U". Since p is extremal there is a real @ € [0, 1] such
that py = ap and pa = (1 — a)p. We have necessarily o = 0 because otherwise
p would be majorized on U by a potential in {2 according to Lemma 4.14, and
hence p = UﬁpU ~Un But it follows from Theorem 4.18 that p is invariant, which
is a contradiction. Hence p is majorized on U by a potential in (2 and the theorem
follows from Proposition 4.19. (I

Definition 4.21. An invariant function h € S(U) is termed minimal if it is
extremal, that is h belongs to an extreme ray of the cone S(U).
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5. Martin boundary of a fine domain and integral representation of in-
variant functions

All the results of this section were obtained in the classical case in [14] and they
are stated in this section in the general framework considered in this paper with
necessary adaptations. We assume that the adjoint fine topology is finer than the
fine topology on € (in particular U is also an adjoint finely open set), we denote
by Gy the Green kernel of U and we also assume that for any = € U the function
y — Gu(x,y) is finely continuous on U.

Let B be a compact base of the cone S(U) and ® be a nonnegative continuous
affine form on S(U) such that

B={ueSU): ®(u)=1}.
Then ®(u) > 0 except for u = 0. Consider the mapping ¢: U — B defined by

o o GU('ay)
P =5 = 5@ty

and identify y € U with ¢(y) = P, € B and then U with ¢(U). The topology
induced on U by that of B will be called the natural topology.

We denote by U the closure of U in B (with respect to the natural topology),
and put A(U) = U ~ U. Then U is compact in B, we will call it the Martin
compactification of U, and A(U) will be called the Martin boundary of U.

If B and B’ are two compact bases of S(U), the Martin compactifications of U
relative to B and B’ are clearly homeomorphic.

Throughout the rest of this article, we fix a base B of the cone S(U) and
a continuous affine form ®: S(U) — [0, 00 defining this base, that is, such that
B={ueSWU): ®(u) = 1}. The Martin compactification U C B and the Martin
boundary A(U) = U \ U of U will be considered with respect to the base B.

We shall say that a nonnegative measure on B is carried (or supported) by
a Borel subset A of B if u(B~ A) =0.

We denote by Ext(B) the set of extreme elements of B and we put Ext,(B) =
P(U) N Ext(B) and Ext;(B) = H;(U) N Ext(B). Let us recall that since B is
metrizable, then by a result of G. Choquet, Ext(B) is a G5 of B.

Remark 5.1. According to Theorem 4.20, we have Ext,(B) = U.

Proposition 5.2. Let (A,) be an increasing sequence of compact subsets of €
such that | J,, A, = Q. For any real o > 0 and any integer I, the set A,; = {y € U:
O(Gy(,y)) > a} N A is compact with respect to the natural topology.

PROOF: Let (y,) be a sequence of points of A,;. According to the compactness
of S(U) U {oo} and A;, we can find a subsequence (yp,,) of (y,) which converges

to a point y of A; such that the sequences (G (-, yn,,)) and (ﬁg{ Y )) converge,
’ Tlrk

respectively, in Uy (U) = S(U) U {oo} to a function s and lim m/\fﬁgf yn - Both
k) ’n/k
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these functions belong to S(U) and we have
.. rplU o .
s +liminfRg , )= G(-,y).

Since we have hmmAng’{.yy%) > ]?Eg{.yy), then s < G(-,y) — ég{y) = Gu(-,y).
Hence the function s is a fine potential on U, finely harmonic on U \ {y} because
5 < G(-,y)jy. We deduce by Theorem 4.5 that s = yGy(-,y) for some v € [0, 1].
Furthermore, we have ®(s) > «, then s > 0 and consequently v > 0, and we
have ®(Gu (-, y)) = (1/7)®(s) > a. Hence y € A, ;. It follows then that A, is

compact. (Il

Proposition 5.3. The set U = Ext,(B) is a K,-set and Ext;(B) is a Gs set
of B.

Proor: Indeed we have Ext,(B) = U = Ugen- 1en A1/k,1 according to Theo-

rem 4.20, where A, ; are the compact sets of Proposition 5.2. Then Ext,(B) is
a K. On the other hand, we have Ext;(B) = Ext(B) \ Ext,(B) and since B is
metrizable Ext(B) is a Gs-set, thus Ext;(B) is a Gs set of B. O

Proposition 5.4. Let p be a probability measure on B carried by Ext(B) and
s the barycenter of u. Then s is a fine potential or an invariant function if and
only if p is supported by Ext,(B) or Ext;(B), respectively.

