
Kybernetika

Hui Liu; Bin Zhao
Extensions of fuzzy connectives on ACDL

Kybernetika, Vol. 55 (2019), No. 3, 472–494

Persistent URL: http://dml.cz/dmlcz/147870

Terms of use:
© Institute of Information Theory and Automation AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/147870
http://dml.cz


KYBERNET IKA — VOLUME 5 5 ( 2 0 1 9 ) , NUMBER 3 , PAGES 4 7 2 – 4 9 4

EXTENSIONS OF FUZZY CONNECTIVES ON ACDL

Hui Liu and Bin Zhao

The main goal of this paper is to construct fuzzy connectives on algebraic completely dis-
tributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely
join-prime elements or on the set of completely meet-prime elements, and discuss some prop-
erties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms,
t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be
kept. Then we put forward two ways to extend fuzzy implications and also make a study on
the behaviors of R-implication and reciprocal implication. Finally, we construct two classes of
infinitely

∨
-distributive uninorms and infinitely

∧
-distributive uninorms.

Keywords: extensions, algebraic completely distributive lattices, fuzzy connectives

Classification: 06D10, 03E72, 03B52

1. INTRODUCTION

Fuzzy logic has awakened the interest and curiosity of innumerable researchers in a
variety of scientific areas due to its broad scope and the fact that it provides a good
framework for constructing models which better approach reality. Emerging from the
important work “Fuzzy Sets Theory” proposed by Zadeh in 1965, fuzzy logic typically
considers for membership degree valued in the unit interval [0, 1], but in modern fuzzy
logic, lattices are used to range these degrees due to the close connections between fuzzy
set theory and order theory. Since fuzzy connectives, such as conjunction, disjunction,
negation and implication, play a significant role in the application of fuzzy logic, these
connectives valued on lattices have been considered [2, 7, 9, 12, 17, 19, 20].

When there is a need to aggregate a large number of data in a given system with
a single output, lattice-valued aggregation functions can be considered. Three classes
of important lattice-valued aggregation functions are t-norms, t-conorms and uninorms.
Uninorms were introduced as a generalization of both triangular norms and triangular
conorms. Uninorm allows for a neutral element lying anywhere in the lattice rather
than at the top element or the bottom element. Recently, Karaçal et al. studied the
uninorms on bounded lattice and gave their characterizations in [10, 11]. Some other
studies related to uninorms can also be found in [3–5, 8].

Various constructions of fuzzy connectives with certain definitions or by transforma-
tions from known functions generate important examples and classes of fuzzy connec-
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tives. Particularly, fuzzy connectives are functions, then, if M is a subset of the bounded
lattice L, it is reasonable to consider that under what conditions can fuzzy connectives
defined on M be extended to L? The pioneer work in this framework was started by
Saminger-Platz et al. who provided a method to extend t-norms from a complete sub-
lattice M to a bounded lattice L in [18]. Then Palmeira and Bedregal [14, 15] gave
extensions of t-norms (t-conorms, negations and fuzzy implications) via retractions. In
2014, Palmeira et al. [16] presented a way to extend fuzzy connectives by means of a
special mapping named e-operator. Recently, based on the theory that every element
of a finite distributive lattice has a unique irredundant ∨-decomposition and a unique
irredundant ∧-decomposition, Yılmaz and Kazancı [21] constructed t-norm(t-conorm)
from a given behavior on the set of ∨-irreducible elements(∧-irreducible elements) in the
finite distributive lattice.

However, [21] only gave the constructions of t-norms and t-conorms on finite dis-
tributive lattices. What about the infinite cases? And what properties will the new
t-norms have? Whether we can construct any other fuzzy connectives? The main idea
of [21] is to construct t-norm on a finite distributive lattice from a given t-norm on the
set of ∨−irreducible elements. In a finite distributive lattice L, the set of ∨−irreducible
elements is join-dense in L, and the property of ∨−irreducible element can be cleverly
applied to prove the associativity of the new t-norm. While for an infinite distributive
lattice L, even if the set of ∨−irreducible elements is join-dense in L, the associativity
can not be obtained. That is to say, ∨−irreducible element is no longer appropriate
for the infinite cases. Fortunately, we discover that completely join-prime element is
effective to prove the law of associativity, and the ∨−irreducible element is exactly the
completely join-prime element in a finite distributive lattice. So we consider to use com-
pletely join-prime element to deal with the infinite cases. For an algebraic completely
distributive lattice L, the set of completely join-prime elements is actually its join-dense
subset, and it is exactly a finite distributive lattice when L is finite. Therefore, algebraic
completely distributive lattice (ACDL) is the key for us to solve all the problems.

We begin in Section 2 with a specific formalization of the main concepts used through-
out the paper such as algebraic completely distributive lattice (ACDL), t-norm, fuzzy
implication, uninorm and so on. Inspired by the idea in [21], Section 3 is devoted to the
study of completely join-prime element (completely meet-prime element) and the pre-
sentation of the approaches to extending t-norms, t-conorms and negations. Especially,
the properties of De Morgan triple are discussed. Within the framework of extension, in
Section 4 we extend fuzzy implications and make a study on the behaviors of two special
classes of fuzzy implications, namely, R-implication and reciprocal implication. Finally,
in Section 5, we pay our attention to the discussion about the extension methods for
lattice-valued uninorms.

2. PRELIMINARIES

In this section, we will present and discuss some main concepts and results we are leading
in this work which constitute the framework of our studies. For a further reading about
such concepts, we recommend[1, 6, 8, 11, 13–15].

Given any ordered set P we can form a new ordered set P ∂(the dual of P ) by defining
x ≤ y to hold in P ∂ if and only if y ≤ x holds in P . We consider a lattice to be an
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ordered structure (L,≤) in which for every two-element subset {x, y} there exists the
greatest lower bound or “meet” denoted by x ∧ y and the least upper bound or “join”
denoted by x ∨ y. A lattice is complete if for every subset there exist the meet and
the join. A lattice which possesses the smallest (the bottom) and the greatest (the top)
element, 0 and 1, respectively is bounded. Given an arbitrary subset A of a lattice L
and x ∈ L, we define ↓ A = {y ∈ L | (∃x ∈ A)y ≤ x}, ↓ x =↓ {x}.

Definition 2.1. (Davey and Priestley [6]) Let P be an ordered set and let x, y ∈ P .
We say x is covered by y (or y covers x), and write x ≺ y or y � x, if x < y and
x ≤ z < y implies z = x.

Definition 2.2. (Davey and Priestley [6]) Let P be an ordered set and let Q ⊆ P .
Then Q is called join-dense in P if for every element a ∈ P there is a subset A of Q such
that a =

∨
P A. The dual of join-dense is meet-dense.

Theorem 2.3. (Davey and Priestley [6]) Let L be a complete lattice and Q ⊆ L, then
Q is join-dense in L if and only if a =

∨
L(↓ a ∩Q) for all a ∈ L.

Definition 2.4. (Davey and Priestley [6]) An element x of a complete lattice L is
called completely join-prime if for every subset S of L, x ≤

∨
S implies that x ≤ s for

some s ∈ S; in particular, x 6= 0. Completely meet-prime is defined dually.

We denote the set of completely join-prime elements of L by Jp(L) and the set of
completely meet-prime elements of L by Mp(L).

Definition 2.5. (Davey and Priestley [6]) Let L be a complete lattice and k ∈ L. k
is said to be compact if, for every subset S of L, k ≤

∨
S =⇒ k ≤

∨
T for some finite

subset T of S. The set of compact elements of L is denoted K(L).

