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∆-WEAK CHARACTER AMENABILITY
OF CERTAIN BANACH ALGEBRAS

Hamid Sadeghi

Abstract. In this paper we investigate ∆-weak character amenability of
certain Banach algebras such as projective tensor product A⊗̂B and Lau
product A ×θ B, where A and B are two arbitrary Banach algebras and
θ ∈ ∆(B), the character space of B. We also investigate ∆-weak character
amenability of abstract Segal algebras and module extension Banach algebras.

1. Introduction

Let A be a Banach algebra and let ϕ ∈ ∆(A), consisting of all nonzero homo-
morphisms from A into C. The concept of ϕ-amenability was first introduced by
Kaniuth et al. in [6]. Specifically, A is called ϕ-amenable if there exist a m ∈ A∗∗
such that

(i) m(ϕ) = 1;
(ii) m(f · a) = ϕ(a)m(f) (a ∈ A, f ∈ A∗).

Monfared in [10], introduced and studied the notion of character amenable Banach
algebra. A was called character amenable if it has a bounded right approximate
identity and it is ϕ-amenable for all ϕ ∈ ∆(A). Many aspects of ϕ-amenability
have been investigated in [3, 6, 9].

Let A be a Banach algebra and ϕ ∈ ∆(A)∪{0}. Following [7], A is called ∆-weak
ϕ-amenable if, there exists a m ∈ A∗∗ such that

(i) m(ϕ) = 0;
(ii) m(ψ · a) = ψ(a) (a ∈ ker(ϕ), ψ ∈ ∆(A)).

In this paper we use above definition with a slight difference. In fact we say that A
is ∆-weak ϕ-amenable if, there exists a m ∈ A∗∗ such that

(i) m(ϕ) = 0;
(ii) m(ψ · a) = ψ(a) (a ∈ A,ψ ∈ ∆(A) \ {ϕ}).
The aim of the present work is to study ∆-weak character amenability of certain

Banach algebras such as projective tensor product A⊗̂B, Lau product A ×θ B,
where θ ∈ ∆(B), abstract Segal algebras and module extension Banach algebras.
Indeed, we show that A⊗̂B (resp. A×θ B ) is ∆-weak character amenable if and
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only if both A and B are ∆-weak character amenable. For abstract Segal algebra B
with respect to A, we investigate relations between ∆-weak character amenability of
A and B. Finally, for a Banach algebra A and A-bimodule X we show that A⊕1X
is ∆-weak character amenable if and only if A is ∆-weak character amenable.

2. ∆-weak character amenability of A⊗̂B

We commence this section with the following definition:

Definition 2.1. Let A be a Banach algebra. The net (aα)α in A is called a ∆-weak
approximate identity if, |ϕ(aaα)− ϕ(a)| −→ 0, for each a ∈ A and ϕ ∈ ∆(A).

Note that the approximate identity and ∆-weak approximate identity of a Banach
algebra can be different. Jones and Lahr proved that if S = Q+ the semigroup
algebra l1(S) has a bounded ∆-weak approximate identity, but it does not have
any bounded or unbounded approximate identity (see [4]).

Definition 2.2. Let A be a Banach algebra and ϕ ∈ ∆(A) ∪ {0}. We say that A
is ∆-weak ϕ-amenable if, there exists a m ∈ A∗∗ such that

(i) m(ϕ) = 0;
(ii) m(ψ · a) = ψ(a) (a ∈ A,ψ ∈ ∆(A) \ {ϕ}).

Definition 2.3. Let A be a Banach algebra. We say that A is ∆-weak character
amenable if it is ∆-weak ϕ-amenable for every ϕ ∈ ∆(A) ∪ {0}.

Lemma 2.4. Let A be a Banach algebra such that 0 < |∆(A)| ≤ 2. Then A is
∆-weak character amenable.

Proof. If A has only one character, the proof is easy. Let ∆(A) = {ϕ,ψ}, where
ϕ 6= ψ. Hence, by the proof of Theorem 3.3.14 of [5], there exists a a0 ∈ A with
ϕ(a0) = 0 and ψ(a0) = 1. Put m = â0. Then m(ϕ) = â0(ϕ) = ϕ(a0) = 0 and for
every a ∈ A, we have

m(ψ · a) = â0(ψ · a) = ψ · a(a0) = ψ(aa0) = ψ(a) .

So, A is ∆-weak ϕ-amenable. A Similar argument shows that A is ∆-weak
ψ-amenable. Therefore A is ∆-weak character amenable. �

The proof of the following theorem is omitted, since it can be proved in the
same direction as Theorem 2.2 of [7].

