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Periodic solutions of a class of third-order differential

equations with two delays depending on time and state

RABAH KHEMIS, ABDELOUAHEB ARDJOUNI,
AHLEME BOUAKKAZ, AHCENE DJoUDI

Abstract. The goal of the present paper is to establish some new results on the
existence, uniqueness and stability of periodic solutions for a class of third order
functional differential equations with state and time-varying delays. By Kras-
noselskii’s fixed point theorem, we prove the existence of periodic solutions and
under certain sufficient conditions, the Banach contraction principle ensures the
uniqueness of this solution. The results obtained in this paper are illustrated by
an example.

Keywords: periodic solution; iterative differential equation; fixed point theorem;
Green’s function

Classification: 39B12, 39B82

1. Introduction

Iterative functional differential equation which is a relation between an un-
known function, its derivatives and its iterates arises as a model including state-
dependent deviating arguments. This type of equations is often used to modelize
a wide range of phenomena appearing in different field of sciences such as elec-
trodynamics, mechanics, epidemiology, economics, biology and other numerous
areas see [3], [4], [9].

Iterative equations have received increasing attention during the past few de-
cades. They have been studied first by C. Babbage in circa 1815 in his paper [1].
In 1967, K. Cooke in [3] introduced the equation

u'(t) + au(t — r(u(t))) =0,

to model a genetic phenomenon in population dynamics or infection models. After
one year, A. Pelczyr in [10] used Picard’s successive approximation for studding
the equation

2'(t) = f(t z(t), x(x(t)),

where 0 is the left endpoint of the domain.
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Later on, in 1984, by virtue of contraction principle, E. Eder in [5] obtained
some existence results on the unique monotone solution for the following equation

' (t) = 2(x(t)),
with I]L‘(to) = to, to € [*1, 1]
The equation
a'(t) = f(x(z(t))),

with x(a) = a, where a is an endpoint of the well-defined interval was studied in
1990 by K. Wang, see [13], and by M. Feckan in 1993, see [6], where 2(0) = 0. In
1997, under the assumption that x(t9) = xo on a given compact interval, where
the endpoints of the interval are two adjacent null points of f, the same equation
attracted the attention of W. Ge and Y. Mo in [7].

While, V. Berinde in 2010, see [2], applied the nonexpansive operators to in-
vestigate the last initial problem.

One year later, M. Lauran in [8] treated the nonautonomous equation

xl(t) = f(t,x(t),x(ac(t)))
with z(tg) = xo.

Recently, sizable researches have focused on this type of equations by using
different tools, such as Krasnoselskii fixed point theorem, Banach contraction
mapping principle, Schauder’s fixed point theorem and so on. In [14], H.Y. Zhao
and J. Liu applied Krasnoselskii and Banach’s fixed point theorems for establish-
ing the existence, uniqueness and stability of periodic solutions of the following
first order iterative differential equation

d

720 = @2 () + a2 (1) + -+ (2 () + F ().

In [15], H.Y. Zhao and M. Fe¢kan used Schauder’s fixed point theorem to show
the existence and the stability of periodic solutions of the following equation

koo
2(t) =Y Cm(™ () +G(1).

m=1 [=1

Motivated by the preceding works, we consider the following functional differential
equations depending on both the state variable x and the time ¢

(1.1) 2" (t) + 302" (t) + 30’ (t) + o°x(t) = %f(t, z(t—7(1))) Jrz ar(t)z (1),
k=0

and

(1.2) 2" (t) — 30x" (t) + 30’ (t) — o*x(t) = %f(t, z(t—7(t))) + Z ar(t)z (1),
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where ¢ > 0, 7 € C(R,R) is a T-periodic function, 2™ (t) are the mth iterates of
the function z, f € C(R x R,R) and f(¢, z) is T-periodic in ¢.

