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On prolongations of rank one discrete valuations

Lhoussain El Fadil

Abstract. Let (K, ν) be a valued field, where ν is a rank one discrete valuation.
Let R be its ring of valuation, m its maximal ideal, and L an extension of K,
defined by a monic irreducible polynomial F (X) ∈ R[X]. Assume that F (X)
factors as a product of r distinct powers of monic irreducible polynomials. In this
paper a condition which guarantees the existence of exactly r distinct valuations
of K extending ν is given, in such a way that it generalizes the results given in
the paper “Prolongations of valuations to finite extensions” by S.K. Khanduja,
M. Kumar (2010).
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1. Introduction

Let K be a number field, defined by a monic irreducible polynomial F (X) ∈
Z[X ], ZK its ring of integers, and ind(α) = [ZK : Z[α]] the index of Z[α] in ZK .
One of the most important problems in algebraic number theory is determining
the factorization of a rational prime p into prime ideals of ZK . Due to Hensel’s
theorem (see [5]), this problem is directly related to the factorization of F (X)
in Qp[X ].

If p does not divide the index ind(α), then a theorem of Kummer says that
the factorization of pZK can be derived directly from the factorization ofF (X)
modulo p; more precisely, if F (X) =

∏r
i=1 ϕi(X)li is the factorization of F (X)

into the product of powers of distinct monic irreducible polynomials modulo p,
then pZK =

∏r

i=1 p
li
i , where pi = (p, ϕi(α)) with ramification index e(pi/p) = li

and residue degree f(pi/p) = deg(ϕi). In this case, we say that the factorization
of p in ZK is p-analogous to the factorization ofF (X). So, in particular, there are
exactly r distinct valuations of K extending νp. In 1878, R. Dedekind in [3] gave
a criterion, which allows us to test if p does, or does not, divide the ind(α). In [6],
S. Khanduja and M. Kumar showed that the condition “p does not divide ind(α)”
is necessary for the existence of exactly r distinct prime ideals of ZK lying above p.
They went on it in [7] to ask whether it is possible to find a weaker condition
that guarantees the existence of exactly r distinct valuations of K extending νp
with ramification indices and residue degrees all as above. In the same paper
[7, Theorem 1.1], they gave a weaker sufficient condition. In [2], A. Deajim and
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L. El Fadil improved [7, Theorem 1.1] in the context of number fields. The
main goal of this paper is to give an improvement of [7, Theorem 1.1] and [2,
Theorem 2.1] in the context of rank one discrete valuations.

2. Preliminaries

Throughout this paper, (K, ν) is a valued field, where ν is a rank one discrete
valuation. By normalization, we can assume that the value group Gν = Z. Let R
be its ring of valuation, m its maximal ideal, and kν its residue field. Let Kν be
the ν-adic completion of K, Rν its ring of valuation, and mν its maximal ideal.
Let ϕ ∈ Rν [X ] be a monic polynomial whose reduction modulo mν is irreducible,
Fϕ the finite field defined by mν and ϕ; i.e, Fϕ = Rν [X ]/(mν , ϕ) ≃ kν [X ]/ϕ and
let red: Rν [X ] −→ Fϕ be the canonical projection. For any polynomial F (X) ∈
Rν [X ], by successive Euclidean division, F (X) has a unique ϕ-adic expansion
F (X) = a0(X)ϕ(X)l + a1(X)ϕ(X)l−1 + · · · + al(X) with for every i := 0, . . . , l
ai(X) ∈ Rν [X ] and deg ai(X) < degϕ or ai(X) = 0. The ϕ-Newton polygon

of F (X), with respect to the valuation ν, is first introduced by Ö. Ore when ν = νp
in [10] and developed by J. Guardia, J. Montes, and E. Nart in [4]. This notion
was generalized to any discrete rank one valuation by D. Cohen, A. Movahhedi,
and A. Salinier in their paper [1], and later by B. Jhorar and S. Khanduja in
their paper [8], as the polygonal path formed by the lower edges along the convex
hull of the points (i, ui), ui < ∞, in the Euclidean plane, where ui = ν(ai(X)).
Geometrically, the ϕ-Newton polygon is represented by the process of joining
all segments with an appropriate initial point with increasing slopes λ0 < λ1 <
· · · < λg when calculated from left to right. We shall write Nϕ(F ) = S0 + · · ·+Sg.
The principal part of Nϕ(F ), denoted by N+

ϕ (F ), is the polygon determined by
all sides of positive slopes of Nϕ(F ). Since ν is a rank one discrete valuation,
both of m and mν are principal ideals and generated by a common element with
valuation 1, which we denote by p. For every i = 0, . . . , n, we attach to any
abscissa the following residue coefficient ti ∈ Fϕ defined by

ti =

{
0 if (i, ui) lies strictly above Nϕ(F ),

red
(
ai(X)
pui

)
(mod (p, ϕ(X))) if (i, ui) lies on Nϕ(F ).