Theorem 2.5. Let A be a Banach algebra and ϕ ∈ ∆(A) ∪ {0}. Then A is
∆-weak ϕ-amenable if and only if there exists a net (aα)α ⊆ ker(ϕ) such that
|ψ(aaα)− ψ(a)| −→ 0, for each a ∈ A and ψ ∈ ∆(A) \ {ϕ}.

Example 2.6. (i) Let A be a Banach algebra with a bounded approximate identity.
By Theorem 2.5, A is ∆-weak 0-amenable.

(ii) Let S = Q+. Then the semigroup algebra l1(S) has a bounded ∆-weak
approximate identity (see [4]). So, Theorem 2.5, implies that l1(S) is ∆-weak
0-amenable.
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Example 2.7. Let X be a Banach space and let ϕ ∈ X∗ \ {0} with ‖ϕ‖ ≤ 1.
Define a product on X by ab = ϕ(a)b for all a, b ∈ X. With this product X is a
Banach algebra which is denoted by Aϕ(X) (see [11]). Clearly, ∆(Aϕ(X)) = {ϕ}.
Therefore by Lemma 2.4, Aϕ(X) is ∆-weak ϕ-amenable.

Example 2.8. Let A be a Banach algebra and ϕ ∈ ∆(A) ∪ {0}. Suppose that A
is a ϕ-amenable and has a bounded right approximate identity. By Corollary 2.3
of [6], ker(ϕ) has a bounded right approximate identity. Let (eα)α be a bounded
right approximate identity for ker(ϕ). If there exists a0 ∈ A with ϕ(a0) = 1 and
limα

∣∣ψ(a0eα)− ψ(a0)
∣∣ = 0 for all ψ ∈ ∆(A) \ {ϕ}, then A is ∆-weak ϕ-amenable.

For seeing this suppose that m is w∗-limα(êα). Now, we have
m(ϕ) = lim

α
êα(ϕ) = lim

α
ϕ(eα) = 0 ,

and for every ψ ∈ ∆(A) \ {ϕ} and a ∈ ker(ϕ),
m(ψ · a) = lim

α
êα(ψ · a) = lim

α
ψ · a(eα) = lim

α
ψ(aeα) = ψ(a) .

Let a ∈ A. Then a− ϕ(a)a0 ∈ ker(ϕ) and for every ψ ∈ ∆(A) \ {ϕ}, we have
m
(
ψ · (a− ϕ(a)a0)

)
= ψ

(
a− ϕ(a)a0

)
.

Therefore m(ψ · a) = ψ(a). So A is ∆-weak ϕ-amenable.

For f ∈ A∗ and g ∈ B∗, let f ⊗ g denote the element of (A⊗̂B)∗ satisfying
(f ⊗ g)(a⊗ b) = f(a)g(b) for all a ∈ A and b ∈ B. Then, with this notion,

∆(A⊗̂B) = {ϕ⊗ ψ : ϕ ∈ ∆(A), ψ ∈ ∆(B)} .

Theorem 2.9. Let A and B be Banach algebras and let ϕ ∈ ∆(A) ∪ {0} and
ψ ∈ ∆(B) ∪ {0}. Then A⊗̂B is ∆-weak (ϕ ⊗ ψ)-amenable if and only if A is
∆-weak ϕ-amenable and B is ∆-weak ψ-amenable.

Proof. Suppose that A⊗̂B is ∆-weak (ϕ ⊗ ψ)-amenable. So, there exists m ∈
(A⊗̂B)∗∗ such that

m(ϕ⊗ ψ) = 0 , m
(
(ϕ′ ⊗ ψ′) · (a⊗ b)

)
= (ϕ′ ⊗ ψ′)(a⊗ b) ,

for all a ⊗ b ∈ A⊗̂B and (ϕ′ ⊗ ψ′) ∈ ∆(A⊗̂B) \ {ϕ ⊗ ψ}. Choose b0 ∈ B such
that ψ(b0) = 1, and define mψ ∈ A∗∗ by mψ(f) = m(f ⊗ ψ) (f ∈ A∗). Then
mψ(ϕ) = m(ϕ⊗ ψ) = 0 and for every a ∈ A and ϕ′ ∈ ∆(A) \ {ϕ}, we have

mψ(ϕ′ · a) = m(ϕ′ · a⊗ ψ) = m(ϕ′ · a⊗ ψ · b0)
= m

(
(ϕ′ ⊗ ψ) · (a⊗ b0)

)
= ϕ′ ⊗ ψ(a⊗ b0)

= ϕ′(a) .
Thus A is ∆-weak ϕ-amenable. By a similar argument one can prove that B is
∆-weak ψ-amenable.