Definition 2.6. (Davey and Priestley [6]) A complete lattice L is said to be algebraic
if, for each a ∈ L,

a =
∨
{k ∈ K(L) | k ≤ a}.

Definition 2.7. (Davey and Priestley [6]) A complete lattice L is said to be completely
distributive if, for any doubly indexed subset {xij}i∈I,j∈J of L, we have∧

i∈I
(
∨
j∈J

xij) =
∨

α:I→J
(
∧
i∈I

xiα(i)),

where α : I → J is a function.

It should be noted that a complete lattice is called algebraic completely distributive
lattice if it is algebraic and completely distributive. Moreover, in order to ascertain
further subject, we shall denote the algebraic completely distributive lattice by ACDL.

Definition 2.8. (Davey and Priestley [6]) A complete lattice L is said to satisfy the
Join-Infinite Distributive Law (JID) if, for any subset {yj}j∈J of L and any x ∈ L,

x ∧
∨
j∈J

yj =
∨
j∈J

x ∧ yj .

The dual condition is the Meet-Infinite Distributive Law (MID).
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Theorem 2.9. (Davey and Priestley [6]) Let L be a lattice. Then the following are
equivalent:

(1) L is distributive and both L and L∂ are algebraic;

(2) L is complete, L satisfies (JID) and the completely join-prime elements are join-
dense;

(3) L is complete, L satisfies (MID) and the completely meet-prime elements are meet-
dense;

(4) L is an ACDL.

Definition 2.10. (Palmeira and Bedregal [14]) Let (L,≤, 0, 1) be a bounded poset.

(1) A triangular norm (i. e. t-norm) is a binary operation on L that is monotone,
commutative, associative and with neutral element 1.

(2) A triangular conorm (i. e. t-conorm) is a binary operation on L that is monotone,
commutative, associative and with neutral element 0.

The weakest t-norm and the strongest t-conorm, respectively, on a bounded poset L
are

TD(x, y) =

{
min(x, y) if y = 1 or x = 1,
0 otherwise,

SD(x, y) =

{
max(x, y) if y = 0 or x = 0,
1 otherwise.

Definition 2.11. (Palmeira and Bedregal [14]) Let (L,≤, 0, 1) be a bounded poset.
A mapping N : L→ L is a fuzzy negation on L if the following properties are satisfied:
for all x, y ∈ L,

(1) If x ≤ y then N(y) ≤ N(x),
(2) N(0) = 1 and N(1) = 0.

Moreover, a fuzzy negation N is strong if it also satisfies the involution property, i. e.
N(N(x)) = x for each x ∈ L.

The following are the weakest fuzzy negation and the strongest fuzzy negation, re-
spectively, on a bounded poset L:

N0(x) =

{
1 if x = 0,
0 otherwise,

N1(x) =

{
0 if x = 1,
1 otherwise.

Definition 2.12. (Palmeira and Bedregal [14]) Let T be a t-norm, S be a t-conorm and
N be a fuzzy negation, all of which are defined on bounded poset L. A triple 〈T, S,N〉
is a De Morgan triple if, for all x, y ∈ L we have N(T (x, y)) = S(N(x), N(y)) and
N(S(x, y)) = T (N(x), N(y)).
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Definition 2.13. (Palmeira [15]) Let (L,≤, 0, 1) be a bounded poset. An implication
I on L is a hybrid monotonous (with decreasing first and increasing second partial
mapping) binary operation that satisfies the corner conditions: I(0, 0) = I(1, 1) = 1 and
I(1, 0) = 0.

Moreover, we define the following properties of fuzzy implication I:

(LB) I(0, y) = 1 for all y ∈ L (left boundary condition);

(RB) I(x, 1) = 1 for all x ∈ L (right boundary condition);

(IP) I(x, x) = 1 for each x ∈ L (identity principle);

(NP) I(1, y) = y for each y ∈ L (left neutrality principle);

(LOP) ∀ x, y ∈ L, if x ≤ y then I(x, y) = 1 (left ordering property);

(CP) ∀ x, y ∈ L, I(x, y) = I(N(y), N(x)) with N being a strong negation (contraposi-
tivity property);

(L-CP) ∀ x, y ∈ L, I(N(x), y) = I(N(y), x) with N being a strong negation (left con-
trapositivity law).

Definition 2.14. (Baczyński and Jayaram [1]) Let S be a t-conorm and N be a fuzzy
negation. We say that the pair (S,N) satisfies the law of excluded middle if

S(N(x), x) = 1, x ∈ L.

Definition 2.15. (Palmeira [15]) Let (L,≤, 0, 1) be a complete lattice. A function
I : L2 → L is called an R-implication if there exists a t-norm T such that for all x, y ∈ L
we have

I(x, y) =
∨
{t ∈ L | T (x, t) ≤ y}.

We denote this implication generated from a t-norm T by IT .

Definition 2.16. (Palmeira [15]) Let (L,≤, 0, 1) be a bounded poset. If I is a fuzzy
implication and N is a fuzzy negation on L, then the function IN : L2 → L defined by
IN (x, y) = I(N(y), N(x)) is a fuzzy implication on L and is called the N -reciprocal of
I. When N is strong, then IN is called the reciprocal implication of I.

Definition 2.17. (Baczyński and Jayaram [1]) Let (L,≤, 0, 1) be a bounded poset. If
I is a fuzzy implication on L, then the function NI : L → L defined for each x ∈ L by
NI(x) = I(x, 0) is a fuzzy negation on L and is called the natural negation of I.

Definition 2.18. (Deschrijver [8]) Let (L,≤, 0, 1) be a bounded poset. An associative,
commutative and increasing operation U : L2 → L is called a uninorm if it has a neutral
element e ∈ L, i. e. U(e, x) = x, for all x ∈ L. Moreover, if U(0, 1) = 0 then U is called
conjunctive uninorm; if U(0, 1) = 1 then U is called disjunctive uninorm.

3. EXTENSION OF T-NORMS, T-CONORMS AND NEGATIONS

There is a close relationship between the structure of a lattice and the t-norms which can
be defined on the lattice. Inspired by the idea from part to whole, Yılmaz and Kazancı
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presented a method to construct new t-norms on finite distributive lattice from given
t-norms on the set of ∨-irreducible elements in [21] without discussing any properties.
While we find that this method is not only applicable to finite cases but also to some
infinite situations. The following example provides an illustration:

Example 3.1. Consider an ordinal sum L of lattices (Lk,≤k, 0k, 1k), k ∈ K, where
the index set K is an infinite bounded chain with top element 1K and bottom element
0K such that Lk1

⋂
Lk2 is a singleton coinciding with 1min(k1,k2) and with 0max(k1,k2),

and for each k ∈ K, Lk = {0k, ak, bk, 1k} is diamond lattice, i. e., Lk can be seen as
a horizontal sum of two chain {0k, ak, 1k} and {0k, bk, 1k}. Then L =

⋃
k∈K Lk, and

x ≤ y whenever x ∈ Lk1 , y ∈ Lk2 , and either k1 < k2 or k1 = k2 = k and x ≤ y.
Clearly, L is an infinite distributive lattice and a simple inference shows that the set
of ∨-irreducible elements is J(L) =

⋃
k∈K{ak, bk}, which coincides with J

p
(L) and is

join-dense in L. Concerning the set J?(L) = J
p
(L)

⋃
{0, 1}, it suffices to define t-norms

on it. Take any t-norm T on J?(L), by a simple inference, we can obtain that for all
x, y ∈ L, T (x, y) =

∨
a∈(↓x

⋂
J?(L))

∨
b∈(↓y

⋂
J?(L)) T (a, b) is a t-norm on L. That is to

say, the construction of Theorem 5.4 in [21] is applicable for this infinite lattice.