PRrROOF: We shall prove only that s is an invariant function if and only if p is sup-
ported by Ext;(B). Let xg € U and (U ) be the sequence of finely open subsets of
Theorem 4.18. We have s = [pudpu(u) = [5 . (B)pdu P) + fo, (B) kdu(k). If p

is supported by Ext;(B), we have s = fExt_(B kdu(k), and then for any n > 0, we
have, according to Theorem 4.18 and Theorem 3.11, ﬁg\vn = fExti(B) ngv, =
f kdu(k) = s, and consequently, s is invariant according to Theorem 4.18. Con-
versely, if s is invariant, we have RY>"» = s and RU\V”' = k for any integer n

and any function k € Ext;(B). Hence [ RVSVe du(u) = [ udp(u), whence for ev-
ery n, R/>Vn = o p-ace. Tt follows that Rg\vn = u p-a.e. for all n, and therefore
u is supported by Ext,;(B) by virtue of Theorem 4.18. O

Definition 5.5. A point Y € A(U) is termed minimal if the function K(-,Y) is
minimal, that is, it belongs to an extreme ray of the cone S(U).

We have Ext(B) C U and, by Theorem 4.20, Ext,(B) = U. It follows that
Ext;(B) C U~ U = A(U). Put A (U) = Ext;(B) N A(U). The set Ay(U) is
called the minimal Martin boundary of U.

Corollary 5.6. The sets A(U) and A;(U) are Gs-sets of U.

PrOOF: Indeed we have A1 (U) = Ext,;(B) and A(U) = B\ Ext,(U). Both these
sets are Gs-set by Proposition 5.3. O
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Theorem 5.7. Let s € P(U) or s € H;(U). Then there exists a unique measure
i > 0 on B supported by Ext,(B), or Ext,(B), respectively, such that s =

S udp(u).

PRrOOF: Let s € S(U). According to Theorem 3.12, there exists a unique Radon
measure £ > 0 on B supported by Ext(B) such that s = [ udyu(u) = p+h, where
p = fExtp(B)udu(u) and h = fExti(B) uwdp(u). It follows from Proposition 5.4
that p is a fine potential and h is an invariant function. Moreover we have p < s
and h < s. Suppose that s is a fine potential, then h = 0 and hence s =
fExtP( B)udu(u). By the uniqueness of integral representation, we necessarily
have j1 = 1gy,(B)pt and consequently, p is supported by Ext,(B). Similarly, if s
is an invariant function, then p = 0 and p is supported by Ext,(B). (I

Proposition 5.8. With the notations from Proposition 5.2 for any o > 0 and any
integer 1, the function g: A, — S(U) defined by g(y) = Gu (-, y) is continuous
with respect to the initial topology.

PRrROOF: Let (y,) be a sequence of points of A, ; which converges with respect to
the initial topology to y € A,,;. Since A, ; is compact with respect to the natural
topology, for any cluster value z of (y,,) in the closure of A, ; with respect to the
natural topology, one can extract from (y,) a subsequence (y,,) which converges
with respect to the natural topology to the point z. Reasoning as in the proof of
Proposition 5.2, it follows that y = z and consequently, lim,, Gy (-, yn) = Gu (-, y)
in S(U). O

Corollary 5.9. Let x € U. Then U 3 y — Gy(z,y) and U 3 y — ®(Gy(-,y))
are Borel functions.

Corollary 5.10. Any Borel subset with respect to the natural topology of U is
a Borel subset of U with respect to the initial topology.

As a consequence of Theorem 5.7, we have the integral representation theorem
of Fuglede given in the classical case in [22]:

Theorem 5.11. Let p be a fine potential on U. Then there exists a unique
positive Borel measure i on U such that

plz) = / Gu(z,y)duly) Vzel.

PROOF: According to Theorem 5.7 there exists a unique measure v on B sup-
ported by Ext,(U) such that

o v o GU('ay) y
p/Eti(B)qd (q)/U@(G(,y))d (y)a

the second equality by Theorem 4.18. For any = € U the functions Gy (x,y) and
®(Gy(-,y)) are Borel functions on U with respect to the natural topology, then
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with respect to the initial topology according to Corollary 5.10. The measure
1= (1/®(G(-,y)))v satisfies the conditions of the theorem. O

For any Y € U consider the function K(-,Y) € B C S(U) ~ {0} defined on U
by K(z,Y) =X )(z)if Y €e U and K(,Y) =Y if Y € A(U). It is clear that
the mapping Y — K (-,Y) is a bijection of U on itself.