Conversely, assume that A is ∆-weak ϕ-amenable and B is ∆-weak ψ-amenable.
By Theorem 2.5, there are bounded nets (aα)α and (bβ)β in ker(ϕ) and ker(ψ),
respectively, such that |ϕ′(aaα)− ϕ′(a)| −→ 0 and

∣∣ψ′(bbβ)− ψ′(b)
∣∣ −→ 0 for all

a ∈ A, b ∈ B, ϕ′ ∈ ∆(A) \ {ϕ} and ψ′ ∈ ∆(B) \ {ψ}. Consider the bounded net
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((aα ⊗ bβ))(α,β) in A⊗̂B. Let ‖aα‖ ≤M1, ‖bβ‖ ≤M2 and let F =
∑N
i=1 ci ⊗ di ∈

A⊗̂B. For every ϕ′ ∈ ∆(A) \ {0} and ψ′ ∈ ∆(B) \ {0}, we have∣∣ϕ′ ⊗ ψ′(F · (aα ⊗ bβ))− ϕ′ ⊗ ψ′(F )
∣∣

=
∣∣∣ N∑
i=1

[(
ϕ′(ciaα)− ϕ′(ci)

)
ψ′(dibβ) + ϕ′(ci)

(
ψ′(dibβ)− ψ′(di)

)]∣∣∣
≤

N∑
i=1

M2‖di‖‖ψ′‖
∣∣ϕ′(ciaα)− ϕ′(ci)

∣∣+
N∑
i=1
‖ϕ′‖‖ci‖

∣∣ψ′(dibβ)− ψ′(di)
∣∣

−→ 0 .

Now let G ∈ A⊗̂B, so there exist sequences (ci)i ⊆ A and (di)i ⊆ B such that
G =

∑∞
i=1 ci ⊗ di with

∑∞
i=1 ‖ci‖‖di‖ <∞. Let ε > 0 be given, we choose N ∈ N

such that
∑∞
i=N+1 ‖ci‖‖di‖ < ε/4M1M2‖ϕ′‖‖ψ′‖. Put F =

∑N
i=1 ci ⊗ di. Since

|ϕ′ ⊗ ψ′(F · aα ⊗ bβ)− ϕ′ ⊗ ψ′(F )| −→ 0, it follows that there exists (α0, β0) such
that |ϕ′ ⊗ ψ′(F · aα ⊗ bβ) − ϕ′ ⊗ ψ′(F )| < ε/2 for all (α, β) ≥ (α0, β0). Now for
such a (α, β), we have∣∣ϕ′ ⊗ ψ′(G · aα ⊗ bβ)− ϕ′ ⊗ ψ′(G)

∣∣
=
∣∣∣ϕ′ ⊗ ψ′(F · aα ⊗ bβ)− ϕ′ ⊗ ψ′(F ) +

∞∑
i=1+N

(
ϕ′(ciaα)ψ′(dibβ)− ϕ′(ci)ψ′(di)

)∣∣∣
≤ ε/2 + 2M1M2‖ϕ′‖‖ψ′‖

∞∑
i+N
‖ci‖‖di‖ ≤ ε/2 + ε/2 = ε .

Hence
∣∣ϕ′⊗ψ′(G ·aα⊗ bβ)−ϕ′⊗ψ′(G)

∣∣ −→ 0. Also, clearly
∣∣ϕ′⊗ψ′(G ·aα⊗ bβ)−

ϕ′⊗ψ′(G)
∣∣ −→ 0 for ϕ′ = 0 and ψ′ = 0 and it is easy to see that ((aα⊗ bβ))(α,β) ⊂

ker(ϕ⊗ψ). Therefore A⊗̂B is ∆-weak (ϕ⊗ψ)-amenable, again by Theorem 2.5. �

Corollary 2.10. Let A and B be Banach algebras. Then A⊗̂B is ∆-weak character
amenable if and only if both A and B are ∆-weak character amenable.

By using above corollary and Theorem 2.9, we can proof following proposition.

Proposition 2.11. Let A and B be Banach algebras. Then A⊗̂B is ∆-weak
character amenable if and only if B⊗̂A is ∆-weak character amenable.