In fact, the lattice given in Example 3.1 is an ACDL, and the set of ∨−irreducible
elements coincides with the set of completely join-prime elements. Not every ACDL has
the property that J

p
(L) = J(L). The following is a counterexample:

Example 3.2. Let L = {1}
⋃
{1 + 1

n}n∈N+

⋃
{1 − 1

n}n∈N+ . One can verify that L
is an ACDL, J(L) = L \ {0}, J

p
(L) = {1 + 1

n}n∈N+

⋃
{1 − 1

n}n∈N+\{1}. Obviously,
J(L) 6= J

p
(L).

Now we consider to construct new t-norm from a given t-norm defined on the set of
completely join-prime elements for every ACDL and discuss some related properties. As
we all know, t-norms should be defined on the bounded posets. That is to say, for an
ACDL L, if we want to define a t-norm on Jp(L), it is necessary for Jp(L) to have a top
element and a bottom element. By the definition of completely join-prime element, we
know that 0 is not a completely join-prime element. We have the following statements
about Jp(L):

Proposition 3.3. Let L be an ACDL. If x ∈ Jp(L), then there exists a unique p ∈ L
such that p ≺ x.

P r o o f . Let x ∈ Jp(L), then x 6= 0. So there exists p ∈ L such that p ≺ x. Assume
p1 6= p and p1 ≺ x, then it holds that x = p∨p1, which leads to an obvious contradiction
with x ∈ Jp(L). Thus, there exists a unique p ∈ L such that p ≺ x. �

Proposition 3.4. Let L be an ACDL. If Jp(L) has a top element, then 1 ∈ Jp(L).

P r o o f . Let x be the top element of Jp(L), then a ≤ x for all a ∈ Jp(L). It follows
that

∨
Jp(L) ≤ x. By Theorem 2.9 and Theorem 2.3, 1 =

∨
(↓ 1

⋂
Jp(L)) =

∨
Jp(L).

Thus, x = 1. �

By Proposition 3.4, if 1 /∈ Jp(L), then Jp(L) fails to have a top element. It can also
be explained by the following example:



478 H. LIU AND B. ZHAO

Example 3.5. Let L be the lattice in Example 3.1, then Jp(L) =
⋃
k∈K{ak, bk}.

Clearly, 1 /∈ Jp(L) and Jp(L) has neither a top element nor a bottom element.

In order to make up this situation, we put elements 0 and 1 into the set Jp(L). Thus,
we present the following definition.

Definition 3.6. (Yılmaz and Kazancı [21]) The set Jp(L)? = Jp(L)
⋃
{0, 1} is called

the extended set of completely join-prime elements of L.

Similarly, we can discuss the construction of t-conorm by means of completely meet-
prime elements, and all the dual statements hold for completely meet-prime elements.

Proposition 3.7. Let L be an ACDL. If x ∈Mp(L), then there exists a unique p ∈ L
such that x ≺ p.

P r o o f . It can be proved in a similar way as Proposition 3.3. �

Proposition 3.8. Let L be an ACDL. If Mp(L) has a bottom element, then 0 ∈
Mp(L).

P r o o f . Analogously to Proposition 3.4. �

Definition 3.9. (Yılmaz and Kazancı [21]) The setMp(L)? =Mp(L)
⋃
{0, 1} is called

the extended set of completely meet-prime elements of L.

Remark 3.10. When L is an ACDL, Jp(L)? and Mp(L)? are bounded posets, not
necessarily lattices.

Example 3.11. Let L be the lattice given in Example 3.1, then Jp(L)? = Mp(L)? =⋃
k∈K{ak, bk}

⋃
{0, 1}. Take any k0 ∈ K \ {0K , 1K}, because ak0 and bk0 have no least

upper bound or greatest lower bound, ak0 ∨ bk0 and ak0 ∧ bk0 don’t exist. That is to say,
Jp(L)? and Mp(L)? are not lattices.

Lemma 3.12. Let L be an ACDL. Then every element x of L has a representation as
x =

∨
η(x), where η(x) = {j ∈ Jp(L)? | j ≤ x}.

P r o o f . For all x 6= 1, it holds that η(x) = {j ∈ Jp(L) | j ≤ x} ∪ {0}. We know from
Theorem 2.9 that Jp(L) is join-dense in L. So combined with Theorem 2.3, it shows
that x =

∨
L{j ∈ Jp(L) | j ≤ x} for all x ∈ L. Thus,

∨
η(x) =

∨
L(↓ x ∩ Jp(L)) = x. If

x = 1, then
∨
η(1) =

∨
({j ∈ Jp(L) | j ≤ 1} ∪ {0, 1}) = 1. �

Example 3.13. Let L be the lattice mentioned in Example 3.1. For any x ∈ L,
if x = 1, then η(x) = η(1) = Jp(L)? =

⋃
k∈K{ak, bk}

⋃
{0, 1};

if x = ak, then η(x) = η(ak) =
⋃
i<k{ai, bi}

⋃
{0, ak};

if x = bk, then η(x) = η(bk) =
⋃
i<k{ai, bi}

⋃
{0, bk};

if x = 0k, then η(x) = η(0k) =
⋃
i<k{ai, bi}

⋃
{0}.

By a simple calculation, x =
∨
η(x) for all x ∈ L.
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Theorem 3.14. Let L be an ACDL and T be a t-norm on Jp(L)?. Then the binary
operation T on L defined by

T (x, y) =
∨

j∈η(x)

∨
h∈η(y)

T (j, h)

is a t-norm on L.

P r o o f . Clearly, T is well-defined.

(1) For all x ∈ L, T (x, 1)=
∨
j ∈ η(x)

∨
h∈η(1) T (j, h)=

∨
j∈η(x) T (j, 1)=

∨
j∈η(x) j=x.

(2) By the commutativity of T , we can get that T is commutative.

(3) Let x, y, z ∈ L and y ≤ z, then η(y) ⊆ η(z). Thus, T (x, y) ≤ T (x, z). That is to
say, T is monotone.

(4) Take any x, y, z ∈ L.

If T (x, y) = 1, then x = y = 1. Obviously, T (T (x, y), z) = T (x, T (y, z)).
If T (x, y) < 1, we have

T (T (x, y), z) =
∨

p∈η(T (x,y))

∨
k∈η(z)

T (p, k)

=
∨

p∈η(
∨
j∈η(x)

∨
h∈η(y) T (j,h))

∨
k∈η(z)

T (p, k).

Let p be an element of Jp(L)? and p ≤
∨
j∈η(x)

∨
h∈η(y) T (j, h), then there exist j ∈ η(x),

h ∈ η(y) such that p ≤ T (j, h). By the associativity of T , it holds that T (p, k) ≤
T (j, T (h, k)) for all k ∈ η(z). Since T (h, k) ∈ η(T (y, z)), we have T (p, k) ≤∨
j∈η(x)

∨
q∈η(T (y,z)) T (j, q) = T (x, T (y, z)). Similarly, it can be proved that T (x, T (y, z))

≤ T (T (x, y), z). That is, T (T (x, y), z) = T (x, T (y, z)).
Thus, T is a t-norm on L. �

•

•
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Example 3.15. Let L be the ordinal sum of lattices (Lk,≤k, 0k, 1k), k ∈ K, where the
index set K is an infinite bounded chain with top element 1K and bottom element 0K
such that Lk1

⋂
Lk2 is a singleton coinciding with 1min(k1,k2) and with 0max(k1,k2), and for

each k ∈ K, Lk = {0k, ak, bk, ck, 1k} is the lattice shown in Figure 1. Then L =
⋃
k∈K Lk,
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and x ≤ y whenever x ∈ Lk1 , y ∈ Lk2 , and either k1 < k2 or k1 = k2 = k and x ≤ y.
Clearly, L is a complete lattice and satisfies (JID), and Jp(L) =

⋃
k∈K{0k, ak, bk, 1k}\{0}

is join-dense in L. By Theorem 2.9, L is an ACDL. It follows from Definition 3.6 that
Jp(L)? =

⋃
k∈K{0k, ak, bk, 1k}. Now, let k0 ∈ K \ {0K , 1K}, we define a t-norm on

Jp(L)? by

T (x, y) =

{
0k0 , if (x, y) ∈ {ak0 , bk0}2,
x ∧ y, otherwise.