By a technique based on the combination of the Krasnoselskii and Banach fixed
point theorems and some useful properties of the explicit forms of the Green’s
functions obtained in [11], we will establish sufficient conditions to guarantee the
existence, uniqueness and stability of periodic solutions of these two equations.
The rest of the paper is organized as follows: in Section 2, we give some prelim-
inary results. Existence, uniqueness and stability of periodic solutions of (1.1)
and (1.2) are established in the last section. In addition, an illustrative example
is given to show the applicability of our results.

2. Preliminaries
For T'> 0 and L, M > 0, let
Pr={z€CR,R): z(t) =z(t+T)},
equipped with the norm
[]| = suplz(t)] = sup |x(t)],
teR

te[0,T]
and

Pr(L,M)={z € Pr: ||z|| <L, |z(t2) — x(t1)| < Mta — t1], Viti,t2 € R},

then (Pr,|-||) is a Banach space and Pp(L, M) is a closed convex and bounded
subset of Pr.

It is convenient to suppose that the function f is globally Lipschitz in x, that
is, there exists a positive constant K such that

(2.1) [f(t,2) = f(ty)| < Kz —yl|
Lemma 1 ([11]). For o > 0 and h € Pr the equation

{ 2" (t) + 3ox" (t) + 3072/ (t) + 0’z (t) = h(t),
2(0) = 2(T), 2'(0) = 2/(T), 2"(0) = "(T),

has a unique T-periodic solution

az(t)/o G1(t, s)h(s) ds,

where
[(s—t) e T+ T—s+t]2+T% e 27
2(1—e*9T§3
(2.2) Gi(t,s) et rostsest
. 1,8) =

[(s—t4+T) e T —s+t]2 412 =27

2o eT)?
x e—e(t—s) if 0<s<t<T.
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Lemma 2 ([11]). For o > 0 and h € Pr the equation

{ a''(t) — 3ox" (t) + 3072/ (t) — @’x(t) = h(t),
2(0) = 2(T), 2'(0) = 2/(T), 2"(0) = "(T),

has a unique T-periodic solution

£(t) = / Go(t, 5)(~h(s)) ds,

where

[(s—t) T +T—s+t]2+T2 27
2(ceT—1)3
x eo(t4+T—s) if 0<t<s<T,
[(s—t+T) e®T —s+1]2 T2 o7
2(ceT—1)3
x ge(t—s) if 0<s<t<T.

(2.3) Gy(t,s) =

Lemma 3 ([11]). Let

T%(1 + eT) B T?e?T (1 + eoT)

(24) A= 20%(eeT — 1)’ T 2(edT — 1)

then
0<A<Gi(t,s) <B and 0<A<Gaot,s)<B

for all t € [0,T] and s € [0,T].

Lemma 4 ([14]). For any ¢,v € Pr(L, M),

m—1
(2.5) ol — ™| < > Mo — .

3=0
Lemma 5 ([15]). We have
Pr(L,M)={z € Pr: ||z|| <L, |z(te) — x(t1)] < M|ta — t1], Vi1,t2 € [0,T]}.
Theorem 1 ([12]). Let M be a closed convex nonempty subset of a Banach space

(B, ||-||)- Suppose that A and B map M into B such that

(i) for z,y € M, we have Az + By € M
(ii) mapping A is compact and continuous;
(iii) mapping B is a contraction mapping.

Then there exists z € M with z = Az + Bz.
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3. Main results

Lemma 6. Let

[(s—t+T)e T —s+t]>2 +T?e 0T

_ —o(t—s)

Hl,l(t,s) = 2(17 eng)B e ¢ ,
Hy ot ) = (s =t)e " + T —s+tP+T%e " (ir o

1,2 )S - 2(1 _ e_QT)S € K
Ho (. s) = [(s—t+T)eT —s+1t]> +T?eT o(t—s)

2,1( ;S)_ 2(69T*1)3 € )
" Cs=1)e" + T —s+tP+T%e" i1y

2,2(t5 S) - 2(GQT _ 1)3 € )

then

9 e~ olt=) —o(t+T—s) —oT\2
aHLl(t,S):(Sft)m*Te @ (17 e ¢ ) +QH111(t,S),

b e—o(t—s) e—o(t+T—s)

L Hiots)=(5s—t)— —@(T)_Ti Hy o(t

g5 Halbs) = (s —t)— =7 e (= emerye T ofalts),
eo(t—s) el(t+T—s)

d
5o H2a(ts) = (s 1) e D) + T(eQT e oH1(t, ),

eg(t—s) - eg(t-l—T s)

0
— — _ 4
aSH2,2(1f, s)=(s—1) 1) ° + T(egT 1) — 0Ha5(t, s).