Let S be a side of N+
ϕ (F ), with slope λ = h/e such that h and e are positive

coprime integers. Let l = l(S) be the length of the projection of S to the x-axis and
d = l/e the degree of S. Note that, if s is the abscissa of the initial point of S, then
S is divided into d segments by the points (s, us), (s+e, us+h), . . . , (s+de, us+dh)
of integer coordinates that lie on S. Let FS(Y ) = tsY

d + ts+eY
d−1 + · · · +

ts+(d−1)eY + ts+de ∈ Fϕ[Y ] be the residual polynomial of F (X) attached to S,
where for every i = 0, . . . , d, ts+ie is the residue coefficient. For more details see
[1], [4], [8].
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3. Main result

Throughout this section, F (X) ∈ R[X ] is a monic irreducible polynomial
over K, α a root of F (X) in an algebraic closure of K, L the field gener-
ated by α and K, ZL the integral closure of R in L, and we assume that
F (X) ≡

∏r
i=1 ϕ

li
i (X) (mod m), where every ϕi ∈ R[X ] is a monic polynomial

and whose reduction modulo m is irreducible. For every i = 1, . . . , r, let F (X) =∑Li

j=0 aj(X)ϕLi−j
i (X) be the ϕi-adic expansion of F (X) and Ni = Nϕi

(F ).

According to Newton polygon notations and terminology, [7, Theorem 1.1] can
be reformulated as follows:

If for every i = 1, . . . , r, either li = 1, or li ≥ 2 andNi is only one side of degree

di = 1, then there are exactly r distinct valuations ν1, . . . , νr of L extending ν.

Recall that for any valued field (K, ν), (K̂,ν̂) is its ν-adic completion, let H

be the separable closure of K in K̂. Then H is a Henselien field, called the
Henselization of K with respect to ν (see [9, Chapter II, Section 6]).

Keep the same notation ν for the valuation of H extending ν and set RH its
ring of valuation. For any algebraic extension F of H , denote by νF the restriction
to F of the unique extension of ν to the algebraic closure of H .

In order to improve this theorem, we need the following lemmas:

Lemma 3.1 ([7, Theorem 2.D]). Let (K, ν) be a valued field, K(θ) an alge-

braic extension of K, F (X) the minimal polynomial of θ over K, and H the

Henselization of (K, ν). Then, the valuations ν1, . . . , νt of K(θ) extending ν
are in one-to-one correspondence with the irreducible factors F1(X), . . . , Ft(X)
of F (X) in H [X ]. Moreover, for any i = 1, . . . , t, the valuation νi attached to

Fi(X) is defined precisely by

νi

(∑

j

ajθ
j

)
= νH

(∑

j

ajθ
j
i

)

for any root θi of Fi(X) and aj ∈ K.

Lemma 3.2. Assume that F (X) ∈ R[X ] is a monic irreducible polynomial which

is congruent to a power of ϕ(X) with ϕ(X) ∈ R[X ] being monic, whose reduction

modulo m is irreducible. Let α be a root of F (X), L = K(α), ZL the integral

closure of R in L. Then for every valuation ω of L extending ν, and for every

polynomial P (X) ∈ R[X ], ω(P (α)) ≥ ν(P (X)). The equality holds if and only

if ϕ(X) does not divide P 1(X), where P1(X) = P (X)/pν and ν = ν(P (X)). In

particular, if deg(P ) < deg(ϕ), then ω(P (α)) = ν(P (X)).

Proof: Let ω be a valuation of L extending ν. Since α is integral over R and
P1(X) ∈ R[X ], P1(α) is integral over R, and thus ω(P1(α)) ≥ 0. Thus, ω(P (α)) ≥
ν = ν(P (X)). SinceF (X) is congruent to a power of ϕ(X), ω(ϕ(α)) > 0. Let p =
mω∩ZL, where mω is the maximal ideal of ω. Then p contains ϕ(α). Consider the

following homomorphism ψ : kν [X ] −→ ZL/p of rings defined by ψ( g (X)) = g(α).
Since ω(ϕ(α)) > 0, ϕ(X) is the minimal polynomial of α over kν , Kerψ is the
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principal ideal of kν [X ] generated by ϕ(X). Let P (X) ∈ R[X ]. If ω(P (α)) > ν;

ω(P1(α)) > 0, then P1(α) ≡ 0 (mod p), i.e., ϕ(X) divides P1(X). �

The following theorem gives us much weaker sufficient condition on F (X) that
guarantees the existence of exactly r distinct valuations ν1, . . . , νr of L extend-
ing ν and for every extension νi, the ramification index e(νi) and the residue
degree f(νi) are given too. In such a way it generalizes [2, Theorem 2.1] and [7,
Theorem 1.1] in the context of discrete rank one valued fields.