Definition 5.12. The function K: U x U —]0,00] defined by K(z,Y) =
K(-,Y)(x) is called the (fine) Riesz-Martin kernel of U, and its restriction to
U x A(U) is called the (fine) Martin kernel of U.

Proposition 5.13. The (fine) Riesz-Martin kernel K: U x U —10, 00| has the
following properties, U being endowed with the natural topology:

(i) For any z € U, K(x,-) is Ls.c. on U.
(ii) For any Y € U, K(-,Y) € S(U) is finely continuous on U.
(iii) The kernel K is L.s.c. on U x U when U is endowed with the fine topology
and U is endowed with the natural topology.

ProOOF: The property (i) follows from Corollary 3.10 applied to u = K(-,Y),
where K(-,Y) is identified to Y. The property (ii) is obvious. Let us prove
the property (iii). Let mg € U, Z € U, and (V;) be a fundamental system of
neighborhoods of Z in U such that V;;; C V; for any j. Given some constant

¢ > 0, consider the increasing sequence of functions
kj = ianer K(-, Y)Ae

and their l.s.c. regularizatione Ej € S(U). According to the Brelot property,
cf. [19, Lemma, page 114], there is a fine neighborhood H of g in U such that H
is compact with respect to the initial topology and the restrictions of functions
Ej € S(U) and K(-,Z)Nc e S(U) to H are continuous on H (with respect to the
initial topology). From the property (i) we have on U

K(-,Z)/\c:11;1;1ng(-,)’)Ac:sgp)}g‘f/jK(-,Y)/\c,

which is quasi-everywhere, and then everywhere on U equal to sup; Y1/n\‘f/ K(,Y)A
€V

¢ € S(U). According to Corollary 3.8 and the Dini theorem, there exists for any
€ > 0 an integer jo > 0 such that

K(-,Z) A c=sup inf K(~,Y)/\c:supgj <kite
i YEVi i

on H for any ¢ > jy. For any fine neighborhood W of z¢ such that W C H we
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have
. . () >
Iew},n}f;evjK(:JS,Y)/\c mf k;(z) I1é1‘§v k; (@)
> 1nf K(x,Z)Nc—e > K(x0,Z) ANc— 2¢
zeW
for j > jo. The assertion (iii) follows by taking ¢ — 0 and ¢ — oco. O

Remark 5.14. As in the classical case, a set A C U is said to be an quasi-
Borel subset if it differs only by a polar set (with respect to the initial topology)
from a Borel subset of U. We denote by B(U), or B*(U), the o-algebra (with
respect to the initial topology) of Borel subsets of U or quasi-Borel subsets of U,
respectively. Any finely open subset V' C U is an quasi-Borel subset because its
regularization (V') is an F,, (with respect to the initial topology) and r(V) N\ V
is a polar set. It follows that any open subset W of U x U, where U is endowed
with the fine topology and U with the natural topology, belongs to the o-algebra
B*(U) x B(U) generated by the sets A; x Ay where A; € B*(U) and A, € B(U),
that is, Ay is a Borel subset of U with respect to the natural topology. According
to Proposition 5.13 (iii), any subset of the form {(z,Y) € U x U: K(z,Y) > a},
a € R, is an open subset of U x U, and then belongs to B*(U) x B(U). This
means that the Riesz-Martin kernel K is measurable relatively to B*(U) x B(U).

The following theorem and its corollary are easy consequences of Theorem 5.7:

Theorem 5.15. For any invariant function u € S(U), there exists a unique
Radon measure p on U supported by A1(U) such that u = [ K(-,Y)du(Y).

Corollary 5.16. For any function u € S(U), there exists a unique Radon measure
p on U supported by U U A1(U) such that u = [ K(-,Y)du(Y).

6. Brelot decomposition of nonnegative finely superharmonic func-
tions

n [7], M. Brelot proved that if v € S(2) and A C Q, then v has a decom-
position u = u; + ug, where ﬁ;‘l = u; and ﬁﬁf = w9, with uniqueness of the
decomposition if we take for us the greatest specific minorant v of w which is self-
reduced on CA, that is, REA = v. As an application of the integral representation
we shall extend this result to nonnegative finely superharmonic functions.