Lemma 7. If € Pr(L, M), then z is a solution of (1.1) if and only if

/ Hy 1 (t,s)ag(s)zM (s )ds+z THLg(t, s)ar(s)z (s) ds

k=01

- a/o (s —t)f(s,2(s — 7(s))) e72=9) ds
T
—ae o™ /t (s —t)f(s,z(s — 7(s))) e 2(t=9) 4
a? ' s,x(s — 7(s))) e ¢HHT=9) gg
+7a? [ f(sials = o(9) a
t T
- Q/O f(s,x(s - T(S)))Hl,l(ﬁ, s)ds — Q/t f(s, x(s — T(S)))HLQ(t, s)ds,

where

o 1— el
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ProOOF: From Lemma 1,

= /0 H1,1(t,s)[%f (s —7( +Zak )l (s }
T
—|—/t H172(t75)|:%f (s—7(s —l—Zak ]

The integration by parts gives
/Hllts z(s —7(s))) ds
t K 0
— [f(s,ac(s — T(S)))Hlyl(t, s)}o — / f(s,ac(s — T(S))) a—HLl(t, s)ds,
o s

and

/t Hio(t, s)%f(s, x(s — T(s))) ds
= [f(s,z(s — 7(s))) H12(t, S)LT - /t f(s,z(s —7(s))) %HLQ(Z‘:, s)ds.

Since
[/ (s(s = 7(s)) Hua(t,5)]
= flrte ) g )
= £(0,2(=7(0))) (T - t)g(fit, E]ST;TQ S
and

[f (s, 2(s = 7(s)) Hia(t,5)] |
_ eng 2 267QT
= f(T,2(T — 7(T))) @ t)2(1 _ZE]QT;T e ¢

2 eng
— f(t,a(t - T(t)))H e

L

2 eng
— f(t,x(t - T(t)))H e

then

[ (s, (s = m() Hua(t,9)]g + [F (s.2(s = 7(5)) Hra(t, )] = 0.



Periodic solutions of third-order iterative differential equations

So, we have

x(t) = / Hy(t, s)an(s)zF) (s ds—i—z ng t,s)ag(s)z* (s) ds
k=0"1

¢
(3.1) 7/ f(sx(s — T(s)))ﬁHLl(t, s)ds
0 0s
T 0
_/ f(s,a(s T(S)))a—HLQ(t,S) ds.
. s
The substitution of = H 1(t, s) and 2 H »(t,s) in (3.1) complete the proof. [

Similarly to the above proof we can prove the following lemma.

Lemma 8. If © € Pr(L, M), then z is a solution of (1.2) if and only if

D=3 [ Hont, o) (5)ds + 3" [ Hoalt, shag(s)e (s) ds
> [ st 2ttt
va [0 (s.a(s (o)) et~ as
T
+ae” / (s — ) f (s, 2(s — 7(s))) €2 =) ds
Cqe [ s als — 7(s)) 02T ds
T / f(s,2(s —7(5)) d

t T
+ g/o f(s,ac(s — T(S)))Hg’l(t, s)ds + g/t f(s, x(s — T(S)))HQQ(t, s)ds.

3.1 Existence of periodic solutions. For the application of Krasnoselskii’s
fixed point theorem we need to define two compact operators and two contractions
mappings. For this end, and by using Lemmas 7 and 8, we define the following
mappings.