Theorem 3.3. If for every i := 1, . . . , r, either li = 1 or, li ≥ 2, Ni is a sin-

gle side, and FNi
(Y ) is irreducible, then there are exactly r distinct valuations

ν1, . . . , νr of L extending ν. Moreover for every i = 1, . . . , r, f(νi) = midi, and
e(νi) = li/di, where mi = deg(ϕi), di = gcd(ν(aLi

(X)), li).

Proof: First, since H is a Henselien field and F (X) ≡
∏r

i=1 ϕ
li
i (X) (mod m),

by Hensel’s lemma, we can split F (X) =
∏r

i=1 Fi(X) in RH [X ], where for every

i = 1, . . . , r, Fi(X) ≡ ϕli
i (X) (mod m) and RH is the ring of valuation of (H, νH).

So, by [9, Proposition 8.2], there are at least r distinct valuations ν1, . . . , νr of L
extending ν. If for every i = 1, . . . , r, li = 1, then every Fi(X) is irreducible
in H [X ] and there are exactly r distinct valuations ν1, . . . , νr of L extending ν
such that for every i = 1, . . . , r, f(νi) = mi, and e(νi) = li. In this case since
li = 1, di = 1 too. If there exists i such that li ≥ 2, so again by [9, Proposition 8.2],
it suffices to have every Fi(X) irreducible in H [X ]. Fix i = 1, . . . , r. By [1,
Theorem 3.2, page 187] and by assumption, Nϕi

(Fi) = Nϕi
(F ) = Ni is a single

side up to a translation and FiNi
(Y ) = FNi

(Y ) up to multiplying by a nonzero
constant. As FNi

(Y ) is irreducible in Fϕi
[Y ], FiNi

(Y ) is irreducible too in Fϕi
[Y ].

So by [1, Theorem 1.6], Fi(X) is irreducible in H [X ]. Finally, for every i =
1, . . . , r, Fi(X) is irreducible in RH [X ], and there are exactly r distinct valuations
ν1, . . . , νr of L extending ν.

We next calculate the ramification index and the residue degree of each valu-
ation νi. To simplify notations, fix i = 1, . . . , r and set f(X) = Fi(X), ϕ(X) =
ϕi(X), l = li, α a root of f(X),  L = H(α) the local field, p its maximal ideal, and
Z L its ring of valuation. Let f(X) = ϕ(X)L + · · · + aL(X) be the ϕ-adic expan-
sion of f(X). As f (X) is a power of ϕ(X) modulo mν , L = l. Let νl = ν(a l(X))
and p ∈ R such that ν(p) = 1. As Ni is one side of slope λ, νl = lλ. Since

ϕ(X) is the minimal polynomial of α (mod mν) over kν and ϕ(X) does not di-

vide (a l(X)/pν), by Lemma 3.2, we have (a l(α)/pνl) 6= 0 modulo mν . Thus,
νi(al(α)) = ν(a l(X)) = lλ. We now show that νi(ϕ(α)) = λ. Note that as Ni is
a single side, ν(aj(X)) ≥ jλ for every j = 1, . . . , l−1. So νi(aj(α)) ≥ jλ since α is
integral overRH . Thus, for every j = 1, . . . , l−1, νi(aj(α))ϕ(α) l−j) ≥ jλ+( l−j)u,
where u = νi(ϕ(α)). If u 6= λ, then it follows from the ϕ-adic expansion of f(X)
that νi(f(α)) = min{ lu,  lλ), which is impossible since νi(f(α)) = ∞. Thus, u = λ
as claimed.



On prolongations of rank one discrete valuations 303

Now let us show that the value group of νi is Z[λ], the subgroup of Q gen-
erated by 1 and λ. For every P (X) ∈ R[X ], let the P (X) = g0(X)ϕl(X) +
g1(X)ϕl−1(X) + · · · + gl−1(X)ϕ(X) + gl(X) be the ϕ-adic expansion of P (X).

Since νi(ϕ(α)) = λ for each j = 0, . . . , l, νi(gj(α)ϕl−j(α)) = nj + (l − j)λ,
where nj = νi(gj(α)) ∈ Z. Thus, νi(P (α)) ∈ Z[λ]. As every element of K is of
the form P (α)/b for some P (X), b ∈ R[X ]×R∗, the value group of νi is Z[λ]. So,
the ramification index e(νi) is the index [Z[λ] : Z] = l/d. As ν is discrete, the
residue degree is f(νi) = (deg(f))/e(νi) = lm/e(νi) = md. �

Corollary 3.4. Let R be a Dedekind domain with quotient field K and L =
K(α), where α ∈ K is a root of a monic irreducible polynomial F (X) ∈ R[X ].