Thus, by Theorem 3.14,

T (x, y) =

{
0k0 , if (x, y) ∈ {ak0 , bk0 , ck0}2,
x ∧ y, otherwise,

is a t-norm on L.

• •

•

•

�
�
�
�

�
�
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Fig. 2.

Example 3.16. Consider the lattice L as shown in Figure 2. It is easy to check that L
is an ACDL. Let L1 =

⋃∞
n=1 an and T be a t-norm on L1, then we can define a t-norm

on J
p
(L)? = {0, b1, 1}

⋃
(
⋃∞
n=1 an) by

T
′
(x, y) =

{
T (x, y) if x, y ∈ L1,
x ∧ y otherwise.

Thus, by Theorem 3.14,

T ′(x, y) =


T (x, y) if x, y ∈ L1,

T (ai, aj−1) if x = ai, y = bj , i, j ∈ N+, j ≥ 2,
T (ai−1, aj−1) ∨ b1 if x = bi, y = bj , i, j ∈ N+, i, j ≥ 2,

x ∧ y otherwise,

is a t-norm on L.
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Remark 3.17. The lattice L shown in Figure 3 is also an ACDL, and Jp(L)? =
{0, 1}

⋃
(
⋃∞
n=1 an)

⋃
(
⋃∞
n=1 bn). For any t-norm on J

p
(L)?, by Theorem 3.14, we can

construct t-norm on L.
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Fig. 3.

Dually, t-conorm can be constructed by means of completely meet-prime elements.

Lemma 3.18. Let L be an ACDL. Then every element x of L has a representation as
x =

∧
ξ(x), where ξ(x) = {h ∈Mp(L)? | h ≥ x}.

P r o o f . It can be proved with Lemma 3.12 in an analogous way. �

Theorem 3.19. Let L be an ACDL and S be a t-conorm onMp(L)?. Then the binary
operation S on L defined by

S(x, y) =
∧

j∈ξ(x)

∧
h∈ξ(y)

S(j, h)

is a t-conorm on L.

P r o o f . Analogously to Theorem 3.14. �
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After describing how to extend t-norms and t-conorms, a natural question that arises
is to discuss the De Morgan triple. To start with, we extend fuzzy negation.

Theorem 3.20. Let L be an ACDL and N be a fuzzy negation on Jp(L)?. Then the
unary operation N on L defined by

N(x) =
∧

j∈η(x)

N(j)

is a fuzzy negation on L.

P r o o f . Obviously, N is well-defined.
(1) Let x, y ∈ L and x ≤ y, then η(x) ⊆ η(y). Thus, {N(j)}j∈η(x) ⊆ {N(j)}j∈η(y).

Hence, N(x) ≥ N(y).
(2) N(0) =

∧
j∈η(0)N(j) = N(0) = 1.

(3) N(1) =
∧
j∈η(1)N(j) = N(1) = 0.

Thus, N is a fuzzy negation on L. �

Theorem 3.21. Let L be an ACDL and N be a fuzzy negation on Mp(L)?. Then the

unary operation Ñ on L defined by

Ñ(x) =
∨

h∈ξ(x)

N(h)

is a fuzzy negation on L.

P r o o f . The proof is similar to that of Theorem 3.20. �

Example 3.22. Let L be the lattice in Example 3.1, then Jp(L)? =Mp(L)?.

(1) If the fuzzy negation on Mp(L)? is the weakest fuzzy negation, then by Theorem

3.20 and Theorem 3.21, we can get that N = Ñ is the weakest fuzzy negation
on L.

(2) Let k0 ∈ K \ {0K , 1K}, we define a fuzzy negation on Mp(L)? by

N(u) =

{
1 if u < 0k0 ,
0 otherwise,

then N and Ñ can be given as follows: for all x ∈ L,

N(x) =

{
1 if x ≤ 0k0 ,
0 otherwise,

Ñ(x) =

{
1 if x < 0k0 ,
0 otherwise.

Clearly, N 6= Ñ .
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From the above example, we know that N can be different from Ñ even if Jp(L)? =
Mp(L)? and they have the same N on Jp(L)?.

While discussing De Morgan triple (T, S,N), every operation should be defined on
the same bounded poset. Determined by the ways we construct T and S, it is necessary
to consider whether Jp(L)? =Mp(L)? holds for an ACDL L.

Example 3.23.

(1) Consider the lattice L in Example 3.15, then Jp(L)? =
⋃
k∈K{0k, ak, bk, 1k}. It can

be checked that Mp(L)? =
⋃
k∈K{ak, bk, ck}

⋃
{0, 1}. Clearly, Jp(L)? 6=Mp(L)?.

(2) Let L be the lattice in Example 3.16, then J
p
(L)? = {0, b1, 1}

⋃
(
⋃∞
n=1 an). By

Definition 3.9, M
p
(L)? = {0, a∞, 1}

⋃
(
⋃∞
n=1 bn). Thus, Jp(L)? 6=Mp(L)?.

We know from Example 3.23 that not every ACDL satisfies Jp(L)? =Mp(L)?. So it
is important to discuss when such a condition in fact works.

Proposition 3.24. Let L be an ACDL. Then the following statements are equivalent:
(1) Jp(L)? =Mp(L)?;
(2) ∀ a ∈ L \ {0, 1},

a =
∨
{x ∈ L | x < a} if and only if a =

∧
{x ∈ L | x > a}.

P r o o f . (1)⇒ (2) For all a ∈ L\{0, 1}, if a =
∨
{x ∈ L | x < a}, then a /∈ Jp(L)?, that

is a /∈ Mp(L)?. Since L is an ACDL, we have a =
∧

(↑ a
⋂
Mp(L)) =

∧
{t ∈ Mp(L) |

t > a} =
∧
{t ∈ L | t > a}. Similarly, the left part can be proved.

(2)⇒ (1) Let x ∈ Jp(L)\{1}. We will show x ∈Mp(L)\{0}. In fact, x 6= 0 and x 6= 1,
and for every subset {xi}i∈I ⊆ L, if x ≥

∧
i∈I xi, then x = x∨ (

∧
i∈I xi) =

∧
i∈I(x∨xi).

Suppose x � xi for all i ∈ I, then x < xi or x ‖ xi. It follows that x∨xi > x for all i ∈ I.
Thus, x =

∧
i∈I(x∨xi) =

∧
{t ∈ L | t > x}. By assumption, x =

∨
{t ∈ L | t < x}, which

is an obvious contradiction with x ∈ Jp(L). So there exists i ∈ I such that x ≥ xi. Thus,
x ∈ Mp(L) \ {0}. Consequently, it holds that Jp(L)? ⊆ Mp(L)?. Mp(L)? ⊆ Jp(L)?

can be proved similarly. �

Subsequently, we will discuss whether De Morgan triple will be preserved when N is
a strong fuzzy negation.