Lemma 6.1. Let u be an extremal element of S(U) and A C U. Then we have
u=R2 oru= RV,

PROOF: Suppose that u # RA (and then in parmcular u#0)andlet f =u— RA
(understood as 0 at points where R2(z) = 0o). Then Rf > (0 and we have Rf <u
according to the lemma of [17, page 129]. Since u is extremal, we have u = aRf,
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with & > 0. On the other hand, since f = 0 q.e. on A then ﬁf = ﬁfU\A and
consequently, Ry = ﬁ%\A. Hence u = RUNA. .
s

Proposition 6.2. Let B be a compact base of the cone S(U) and A C U. Then
the set Ext(B) = {u € Ext(B): R{l = u} is a Borel subset of B.

Proor: We may suppose that the constants are superharmonic. Let 7 be the
measure of the base of the resolvent (V) of Section 2. Without loss of generality
we may suppose that the constants are 7-integrable. Since two positive superhar-
monic functions equal 7-a.e. are necessarily equal everywhere, we have Ext 4 (B) =
N,, Cn, where for any integer n, C,, = {u € B: [uAndr = f]?i;f Andr}. Then
it suffices to show that for any n the set C, is a Borel subset of B. But this
follows from the fact that the functions u — [u Andr and u— [ R‘f Andr are
l.s.c. on B as easily shown by application of Fatou lemma and Corollary 3.10. [

We say that u is selfreduced on A C U if R4 = A.

Theorem 6.3. Let w € S(U) and A C U. Then there exists a decomposition
u = u1 + ug of uwin S(U) such that

1. The function uy is selfreduced on A.
2. The function us is selfreduced on U \. A.

PROOF: Let u € S(U) and ,u be the maximal measure on B representing u. We
have u fExt ) Pdu(p) fExtA(B pdu(p) + fExt (B)~Exta(p) P du(p) in view
of Proposition 6 2. According to Lemma 6.1 we have Ext(B) = Exty(B) U
Extya(B), and for any p € Ext(B) \ Exta(B), we have R>* = p. Put

1= fExtA(B)pdu(p) and up = fExt(B)\ExtA(B) (these integrals are well de-
fined according to Proposition 6.2). Then we have u = u; + ue and, by The-
orem 3.11, R = fExtA(B)R du(p) = [ (pyPdu(p) = w1 and RN =

fExt(B)\ExtA(B) RU\A d‘LL fExt(B)\ExtA(B)pd:u‘( ) = U2. g

Remark 6.4. We have uniqueness in the decomposition of u in the preceding
theorem if we impose on uy (or uy) to be the specific greatest minorant of « which
is selfreduced on U \ A (or A, respectively).

7. Approximation of invariant functions by finely harmonic functions

If U = DUO;D, where D is a non regular domain of R?, then any minimal
invariant function v on U = D U 9;D is finely harmonic according to a theorem
of M. Brelot (cf. [6, Section 7]). Indeed, the restriction h of u to D is invariant
by [14, Theorem 2.6 (a)], and hence harmonic since D is open in the initial
topology. In fact, the positive finely superharmonic functions on D (or the fine
potentials on D), are the same as the usual positive superharmonic functions
(the usual potentials, respectively), according to [17, Teorems 9.8 and 10.13 (and
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Section 10.4)]; hence the invariant functions on D are the same as the positive
harmonic functions there. Next, A is minimal harmonic on D. In fact, let h =
h1 + ho with hi, ho harmonic nonnegative on D. Since ;D is polar, hy and hs
extend by the removable singularities theorem [17, Theorem 9.14] to positive finely
superharmonic u; and ug on U, specifically majorized by u and hence likewise
invariant on U. By minimality of u we conclude that u; = (1 — @)u and uz = au
for some a € [0, 1], and hence hy = (1 — a)h and hy = ah, showing that indeed h
is minimal harmonic in D.

For any point zg € 9;D it now follows from M. Brelot [6, Section 7] (see
also [24, Quesion 2]) that if finelim,_,,, h(x) = oo, that is u(zg) = oo, then
u is positive constant multiple of Gy (-, o), which is a fine potential on U and
hence vanishes there because w is also invariant. But this contradicts the fact
that u(zg) = oo. Hence u(xg) < oo, and therefore u is bounded on some fine
neighborhood of z, then u is finely harmonic on the finely open set D U {zg}
according to the removable singularity theorem for finely harmonic functions [17,
Theorem 9.15]. We deduce that u is finely harmonic on some finely open set
containing xg, and hence on all of U, by varying xy and recalling that h is harmonic
on D.