Let N1, N2, N3, Ny: Pr(L, M) — Pr such that

385
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T

(Nag)(t) = Ta® | f(s,p(s = (s)) e T ds

(s — t)f(s, o(s — T(S))) e 2(t=s) 4g

—

ﬁc\

(3.3) —ae T /t (s —t)f(s, (s = 7(s5))) e 2(t=9) 45
f(s, o(s — T(S)))Hlyl(t, s)ds

f(s,o(s = 7(s)))Hi2(t, s)ds,

(3.4) o

+ H272(t78)a, (s) [k](s) ds

2 i
and

Wap)(t) = — TO‘2/O f(s,0(s = 7(5))) €T ds

@ tS, s . ofs — 1(s))) e2t=%) ds

- /0< 0 (s, 0(s = 7(s))) €2~ d
(3.5) +ae9T/t (sft)f(s,cp(s—fr(s))) e2(t=5) g

+ Q/O f(s, (s — T(S)))H271(t, s)ds
o[ Flspls = r(s) Haalt9) ds

Lemma 9. Suppose that ay € Pr(La,,M,,), k = 0,n, then the operator Ny
defined by (3.2) is continuous and compact on Pp(L, M).

Proor: For ¢,vp € Pp(L,M), ar € Pr(Lg,,M,,), k¥ = 0,1,...,n and from
Lemma 3, we have

|(Nip)(t) = Niy)(8)] < Z/ |Hyallak(s)[[@™ (s) — ¥ (s)] ds
k=00

n T
#3° [ iHallan(o) g (s) — w9 s) s
k=0""t
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<5y tla ()] (s) — ¥ (s)] ds
2 ), et
n_ T
*BZ/ lak(s)[]e™ (s) — ¥ (s)| ds
k=01
= lak(s)]™ (s) — ™ (s)] ds.
2, el

Using Lemma 4, we obtain
n k—1
(M) = M) (O] < BT S S Lo, Mo — o
k=1j=0
This proves the continuity of N.

By the definition of Pr(L, M), clearly this part of Pr is uniformly bounded and
equicontinuous subset of the space of the continuous functions on the compact
[0,T]. So, we can apply the Ascoli-Arzela theorem to guarantee that Pp(L, M)
is a compact subset from this space. Since N is a continuous operator and since

any continuous operator maps compact sets into compact sets, N1 (Pr(L, M)) is
also a compact set in Pr. Consequently, N7 is a compact operator. ([l

We replace N7 by N3, we repeat the same steps of the previous proof and we
obtain the following lemma.

Lemma 10. Suppose that ar € Pr(Lq,,M,,), k = 0,n, then the operator N3
defined by (3.4) is continuous and compact on Pp(L, M).

Lemma 11. If Ns is given by (3.3) with
(3.6) KT(Bo+Ta+Ta?) < 1,

then N is a contraction mapping on Pr(L, M).

ProoF: For ¢, ¢ € Pr(L, M), we have

[(N2) (2) = (N29) ()]
< Ta’ / £ (s, 0(s = 7(5))) = f(5,0(s = 7(s))) [e 72 FT=) ds
0

+ O‘/O (t=5)|f(s,0(s = 7(s))) = f(s,9(s = 7(s))) [ e 27 ds

387
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T
+ae e / (s — t)’f(s, (s — T(s)))
t
— f(s,w(s — T(S)))‘ e—et=5) 4g
t
+ 9/0 |(f(s,0(s = 7(s))) = [(s,9(s = 7(s)))) |[H11(t, )| ds
t
+ g/o |(f (s, 0(s = 7(s))) — f(s,9(s —7(s)))) || H12(t, )| ds
< %Kl vl + 3 Kallp - ¢l + 5 Ka(T = 1 - 4]
T
w08 [ [7{s s = 7)) = (5,005 = 7(s)) ds
< T?a’Kllp — ]| + 5 KT%allg — ]l + L KTl — ] + oBTK | — |
= KT(Bo+ Ta+Ta?)|¢ — .
By using (3.6), we conclude that N3 is a contraction mapping on Pr(L, M). O

We replace Mo by N and we repeat the same steps of the previous proof we
obtain the following lemma.