Lemma 3.25. Let L be an ACDL satisfying Jp(L)? = Mp(L)?, and N be a strong
fuzzy negation on Jp(L)?. Then the following statements hold:

(1) If N(x) = 0, then x = 1;

(2) N = Ñ .

P r o o f . (1) Let N(x) = 0. Suppose x 6= 1, since N is a strong fuzzy negation on
Mp(L)?, it holds that x /∈ Mp(L)?. Thus, h > x for all h ∈ ξ(x). By the monotonicity
of N , N(h) ≤ N(x) = 0 for all h ∈ ξ(x). As N is strong on Jp(L)?, h = 1 for all
h ∈ ξ(x). It follows that x =

∧
h∈ξ(x) h = 1, a contradiction. Thus, x = 1 holds.
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(2) Suppose that N is a strong fuzzy negation on Jp(L)?. Since Jp(L)? =Mp(L)?,

we have N(x) = Ñ(x) for all x ∈ Jp(L)?.
For each x ∈ L \ Jp(L)?, then j < h for all j ∈ η(x), h ∈ ξ(x). Since N is strong,

then N(j) > N(h). By Theorem 3.20 and 3.21, N(x) ≥ Ñ(x).
Since x /∈ Jp(L)? and N is strong, we can claim N(x) /∈ Jp(L)?. If N(x) = 0, then

we can get x = 1 by (1), which contradicts with x ∈ L \ Jp(L)?. If N(x) = 1, then
by the construction of N , we have x = 0, a contradiction. If N(x) ∈ Jp(L) \ {1}, then
N(x) ∈ Mp(L) \ {0}. Thus, there exits a ∈ η(x) such that N(x) = N(a). Since N is a
fuzzy negation, then N(j) ≥ N(x) holds for all j ∈ η(x). It means that N(j) ≥ N(a)
for all j ∈ η(x). As N is strong, then j ≤ a for all j ∈ η(x). It follows that x = a, a
contradiction. Consequently, N(x) /∈ Jp(L)?.

As L is an ACDL, we haveN(x) =
∨
η(N(x)). For each a ∈ η(N(x)), then a ∈ Jp(L)?

and a < N(x). Since N is strong and N is a fuzzy negation, it holds that N(a) > x.
That is, N(a) ∈ ξ(x). Thus, {N(a) | a ∈ η(N(x))} ⊆ ξ(x). It follows that

∨
η(N(x)) ≤∨

h∈ξ(x)N(h), i. e., N(x) ≤ Ñ(x). Thus, N(x) = Ñ(x) for all x ∈ L \ Jp(L)?.
�

Theorem 3.26. Let L be an ACDL with Jp(L)? = Mp(L)?. If N is a strong fuzzy
negation on Jp(L)?, then N is a strong fuzzy negation on L.

P r o o f . For all x ∈ L, we shall prove N(N(x)) = x.
Case 1. If N(x) = 0, then by Lemma 3.25(1), we have x = 1. Thus, N(N(x)) =

N(0) = 1 = x.
Case 2. If N(x) > 0, by Lemma 3.25(2), we can get

N(N(x)) = Ñ(N(x)) =
∨

j∈ξ(N(x))

N(j) =
∨

j∈ξ(
∧
h∈η(x)N(h))

N(j).

On the one hand, for each j ∈ ξ(
∧
h∈η(x)N(h)), then j ≥

∧
h ∈ η(x)N(h) and j ∈

Mp(L)?. Thus, there exists h ∈ η(x) such that j ≥ N(h). It follows that N(j) ≤ x.
Therefore, N(N(x)) ≤ x. On the other hand, for all h ∈ η(x), then N(h) ∈ ξ(N(x)). So
it holds that h = N(N(h)) ≤

∨
j∈ξ(N(x))N(j) for all h ∈ η(x). Thus, x =

∨
h∈η(x) h ≤∨

j∈ξ(N(x))N(j) = N(N(x)).

Consequently, N is a strong fuzzy negation on L. �

Theorem 3.27. Let L be an ACDL and Jp(L)? =Mp(L)?. Suppose that (T, S,N) is
De Morgan triple on Jp(L)? and N is strong, then (T , S,N) is De Morgan triple on L.

P r o o f . For all x, y ∈ L, we claim S(N(x), N(y)) = N(T (x, y)).
If T (x, y) = 1, then x = y = 1. Since N is a fuzzy negation, we have

N(T (x, y)) = N(1) = 0

and
S(N(x), N(y)) = S(N(1), N(1)) = S(0, 0) = 0.
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Thus, S(N(x), N(y)) = N(T (x, y)).
If T (x, y) < 1, by Lemma 3.25(2), we have

S(N(x), N(y)) = S(Ñ(x), Ñ(y))

=
∧

j∈ξ(Ñ(x))

∧
h∈ξ(Ñ(y))

S(j, h)

=
∧

j∈ξ(
∨

a∈ξ(x)
N(a))

∧
h∈ξ(

∨
b∈ξ(y)

N(b))

S(j, h)

and
N(T (x, y)) =

∧
l∈η(T (x,y))

N(l) =
∧

l∈η(
∨

m∈η(x)

∨
n∈η(y)

T (m,n))

N(l).

Let l ∈ Jp(L)? and l ≤
∨
m∈η(x)

∨
n∈η(y) T (m,n) < 1. There exist m ∈ η(x) and

n ∈ η(y) such that l ≤ T (m,n). Thus, N(m) ∈ ξ(Ñ(x)) and N(n) ∈ ξ(Ñ(y)). Since
(T, S,N) is De Morgan triple on Jp(L)?, we haveN(l) ≥ N(T (m,n)) = S(N(m), N(n)) ≥
S(N(x), N(y)). Therefore, N(T (x, y)) ≥ S(N(x), N(y)).

Conversely, take any j ∈ ξ(
∨
a∈ξ(x)N(a)) and h ∈ ξ(

∨
b∈ξ(y)N(b)), then j ≥ N(a)

for all a ∈ ξ(x) and h ≥ N(b) for all b ∈ ξ(y). Since N is strong, N(j) ≤ x and
N(h) ≤ y. It follows from the monotonicity of T and the property of De Morgan triple
that S(j, h) = S(N(N(j)), N(N(h))) = N(T (N(j), N(h))) ≥ N(T (x, y))). That is,
S(N(x), N(y)) ≥ N(T (x, y)). Thus, S(N(x), N(y)) = N(T (x, y)).

Take any x, y ∈ L, by Theorem 3.26(3), we have

T (N(x), N(y)) = (N ◦N)(T (N(x), N(y)))

= N(S(N(N(x)), N(N(y))))

= N(S(x, y)).

Consequently, (T , S,N) is De Morgan triple on L. �

Example 3.28. Let L = {0, a, b, c, d, e, 1} be the lattice shown in Figure 4. Obviously,
it is an ACDL, and Jp(L)? =Mp(L)? = {0, a, b, c, d, 1}. we can define operations T , S
and N on Jp(L)? as follows:
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T 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a
b 0 0 b b b b
c 0 0 b c b c
d 0 0 b b d d
1 0 a b c d 1

S 0 a b c d 1
0 0 a b c d 1
a a a d 1 d 1
b b d b 1 d 1
c c 1 1 1 1 1
d d d d 1 d 1
1 1 1 1 1 1 1

Then it can be checked that T is a t-norm, S is a t-conorm, N is a strong fuzzy negation
and the triple (T, S,N) is De Morgan triple. By Theorem 3.14, 3.19, 3.20 and 3.21, we
can get that T , S and N are as follows:

T 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 a
b 0 0 b b b b b
c 0 0 b c b b c
d 0 0 b b d b d
e 0 0 b b b b e
1 0 a b c d e 1

S 0 a b c d e 1
0 0 a b c d e 1
a a a d 1 d d 1
b b d b 1 d d 1
c c 1 1 1 1 1 1
d d d d 1 d d 1
e e d d 1 d d 1
1 1 1 1 1 1 1 1

N 0 a b c d e 1
1 c d a b e 0

One can verify that triple (T , S,N) is De Morgan triple.