Returning to an arbitrary fine domain U in the setting of a P-Brelot space
satisfying the axiom D, the above example suggests to ask the following question:
If any minimal invariant function on U is finely harmonic, is then any invariant
function on U the sum of a sequence of nonnegative finely harmonic functions
on U (equivalently: is any invariant function the pointwise limit of an increasing
sequence of nonnegative finely harmonic functions on U)?

In this section we give a partial answer to this question (Theorem 7.2). More
precisely, we shall show, under the hypotheses of Section 5, that if any minimal
invariant function on U is finely harmonic on U, then any invariant function on U
is approachable in the natural topology by nonnegative finely harmonic functions
nonnegative on U.

In this section we assume that the adjoint fine topology is finer than the fine
topology on 2 (in particular U is also an adjoint finely open set), we denote by
Gy the Green kernel of U and we also assume that for any z € U the function
y — Gu(x,y) is finely continuous.

Proposition 7.1. Let K C U be compact with respect to the natural topology
such that K C Ext;(B) and Hg(U) the set of invariant functions of the form
[ kdu(k), where p is a probability measure on K. Then Hy(U) is a compact
convex subset of B and Ext(Hk (U)) = Ext(B) N Hk (V).

PROOF: It is clear that Hy (U) is convex. It remains to prove that it is compact.
Let (uj) be a sequence of probability measures on K. We can extract from the
sequence (u;) a subsequence v; which converges vaguely to a probability mea-
sure p on K. For any continuous affine form [ on B, we have l(fK kd,u(k)) =
Jre Uk) dp(k) = limy I( [, kdv;(k)) = (lim; [, kdvj(k)), and therefore it fol-
lows [, kdu(k) = lim; [, kdv;(k) € Hig(U). It hence follows that H (U) is
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compact. The inclusion Ext(B) N Hx(U) C Ext(Hx(U)) is obvious. Let us
prove the opposite inclusion. Let h € Ext(Hx(U)), and u,v € S(U) such that
h = u+ v. We can find two finite measures o and 7 on B, supported by Ext;(B)
such that u = [, kdo(k) and v = [, kd7(k), and a measure p on K such that
h = f w du(k). According to the uniqueness of the integral representation in
the Choquet’s theorem, we have y = o + 7, and then ¢ and 7 are supported
by K, and consequently, u,v € Hx(U). Since h € Ext(Hx (U)), we deduce that
uw and v are proportional to A and then h € Ext(B). This proves the inclusion
Ext(Hx(U)) C Ext(B) N Hi(U), and hence the required equality holds. O

Theorem 7.2. Suppose that any minimal invariant function on U is finely har-
monic, then any invariant function on U is limit (in the natural topology) of
a sequence of finely harmonic functions on U.

PROOF: Let h be an invariant function, h > 0, and p the measure on B supported
by Ext;(B) which represents h (Theorem 5.7). We can find a sequence (K, )nc.s,
J C N possibly finite, of compact pairwise disjoint subsets of B, contained in
Ext;(B) and such that p(B) = p(U, Kn) and p(K,) > 0 for any integer n € J.
Thus we have h =), fKn kdu(k) = >, cs 1(Kn)b(pn), where piy, is the prob-
ability measure (1/u(K,))1k, - 1 and b(py,) its barycenter (cf. [1, page 12]). For
any integer n we have b(u,) € Hi, (U) because H,, (U) is convex. According to
the Krein-Milman theorem, the function h, = b(p1,,) is a limit of a sequence (h))
of affine combinations of extreme elements of Hg, (U), which are finely harmonic
functions according to the preceding proposition and the hypothesis of the the-
orem. It follows that h = ) (K, )hy, is the limit (in the natural topology) of
a sequence of finely harmonic functions on U. O

Remark 7.3. Theorem 7.2 is not a direct consequence of the Krein—Milman
theorem, because B N H;(U) is not compact if U is not an open set relative to
initial topology.

Corollary 7.4. Let D be a non regular bounded open subset of R?, and U =
DU;(D). Then any invariant function on U is the limit (in the natural topology)
of a sequence of finely harmonic functions on U.

PROOF: In fact, as explained in the beginning of the present section, any minimal
invariant function on U is finely harmonic, and the result follows immediately from
the preceding theorem. (I
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