Lemma 12. If N, is given by (3.5) and (3.6) is satisfied, then N} is a contraction
mapping on Pr(L, M).

Lemma 13. For any p,¢ € Pp(L, M), ay, € Pr(Lq,,M,, ), k = 0,n and if
(3.7) T(5+ KL)(To® + Ta+ Bo) + BTLY L, <L,
k=0
then
|(N1p)(t) + (N29)(t)] < L.
PRrROOF: We have

|(V19)(t) + (N2) (1) < [(N1o)(B)] + |(NV2).

From (2.1), we arrive at

|f(8,l‘)| = |f(8,l‘) - f(SﬂO) + f(570)|
< |f(s,x) = f(5,0)| + [ f(s,0)]
< K|z + 6,
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where § = maxo 7] |f(t,0)]. Since
n t
NPEOESS / (8, )| ()™ ()] ds
k=0
n LT
+3° [ 1Hatt 9ons) ()] s
k=0"1
n T
<BY [ lans)le o)l ds
k=0"0

<BTL Z La,,
k=0

and
T T t
|(Na))(1)] < Ta2LK/ ds+Ta26/ ds+aLK/ (t —s)ds
0 0 0
t T T
+a5/ (tfs)ds+aLK/ (sft)deraé/ (s—t)ds
0 t t
T T
+ QBLK/ ds + BQ(S/ ds
0 0
1 1 1
< T?0%5 4+ KLT?? + 5152045 + iKLtQa + Eaé(T —1)?

1
+ 5 KLa(T — t)2 + BT6o+ BK LT
< T(§+ KL)(Ta? + Ta + By),

by virtue of (3.7), we obtain

|(NM1@)(t) + (Na)(#)| < T(0 + KL)(Ta? + Ta + Bo) + BTL zn: L,, <L.
k=0

The proof is complete. ([

The same steps of the previous proof can prove the following lemma.

Lemma 14. For any ¢,v € Pr(L, M), ax, € Pr(L,,,M,,), k = 0,n and if (3.7)
is satisfied then

|(N3p)(t) + (Narp)(t)] < L.

Lemma 15. If ¢1,t2 € [0,7] then

(38) |H1,1(ﬁ1, S) — Hl,l(ﬁg, S)l < |t2 — t1|(TOé2 + QB),

389
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and
(39) |H1,2(t1, S) — H1,2(t2, S)l < |t2 — t1|(TOé2 + QB).

PRrROOF: By a direct calculus, we have

%Hl 1(t,s) = a?(t —5)e?C™) 1 a?(s —t 4+ T)e?C1) — oH, 4 (t,5),
and
%ng(t s)=a?(t—s+T)e =D L 02(s —t)e Tee™t=FT) _ o, (t, 5).
So,
‘(’%HH (t,s ‘ < a2t —s)et™D fa?(s —t +T)e?C~1) — oH, 4 (t, )|
< a2t —s) et fa?(s —t + T) e~ 4 |oH, 1 (t, 5)|
<To? + 0B,
and

tHl ot s)’ <Pt —s+T)e =t 4 o2(s —t)e Teeelt=s+T)
— oHi12(t, s)]|
<Pt —s+T)e et=stT) 4 o2(s —t)e Teemelt=st+T))
+ loH12(t 5)]
< Ta? + 0B.

\a

Let a = (t1,s) and b = (f2,s), s € [0,T]. From the finite increments theorem
applied in a and b, there exist ¢; = (a1, 1) and c2 = (aq, 82) in the open segment
Ja, b such that

|Hy1(t1,8) — Hi1(t2,8)| < |t2 —t1|’atH1 1 041,51)‘ +|s — S|’a H,y 1(a1,51)’
< |t2—t1|(T04 + 0B),

and

0 0
|Hy2(t1,s) — Hypo(te,s)| < |ta — t1|’aH1,2(042,52)‘ +[s — 5|’%H1,2(0427ﬂ2)’
< |ty — t1|(Ta* + 0B).
This completes the proof. [l

The following lemma can be proved by using the same techniques as in the
preceding proof.
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Lemma 16. If ¢1,t2 € [0,7] then

%Hlyl(t, s) = 7042(15 —5) e os—t) _ a2(s —t+T) e—es—t=T) oH1 2(t, s),

and

%H&Q(t, 5) = —a?e@T =T — 54 1) — a?eT e T4 (s — t) + oHy 5(t, 5).