4. EXTENSION OF FUZZY IMPLICATIONS

In this section, we present some ways to construct fuzzy implications and investigate
some properties of the new implications.

Theorem 4.1. Let L be an ACDL and I be a fuzzy implication on Jp(L)?. Then the
binary operation I on L defined by

I(x, y) =
∧

j∈η(x)

∨
h∈η(y)

I(j, h)

is a fuzzy implication on L.

P r o o f . Clearly, I is well-defined.
(1) Let x, y, z ∈ L and x ≤ y, then {

∨
k∈η(z) I(j, k)}j∈η(x) ⊆ {

∨
k∈η(z) I(j, k)}j∈η(y).

Obviously,
∧
j∈η(x)

∨
k∈η(z) I(j, k) ≥

∧
j∈η(y)

∨
k∈η(z) I(j, k). Whence, I(x, z) ≥ I(y, z).

(2) Let x, y, z ∈ L and y ≤ z, we have η(y) ⊆ η(z). Hence, ∀ j ∈ η(x),
∨
h∈η(y) I(j, h) ≤∨

k∈η(z) I(j, k). Therefore,
∧
j∈η(x)

∨
h∈η(y) I(j, h) ≤

∧
j ∈ η(x)

∨
k∈η(z) I(j, k), i. e., I(x, y)

≤ I(x, z).
(3) I(1, 1) =

∧
j∈η(1)

∨
h∈η(1) I(j, h) =

∧
j∈η(1) I(j, 1) = I(1, 1) = 1.
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(4) I(0, 0) =
∧
j∈η(0)

∨
h∈η(0) I(j, h) = I(0, 0) = 1.

(5) I(1, 0) =
∧
j∈η(1)

∨
h∈η(0) I(j, h) =

∧
j∈η(1) I(j, 0) = I(1, 0) = 0.

Thus, I is a fuzzy implication on L. �

Proposition 4.2. Under the same condition as in Theorem 4.1, if I satisfies some of
properties(LB),(RB), (IP), (NP), (LOP), then I is an implication on L which satisfies
the same properties.

P r o o f . Suppose that I is an implication on Jp(L)?. For all x, y ∈ L,

(LB) By hypothesis, I(0, a) = 1 for all a ∈ Jp(L)?. Then I(0, y) =
∧
j∈η(0)

∨
h∈η(y) I(j, h)

=
∨
h∈η(y) I(0, h) =

∨
h∈η(y) 1 = 1.

(RB) Now, considering that I(a, 1) = 1 for all a ∈ Jp(L)?, then we have I(x, 1) =∧
j∈η(x)

∨
h∈η(1) I(j, h) =

∧
j∈η(x) I(j, 1) =

∧
j∈η(x) 1 = 1.

(IP) Suppose I(a, a) = 1 for each a ∈ Jp(L)?, then I(y, y) =
∧
j∈η(y)

∨
h∈η(y) I(j, h) ≥∧

j∈η(x) I(j, j) =
∧
j∈η(x) 1 = 1.

(NP) According to the assumption, we have I(1, a) = a for all a ∈ Jp(L)?, then I(1, y) =∧
j∈η(1)

∨
h∈η(y) I(j, h) =

∨
h∈η(y) I(1, h) =

∨
h∈η(y) h = y.

(LOP) Let x, y ∈ L and x ≤ y, then η(x) ⊆ η(y). Thus, I(x, y) =
∧
j∈η(x)

∨
h∈η(y) I(j, h)

≥
∧
j∈η(x) I(j, j) = 1. �

Proposition 4.3. Let L be an ACDL. If I is a fuzzy implication on Jp(L)?, then
NI = NI .

P r o o f . For all x ∈ L, by Definition 2.17,

NI(x) = I(x, 0) =
∧

j∈η(x)

I(j, 0) =
∧

j∈η(x)

NI(j) = NI(x).

�

Theorem 4.4. Let L be an ACDL and I be a fuzzy implication on Mp(L)?. Then the

binary operation Ĩ on L defined by

Ĩ(x, y) =
∨

j∈ξ(x)

∧
h∈ξ(y)

I(j, h)

is a fuzzy implication on L.

P r o o f . The proof follows similarly to the one given in Theorem 4.1. �

The following example shows that I can be different from Ĩ even if Jp(L)? =Mp(L)?

and they have the same I on Jp(L)?.
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Example 4.5. Let L be the lattice in Example 3.1, then Jp(L)? = Mp(L)?. If the
fuzzy implication on Mp(L)? is defined by

I(u, v) =

{
1 if u ≤ v,
v otherwise,

then by Theorem 4.1 and 4.4, we can get that

I(x, y) =

{
1 if x ≤ y,
y otherwise,

and

Ĩ(x, y) =


1 if x ≤ y,
bk if x = ak and y = 0k, k ∈ K,
ak if x = bk and y = 0k, k ∈ K,
y otherwise,

are both fuzzy implications on L. Clearly, I 6= Ĩ.

Proposition 4.6. Let L be an ACDL. If the pair (S,N) satisfies the law of excluded

middle on Mp(L)?, then (S, Ñ) satisfies the law of excluded middle on L.

P r o o f . For all x ∈ L, we have

S(Ñ(x), x) =
∧

m∈ξ(Ñ(x))

∧
j∈ξ(x)

S(m, j) =
∧

m∈ξ(
∨
j∈ξ(x)N(j))

∧
j∈ξ(x)

S(m, j).

Take any m ∈ ξ(
∨
j∈ξ(x)N(j)), then m ≥

∨
j∈ξ(x)N(j) . It can be written as m ≥ N(j)

for all j ∈ ξ(x). Thus, S(m, j) ≥ S(N(j), j) = 1. Consequently, S(Ñ(x), x) = 1 for all
x ∈ L. �

Proposition 4.7. Let L be an ACDL with Jp(L)? =Mp(L)?, I be a fuzzy implication
on Jp(L)? and N be a strong fuzzy negation on Jp(L)?. If I satisfies CP(N), then

Ĩ(N(y), N(x)) = I(x, y) for all x, y ∈ L.

P r o o f . For all x, y ∈ L.
If N(y) = 0, then y = 1. Thus, Ĩ(N(y), N(x)) = I(x, y) = 1.
If N(x) = 0, then x = 1. We have

Ĩ(N(y), N(x)) = Ĩ(N(y), 0) =
∨

m∈ξ(N(y))

I(m, 0)

and
I(x, y) = I(1, y) =

∨
h∈η(y)

I(1, h).