If for every i := 1, . . . , r, either li = 1 or, li ≥ 2, Ni is only one side, and FNi
(Y )

is irreducible, then there are exactly r distinct prime ideals p1, . . . , pr of ZL lying

above m and mZL =
∏r

i=1 p
ei
i , where for every i = 1, . . . , r, f(pi/m) = midi,

ei = li/di, mi = deg(ϕi), and di = gcd(ν(aLi
(X)), li).

4. Examples

The following examples show the advantage of Theorem 3.3 over the reult
of S. K. Khanduja and M. Kumar. The second and fourth examples present
situations where Theorem 3.3 is not applicable.

Example 4.1. Let R = F3[[X ]] be the ring of formal power series over F3, K its
quotient field, and F (Y ) = Y 3 + XY 2 + X2Y −X3. It is well known that K is
a valued field according to the discrete valuation ν defined by ν(X) = 1, R its
ring of valuation, and m = (X) its maximal ideal. Since F (Y ) is X-Eisenstein,
F (Y ) is irreducible over R. Let L = K(α), where α is a root of F (Y ). Let ϕ = Y .
Then F (Y ) ≡ ϕ3 (mod m), Nϕ(F ) = S is only one side with degree d = 3 such
that FS(T ) = T 3 + T 2 + T − 1 is irreducible over Fϕ. Thus, there is only one
valuation ν extending ν to L, where e(ν) = 1, and f(ν) = 3.

Example 4.2. Again R = F3[[X ]] be the ring of formal power series over F3,
K its quotient field, and F (Y ) = Y 3 + XY 2 + XY −X3. For the same reason,
F (X) is irreducible overK and F (Y ) ≡ ϕ3 (mod m), where ϕ = Y . But Nϕ(F ) =
S1 +S2 is two sides with respective slopes 1/2 and 2. Thus, there are at least two
valuations of L extending ν, where L = K(α) and α is a root of F (Y ).

Example 4.3. Let ν2 be the 2-adic valuation defined on Q. Then (Q, ν2) is
a valued field and Z2 = {a/b : (a, b) ∈ Z× N, b /∈ 2N} its ring of valuation. Con-
sider F (X) = X6 + 12X3 + 48 ∈ Z[X ]. As F (X) is 3-Eisenstein, it is irreducible
over Q. Let L = Q(α) where α is a complex root of F (X). Since F (X) ≡ X6

(mod 2) and for ϕ(X) = X , F (X) = ϕ(X)6 + 12ϕ(X)3 + 48, Nϕ(F ) = S is one
side of slope λ = 2/3, d = 2, and FS(Y ) = Y 2 + Y + 1 which is irreducible over
Fϕ = F2 (because deg(ϕ) = 1). It follows that there is only one valuation ν2 of L
extending ν2, where e(ν2) = 3, and f(ν2) = 2.
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Example 4.4. Let F (X) = X5 + 3X3 + 6X2 + 12X + 24 ∈ Z[X ]. For the
same reason, F (X) is irreducible over Q. Let L = Q(α) where α is a complex
root of F (X). Since F (X) ≡ X3(X − 1)2 (mod 2) and for ϕ(X) = X , F (X) =
ϕ(X)5 + 3ϕ(X)3 + 6ϕ2 + 12ϕ + 24. So, N+

ϕ (F ) = S is one side of slope λ = 1,

d = 3, and FS(Y ) = Y 3 + Y 2 + Y + 1 which is reducible over Fϕ = F2. It follows
that there are at least 3 valuations of L extending ν2.

Acknowledgment. The author is very grateful to Professor Enric Nart for intro-
ducing him to Newton polygon techniques when he was a post-doc in 2007–2008
at CRM, Barcelona, Spain.

References

[1] Cohen S. D., Movahhedi A., Salinier A., Factorization over local fields and the irreducibility

of generalized difference polynomials, Mathematika 47 (2000), no. 1–2, 173–196.
[2] Deajim A., El Fadil L., On the extensions of a discrete valuation in a number field, Math.

Slovaca 69 (2019), no. 5, 1009–1022.
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[4] Guàrdia J., Montes J., Nart E., Newton polygons of higher order in algebraic number

theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416.
[5] Hensel K., Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl

als Modul und Bestimmung der Theiler ihrer Discriminante, J. Reine Angew. Math. 113
(1894), 61–83 (German).

[6] Khanduja S.K., Kumar M., On a theorem of Dedekind, Int. J. Number Theory 4 (2008),
no. 6, 1019–1025.

[7] Khanduja S.K., Kumar M., Prolongations of valuations to finite extensions, Manuscripta
Math. 131 (2010), no. 3–4, 323–334.

[8] Khanduja S.K., Kumar M., A generalization of a theorem of Ore, J. Pure Appl. Algebra
218 (2014), no. 7, 1206–1218.

[9] Neukirch J., Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften,
322, Springer, Berlin, 1999.
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