Furthermore

|H,1(t1,8) — Ha1(ta2,8)| < [t2 — t1|(Ta® + 0B),
and

|Ho5(t1,s) — Hapo(ta, s)| < [t2 — t1|(T'a? + oB).
Lemma 17. If t1,ty € [0,T] with to > t1 and if

(T?ap(3a +2) +2Bo(To+ 1) +4Ta)(6 + KL)
(3.10) 9 9 ~
+2(B+T2%*+ BT0)Y L4, <M,
k=0
then
[(N19)(t2) + (N2®)(t2)) — (M) (t1) + (Nat)(t1))] < Mtz — 1],
Y, € Pr(L, M).

PROOF: Let
Gilt,s) = e €UHT=9) g (p &) = (t — 5) =09,
g3(t,s) = (s — t) e~ etHT=9),
We have
(3.11) alt,s) <1, galt,s) <T,  gs(t,s) < T

By virtue of the finite increments theorem applied in (#1, s) and (2, 5), s € [0, T,
there exist ¢3 = (as,f3), ¢4 = (a4, B4) and ¢5 = (a5, B5) in the open segment
Ja, b such that

0
1z |08 —als)l =l = hljge s 5)

= |tz — ta]|oe T Fstas)| < gty — 1],

391
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0
lg2(t2, s) — g2(t1, )| = [t2 — t1] &92(0@754)

(3.13) = |tg — t1] 69(5470‘4”54@ — a0+ 1
< ta —t1|(To+1),
and
0
|93(t2;5) - 93(t155)| = |t2 - t1| 6t93(a5’ﬂ5)
(3.14) = [t — t1| e T =Fstes)|(Bp — azo + 1)

<lta —t1[(To+ 1).
Now, for t1,t2 € [0,T] and ¢,9 € Pr(L, M), we get

(M) (B2) + (N29) (t2)) — (M) (t1) + (Nay)) (1))
< [Vi)(t2) = (Nip) (t1)] + [(Nat) (2) — (N2yh)(t1)]-

From Lemma 3, (3.8) and (3.9)

|(N19)(t2) — (N1p)(t1)]

ta n t1 n
< Hy(t2,8) > ar(s)pM(s)ds — [ Hia(tr,s) ) ax(s)p™(s)ds
0 k=0 0 k=0
T n
+ / HLQ(tQ, )Zak ga[k dS*/ H12 tl, Zak ga[k
t2 k=0

< Z/ (182, 5)law () (5)
+Z/ |H1,1(t2,s) H171(t1,s)||ak(s)g0[k}(s)|ds
to
03 / H (5l lae (915 ds
t1
£ [ Halta,s) — Hualts, ) las(s)e® (5)] s

k=012

< (2(3 +T%0” + BT0) ) La )|t2 — 1.
k=0
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By using Lemma 3, (3.8), (3.9) and (3.11)—(3.14)
|(Natp) (t2) — (N2yp)(t1)]

T
< Ta2(KL+5)/ |91 (t2,8) — g1(t1,8)| ds
0

to
+a(KL+ 6)/ g2(t2,s)ds

t1

131
+a(KL+ 5)/ lg2(t2, s) — g2(t1,5)| ds
0

to
+a(KL +6)/ g3(t1,s)ds

t1

T
+a(KL+ 6)/ |lg3(t2,5) — g2(ts, s)| ds
ta
ta
+Q(KL+(S) Hl’l(tQ,S)dS

t1

t1

+Q(KL+(5)/ |H171(t2,s)—Hl,l(tl,s)|ds
0
ta

+Q(KL+5) Hl’g(tl,s) dS

t1

T
+o(KL+ 5)/ |Hi2(t2,s) — Hi2(t1,5)|ds

to
< T2*(KL +6)olta — t1| + 20T (KL + 6)|ta — t1]
+ 20T (KL + 68)(To+ 1)|ts — t1| + 20(KL + §)Blty — t1|
+ 20T (K L+ 6)(Ta? + oB)|ts — t1]
= (T?ap(3a+2) + 2Bo(To+ 1) + 4Ta) (6 + KL)[t2 — t1].
So
[(N1p)(t2) + Nat)(t2) — (N19)(t1) + (Nat)(t))]