On the one hand, suppose m ∈Mp(L)? and m ≥ N(y). Then there exists h ∈ η(y) such
that m ≥ N(h). It follows that I(m, 0) ≤ I(N(h), 0). As N is strong and I satisfies
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CP(N), it holds that I(m, 0) ≤ I(1, h). Thus, Ĩ(N(y), 0) ≤ I(1, y). On the other hand,

for all h ∈ η(y), we have N(h) ∈ ξ(N(y)). It follows that I(N(h), 0) ≤ Ĩ(N(y), 0). Since

N is strong and I satisfies CP(N), we have I(1, h) ≤ Ĩ(N(y), 0) for all h ∈ η(y). Thus,

I(1, y) ≤ Ĩ(N(y), 0). Therefore, Ĩ(N(y), 0) = I(N(0), y).
If N(x) 6= 0 and N(y) 6= 0, we have

Ĩ(N(y), N(x)) =
∨

m∈ξ(N(y))

∧
n∈ξ(N(x))

I(m,n)

=
∨

m∈ξ(
∧
h∈η(y)N(h))

∧
n∈ξ(

∧
j∈η(x)N(j))

I(m,n)

and
I(x, y) =

∧
j∈η(x)

∨
h∈η(y)

I(j, h).

For every m ∈ ξ(
∧
h∈η(y)N(h)) and n ∈ ξ(

∧
j∈η(x)N(j)), there exist h ∈ η(y) and j ∈

η(x) such that m ≥ N(h) and n ≥ N(j). It follows that N(m) ∈ η(y) and N(n) ∈ η(x).
Since I satisfies CP(N), we have I(m,n) = I(N(N(m)), N(N(n))) = I(N(n), N(m)) ∈
{I(j, h)|j ∈ η(x), h ∈ η(y)}. Thus, {I(m,n)|m ∈ ξ(N(y)), n ∈ ξ(N(x))} ⊆ {I(j, h)|j ∈
η(x), h ∈ η(y)}. Conversely, for all j ∈ η(x), h ∈ η(y), it follows that j, h ∈ Jp(L)?

and N(j) ∈ ξ(N(x)), N(h) ∈ ξ(N(y)). Thus, I(j, h) = I(N(h), N(j)) ∈ {I(m,n)|m ∈
ξ(N(y)), n ∈ ξ(N(x))}. That is to say, {I(j, h)|j ∈ η(x), h ∈ η(y)} ⊆ {I(m,n)|m ∈
ξ(N(y)), n ∈ ξ(N(x))}. Thus, by the one to one correspondence of η(x) and ξ(N(x)),

η(y) and ξ(N(y)), we have Ĩ(N(y), N(x)) = I(x, y). �

Proposition 4.8. Let L be an ACDL. If Jp(L)? is a complete lattice and T is a t-norm
on Jp(L)?, then IT ≤ IT .

P r o o f . For any x, y ∈ L, by Definition 2.15 and Theorem 4.1, we have

IT (x, y) =
∨
{z ∈ L|T (z, x) ≤ y}

and
IT (x, y) =

∧
j∈η(x)

∨
h∈η(y)

IT (j, h).

We claim IT (x, y) =
∨
{k ∈ Jp(L)?|T (k, x) ≤ y}. Obviously, it holds that

∨
{k ∈

Jp(L)?|T (k, x) ≤ y} ≤
∨
{z ∈ L|T (z, x) ≤ y}. Take any u ∈ {z ∈ L|T (z, x) ≤ y},

then T (u, x) ≤ y. Thus, η(u) ⊆ {k ∈ Jp(L)?|T (k, x) ≤ y}. That is, u ≤
∨
{k ∈

Jp(L)?|T (k, x) ≤ y}. Hence,
∨
{z ∈ L|T (z, x) ≤ y} ≤

∨
{k ∈ Jp(L)?|T (k, x) ≤ y}.

Consequently,
∨
{z ∈ L|T (z, x) ≤ y} =

∨
{k ∈ Jp(L)?|T (k, x) ≤ y}.

Take any v ∈ {k ∈ Jp(L)?|T (k, x) ≤ y}, then T (v, x) ≤ y. That is
∨
j∈η(x) T (v, j) ≤

y. Thus, for every j ∈ η(x), there exists hj ∈ η(y) such that T (v, j) ≤ hj . It follows
that v ≤

∨
h∈η(y) IT (j, h) for all j ∈ η(x). Thus, v ≤

∧
j∈η(x)

∨
h∈η(y) IT (j, h). It yields

that
∨
{k ∈ Jp(L)?|T (k, x) ≤ y} ≤

∧
j∈η(x)

∨
h∈η(y) IT (j, h). That is, IT ≤ IT . �
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Example 4.9. Consider the lattice L in Example 3.15, Jp(L)? =
⋃
k∈K{0k, ak, bk, 1k}

is a complete lattice. Let k0 ∈ K \ {0K , 1K}, we have defined a t-norm T on Jp(L)?.
By calculation, we can get

IT (x, y) =



1, x ≤ y,
1k0 , x = ak0 , y ∈ {0k0 , bk0} or x = bk0 , y ∈ {0k0 , ak0},
bk, x = ak, y = 0k, k 6= k0,

ak, x = bk, y = 0k, k 6= k0,

y, otherwise.

Thus, by Theorem 4.1,

IT (x, y) =



1, x ≤ y,
1k0 , x = ak0 , y ∈ {0k0 , bk0} or x = bk0 , y ∈ {0k0 , ak0},

or x = ck0 , y ∈ {0k0 , ak0 , bk0},
bk, x = ak, y = 0k, k 6= k0,

ak, x = bk, y = 0k, k 6= k0,

y, otherwise.

By Definition 2.15, we have

IT (x, y) =



1, x ≤ y,
ck0 , x = ak0 , y ∈ {0k0 , bk0} or x = bk0 , y ∈ {0k0 , ak0},

or x = ck0 , y ∈ {0k0 , ak0 , bk0},
bk, x = ak, y = 0k, k 6= k0,

ak, x = bk, y = 0k, k 6= k0,

y, otherwise.

Obviously, IT < IT .

Proposition 4.10. Let L be an ACDL and Jp(L)? =Mp(L)?. If I is a fuzzy implica-

tion on Jp(L)? and N is a strong fuzzy negation on Jp(L)?, then ĨN (x, y) = IN (x, y)
for all x, y ∈ L.

P r o o f . Let x, y ∈ L, we have

ĨN (x, y) =
∨

j∈ξ(x)

∧
h∈ξ(y)

IN (j, h) =
∨

j∈ξ(x)

∧
h∈ξ(y)

I(N(h), N(j)),

and
IN (x, y) = I(N(y), N(x)) =

∧
m∈η(N(y))

∨
n∈η(N(x))

I(m,n)

=
∧

m∈η(
∧
u∈η(y)N(u))

∨
n∈η(

∧
v∈η(x)N(v))

I(m,n).
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Obviously, m ∈ η(
∧
u∈η(y)N(u)) if and only if N(m) ∈ ξ(y), n ∈ η(

∧
v∈η(x)N(v)) if

and only if N(n) ∈ ξ(x). Since N is strong, we have I(m,n) = I(N(N(m)), N(N(n))).

Whence, ĨN (x, y) = IN (x, y) for all x, y ∈ L. �

5. EXTENSION OF UNINORMS

This section aims at constructing infinitely
∨

-distributive uninorms and infinitely
∧

-
distributive uninorms.

Theorem 5.1. Let L be an ACDL and U be a uninorm on Jp(L)? with neutral element
e. If 1 ∈ Jp(L), then the binary operation U on L defined by

U(x, y) =
∨

j∈η(x)

∨
h∈η(y)

U(j, h)

is a uninorm on L with neutral element e.

P r o o f . Clearly, U is well-defined. The commutativity and monotonicity of U can be
proved on the analogy of Theorem 3.14.