< [(2(3 +T%° + BTo) Y Lak) + (T?00(3 + 2)
k=0

+2Bo(To+ 1) +4Ta)(6 + KL)] [ta — t1]
< Mty — t1].
The proof is complete.

Similarly to the proof of Lemma 17, we can show the following lemma.
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Lemma 18. If ¢,y € [0,T] with t2 < t; and if (3.10) is satisfied then
|(N3) (£2)+(Narh) (t2) = ((Ns) (1) +(Nawp) (1)) < Mlta—ta], Vep,1p € Pr(L, M).

Theorem 2. Suppose that ax € Pr(La,,Ma,,), k = 0,n and conditions (2.1),
(3.6), (3.7) and (3.10) hold. Then (1.1) has at least one solution x € Pr(L, M).

PROOF: From Lemma 7, we see that the fixed points of N7 + N3 are solutions
of (1.1) and vice versa. From Lemmas 9 and 11, conditions (ii) and (iii) of the
Krasnoselskii’s fixed point theorem are satisfied. According to Lemmas 13 and 17
combined with Lemma 5, the condition (i) is also satisfied. Consequently the
operator N7 + AN, has at least one fixed point in Pr(L, M) which prove that
equation (1.1) has at least one solution in Pr(L, M). O

Similar as in the proof of Theorem 2 we can prove the following theorem.

Theorem 3. Suppose that ay € Pr(La,,M,,), k = 0,n and conditions (2.1),
(3.6), (3.7) and (3.10) hold. Then (1.2) has a solution x € Pr(L, M).

3.2 Uniqueness of periodic solutions.

Theorem 4. Suppose that ax € Pr(La,,Ma,,), k = 0,n and conditions (2.1),
(3.7) and (3.10) hold. If

n k—1
(3.15) KT(Bo+Ta+Ta®) + BT Y Lo, M’ <1,
k=1 j=0

then (1.1) has a unique solution x € Pp(L, M).

ProoF: For ¢,y € Pr(L, M) and ax, € Pr(Lg,, M,,), k = 0,n we have

[N+ N2)(0)(t) — (N1 + N2) () (2)]
< [N1p)(t) = (M) ()] + [(N2) (t) — (Naw) (1))
n k—1
(KT(BQ+Ta+Ta BT > L, Mj)|<p1/)|.
k=1 j=0

From (3.15) and the contraction mapping principle, A7 + N> has a fixed point in
Pp(L, M) and by Lemma 7 this fixed point is a solution of (1.1). These complete
the proof. O

The same steps of the preceding proof prove the following theorem.

Theorem 5. Suppose that ay € Pr(La,,Ma,,), k = 0,n and conditions (2.1),
(3.7), (3.10) and (3.15) hold. Then (1.2) has a unique solution x € Pp(L, M).



Periodic solutions of third-order iterative differential equations 395

3.3 Stability of the periodic solution.

Theorem 6. The solution obtained in Theorem 4 depends continuously on the
functions ay, k =0,n and f.

PRrROOF: Under the assumptions of Theorem 4, there are two unique corresponding
functions @, € Pp(L, M) such that

o0=3 / fi,1<t,s>ek<s>so“ﬂ (as+3 | it st (9 as
+ Ta2/0 f1(s,0(s = 7(s))) e 2HT=9) s
—a / (5 = )1 (5, (s — (5))) e~ ds
o | (5= ) a5, (s — 7)) €00 ds
~o [ flospls = 7o) Hralr )

iy / f1(5,0(5 — 7(5))) Hi a(t, 5) ds,

and

Y(t) = Z/ Hy1(t, s)bg(s)w* (s) ds + Z/ Hi o(t, s)bi(s)v* (s) ds

k=00 k=071

a? ! s, (s — 7(s))) e 2tHT=5) 45
702 [ s, 0ts = 7(s)
- a/o (s —t)fa (s, U(s — T(S))) e o(t=9) 4

T

— ae_gT/t (s —1t)f2 (s, (s — T(s))) e 2(t=9) 4
— o [ fassvts = r(s) Hua(t.5)ds

- Q/t fa (s,w(s - T(S)))Hl,Q(t, s)ds,
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where ay, by, € Pr(Lq,,, Mg, ). We have

(o) =00 < 3 [ Hua(t.s)llon(s) = bl (9] ds

k=070

£3 [ HHaa(eolian(s) — bu(s)6 )] ds
k=07t

+3 [ Il 6) o) (o) s
k=0"0
n LT

+3 [ a6 - ) )] s
k=0t

#1702 [ (12 (s = (61) ~ £ o606 - (6))
+ |(fr = f2) (s, 0(s — 7(s)))|) ds
v [ 6= (3o pts = 706D) = 15005 (6D
10— fo) (5, (s — () ) s
ba [ (6= 003l 76D) ~ a5~ 76)
+[(f1 = f2) (s,0(s = 7(5))) |) ds
o [ st (3 (s = 060) = o = (60)
1= fo) (5, (s — () ) s
+Q/tT|H1,2(t75 (| f1(s, (s = 7(s))) = fi(s, (s = 7(s)))]
|G = o) (s (s — () )

So,
n k—1
e — 1/J||<BLTZHakfka+BTZZL%MJH<P Y|
k=0 k=1 j=0

+ KT (Bo+Ta+Tao?)|le — ||+ T(Bo+ Ta+Ta?)| fi — fall
n k—1

- (KT(BQJr Ta+Tao?) + BTZ ZLaij) lle — ]
k=1 j=0

+T(Bo+Ta+Tao?)||f1 — fa.
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Using (3.15)
n k-1

KT(Bo+Ta+Ta®) +BTY Y Lo, M’ <1,
k=1 j=0
gives
||50 o Z/JH < T(BQ +Ta+ TQQ)Hfl - f2H + BLTZZ:O Hak B bk”
T 1— (KT(Bo+Ta+Ta2) + BT Y p_; S5~ Lo, MY)
This completes the proof. Il

The same steps of the preceding proof prove the following theorem.

Theorem 7. The solution obtained in Theorem 5 depends continuously on the
functions ay, k =0,n and f.

3.4 An example. We consider the following equation
2" (t) + 122" (t) + 482" (t) + 64x(t)
d 1
(3.16) =% ( cosdma(t) — Ex(t — cos4mz) cos® 47rac)

- %(sin 3mt)x(t) + %(sin drt)a® (1),

where
=4, f(t,x)= 4 L 2 4rt (t) = cosdrx T—l K=
o =4, ,x) = cosdmx 18zcos wt, T(t) = T, =5 =15

1 11
ai(t) = ax(t) = ¢ sindnt, al,agepl/g( )

8’8
By taking
2
L= ?ﬂ- and M = 6m,
we find
a=11565, B=0.21953, d=1.
So,
KT(Bo+Ta+Ta?) =5.9032x 1072 < 1,
- 2
BTLY  La, +T(0+ KL)(Ta? + Ta + Bg) = 1.1712 < %

k=0

(Tap(3a+2) + 2Bo(To + 1) + 4T)( + KL) + 2(B + T%a* + BT) Y _ La,
k=0
— 18.468 < 6,
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n k—1
KT(Bo+Ta+Tao?) + BT Y > L M’ =0.3451< 1.
k=1 j=0

All conditions of Theorem 4 are satisfied and consequently (3.16) has a unique
solution in Pr(27/5,67).
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