(1) For all x ∈ L, U(x, e) =
∨
j∈η(x)

∨
h∈η(e) U(j, h) =

∨
j∈η(x) U(j, e) =

∨
j∈η(x) j =

x. Thus, U(x, e) = x.
(2) Let x, y, z ∈ L, then

U(U(x, y), z)

= U(
∨

j∈η(x)

∨
h∈η(y)

U(j, h), z)

=
∨

p∈η(
∨
j∈η(x)

∨
h∈η(y) U(j,h))

∨
k∈η(z)

U(p, k).

On the one hand, let p ∈ Jp(L)? and p ≤
∨
j∈η(x)

∨
h∈η(y) U(j, h), then p ≤ U(j, h)

for some j ∈ η(x) and h ∈ η(y). So it holds that U(p, k) ≤ U(U(j, h), k) for all
k ∈ η(z). That is U(p, k) ≤

∨
j∈η(x)

∨
h∈η(y)

∨
k∈η(z) U(U(j, h), k) for all k ∈ η(z).

Whence, U(U(x, y), z) ≤
∨
j∈η(x)

∨
h∈η(y)

∨
k∈η(z) U(U(j, h), k). On the other hand,

since U(j, h) ≤ U(x, y) for all j ∈ η(x) and h ∈ η(y), we can get U(U(j, h), k) ≤
U(U(x, y), z) for all k ∈ η(z). So it holds that

∨
j∈η(x)

∨
h∈η(y)

∨
k∈η(z) U(U(j, h), k) ≤

U(U(x, y), z). Thus, U(U(x, y), z) =
∨
j∈η(x)

∨
h∈η(y)

∨
k∈η(z) U(U(j, h), k). Similarly, we

can prove U(x, U(y, z)) =
∨
j∈η(x)

∨
h∈η(y)

∨
k∈η(z) U(j, U(h, k)). Since U is associative,

it holds that U(U(x, y), z) = U(x, U(y, z)). That is, U is associative.
Consequently, U is a uninorm on L. �

Example 5.2. Consider the ordinal sum L̃ of lattices Lm, m = 1, 2, 3, where L1 = L is
the lattice in Example 3.1, L2 = {02, 12} is a chain, L3 = {03, a3, b3, 13} is a diamond
lattice which is the horizontal sum of chain {03, a3, 13} and chain {03, b3, 13}, Lm

⋂
Ln
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is a singleton coinciding with 1min(m,n) and with 0max(m,n). Then L̃ =
⋃3
m=1 Lm, and

x ≤ y whenever x ∈ Lm, y ∈ Ln, and either m < n or m = n and x ≤ y. Adding a new
top element to L̃, we can obtain a new lattice L = L̃ ⊕ 1. It can be checked that L is
an ACDL, and J

p
(L) = (

⋃
k∈K{ak, bk})

⋃
{03, a3, b3}

⋃
{1}. If the uninorm on Jp(L)?

is defined by: for all v, w ∈ Jp(L)?,

U(v, w) =



1 if v > 03, w > 03,
v if v < 03, 03 < w,
w if 03 < v,w < 03,
0 if v < 03, w < 03,
w if v = 03,
v if w = 03,

then we can get that

U(x, y) =


1 if x > 03, y > 03,
x if x < 03, 03 ≤ y,
y if 03 ≤ x, y < 03,
0 if x < 03, y < 03,

x ∨ y otherwise,

is a uninorm on L.

Theorem 5.3. Let L be an ACDL and U be a uninorm onMp(L)? with neutral element

e. If 0 ∈Mp(L), then the binary operation Ũ on L defined by

Ũ(x, y) =
∧

j∈ξ(x)

∧
h∈ξ(y)

U(j, h)

is a uninorm on L with neutral element e.

P r o o f . The proof follows similarly to that of Theorem 5.1. �

Theorem 5.4. Let L be an ACDL and U be a conjunctive uninorm on Jp(L)? with
neutral element e. If 1 ∈ Jp(L), then U is infinitely

∨
-distributive.

P r o o f . Suppose a ∈ L and {bi}i∈I . Then we distinguish two cases:
(1) If I = ∅, then U(a,

∨
i∈I bi) = U(a, 0) =

∨
m∈η(a) U(m, 0) = 0.

(2) If I 6= ∅, then

U(a,
∨
i∈I

bi) =
∨

m∈η(a)

∨
l∈η(

∨
i∈I bi)

U(m, l).

On the one hand, for all l ∈ η(
∨
i∈I bi), it follows that l ≤

∨
i∈I bi and l ∈ Jp(L)?,

from which we get that there exists i ∈ I such that l ≤ bi. That is l ∈ η(bi). Thus,
U(m, l) ≤ U(m, bi) for all m ∈ η(a). It follows that

∨
m∈η(a) U(m, l) ≤

∨
m∈η(a) U(m, bi).

Hence,
∨
l∈η(

∨
i∈I bi)

∨
m∈η(a) U(m, l) ≤

∨
i∈I(

∨
m∈η(a) U(m, bi)) =

∨
i∈I U(a, bi). That

is, U(a,
∨
i∈I bi) ≤

∨
i∈I U(a, bi). On the other hand, the monotonicity of U implies that∨

i∈I U(a, bi) ≤ U(a,
∨
i∈I bi). Consequently, U(a,

∨
i∈I bi) =

∨
i∈I U(a, bi). �
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Corollary 5.5. Let L be an ACDL and U be a disjunctive uninorm on Mp(L)? with

neutral element e. If 0 ∈Mp(L), then Ũ is infinitely
∧

-distributive.

P r o o f . The proof is similar to that of Theorem 5.3. �

6. CONCLUSION

In this paper, some fuzzy connectives, such as t-norms, t-conorms, fuzzy negations, fuzzy
implications, uninorms, have been constructed on ACDL by means of completely join-
prime elements and completely meet-prime elements. We prove that De Morgan triple
can be preserved when N is a strong negation, and some properties of fuzzy implication
can be kept. Moreover, the behaviors of these extensions for two special classes of fuzzy
implications, namely, R-implication and reciprocal implication, are discussed. Finally,
we prove that the uninorms constructed by completely join-prime elements are infinitely∨

-distributive and the uninorms constructed by completely meet-prime elements are
infinitely

∧
-distributive.

For future projects, we would like to investigate some further properties of the ex-
tended uninorms and propose a version of the extension, as is shown in this paper, for
other aggregation functions, such as copula, overlap function, grouping function and
2-uninorm. Moreover, we are interested in investigating questions involving extension
and a generalized notion of additive generators.
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[5] G. D. Çaylı, F. Karaçal, and R. Mesiar: On a new class of uninorms on bounded lattices.
Inform. Sci. 367–368 (2016), 221–231. DOI:10.1016/j.ins.2016.05.036

[6] B. A. Davey and H. A. Priestley: Introduction to lattices and Order. Cambridge Univer-
sity Press, Cambridge 1990.

http://dx.doi.org/10.1016/j.fss.2017.07.015
http://dx.doi.org/10.1016/j.ins.2017.09.018
http://dx.doi.org/10.14736/kyb-2017-3-0394
http://dx.doi.org/10.1016/j.ins.2016.05.036


494 H. LIU AND B. ZHAO

[7] B. De Baets and R. Mesiar: Triangular norms on product lattices. Fuzzy Sets Syst. 104
(1999), 61–75. DOI:10.1016/s0165-0114(98)00259-0

[8] G. Deschrijver: Uninorms which are neither conjunctive nor disjunctive in interval-valued
fuzzy set theory. Inform. Sci. 244 (2013), 48–59. DOI:10.1016/j.ins.2013.04.033

[9] S. Jenei and B. De Baets: On the direct decomposability of t-norms on product lattices.
Fuzzy Sets Syst. 139 (2003), 699–707. DOI:10.1016/s0165-0114(03)00125-8
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