3. ∆-weak character amenability of A×θ B

Let A and B be Banach algebras with ∆(B) 6= ∅ and θ ∈ ∆(B). Then the set
A×B equipped with the multiplication

(a1, b1) · (a2, b2) = (a1a2 + θ(b2)a1 + θ(b1)a2, b1b2) (a1, a2 ∈ A, b1, b2 ∈ B) ,
and the norm ‖(a, b)‖ = ‖a‖ + ‖b‖ (a ∈ A, b ∈ B), is a Banach algebra which is
called the θ-Lau product of A and B and is denoted by A×θ B. Lau product was
introduced by Lau [8] for certain class of Banach algebras and was extended by
Monfared [9] for the general case.
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We note that the dual space (A×θ B)∗ can be identified with A∗ ×B∗, via
〈(f, g), (a, b)〉 = 〈a, f〉+ 〈b, g〉 (a ∈ A, f ∈ A∗, b ∈ B, g ∈ B∗) .

Moreover, (A×θ B)∗ is a (A×θ B)-bimodule with the module operations given by
(f, g) · (a, b) =

(
f · a+ θ(b)f, f(a)θ + g · b

)
,(3.1)

and
(a, b) · (f, g) =

(
a.f + θ(b)f, f(a)θ + b · g

)
,(3.2)

for all a ∈ A, b ∈ B, f ∈ A∗ and g ∈ B∗.

Proposition 3.1. Let A be a unital Banach algebra and B be a Banach algebra
and θ ∈ ∆(B). Then A×θ B has a ∆-weak approximate identity if and only if B
has a ∆-weak approximate identity.

Proof. Let ((aα, bα))α be a ∆-weak approximate identity for A×θ B. For every
ψ ∈ ∆(B) and b ∈ B we have,∣∣ψ(bbα)− ψ(b)

∣∣ =
∣∣(0, ψ)

(
(0, b)(aα, bα)

)
− (0, ψ)(0, b)

∣∣ −→ 0 .
Then (bα)α is a ∆-weak approximate identity for B.

Conversely, let eA be the identity of A and (bβ)β be a ∆-weak approximate
identity for B. We claim that ((eA − θ(bβ)eA, bβ))β is a ∆-weak approximate
identity for A×θ B. In fact for every a ∈ A, b ∈ B and ϕ ∈ ∆(A), we have∣∣(ϕ, θ)((a, b)(eA − θ(bβ)eA, bβ)

)
− (ϕ, θ)(a, b)

∣∣
=
∣∣(ϕ, θ)(a+ θ(b)eA − θ(bbβ)eA, bbβ)

)
− (ϕ, θ)(a, b)

∣∣
= 0 .

Also for every a ∈ A, b ∈ B and ψ ∈ ∆(B), we have∣∣(0, ψ)
(
(a, b)(eA − θ(bβ)eA, bβ)

)
− (0, ψ)(a, b)

∣∣ =
∣∣ψ(bbβ)− ψ(b)

∣∣ −→ 0 .
Therefore ((eA − θ(bβ)eA, bβ))β is a ∆-weak approximate identity for A×θ B. �

Theorem 3.2. Let A be a unital Banach algebra and B be a Banach algebra and
θ ∈ ∆(B). Then A×θ B is ∆-weak character amenable if and only if both A and
B are ∆-weak character amenable.

Proof. Suppose that A×θ B is ∆-weak character amenable. Let ϕ ∈ ∆(A) ∪ {0}.
Then there exists m ∈ (A×θ B)∗∗ such that m(ϕ, θ) = 0 and m(h.(a, b)) = h(a, b)
for all (a, b) ∈ A×θ B and h ∈ ∆(A×θ B), where h 6= (ϕ, θ). Let eA be the identity
of A and define mψ ∈ A∗∗ by mψ(f) = m(f, f(eA)θ)(f ∈ A∗). For every a ∈ A
and ϕ′ ∈ ∆(A) \ {ϕ}, we have

mψ(ϕ′ · a) = m
(
ϕ′ · a, (ϕ′ · a)(eA)θ

)
= m

(
ϕ′ · a, ϕ′(a)θ

)
= m

(
(ϕ′, θ) · (a, 0)

)
= (ϕ′, θ)(a, 0)
= ϕ′(a) .
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Also mψ(ϕ) = m(ϕ, θ) = 0. Thus A is a ∆-weak ϕ-amenable. Therefore A is
∆-weak character amenable.

Let ψ ∈ ∆(B)∪{0}. From the ∆-weak character amenability of A×θB it follows
that there exists a m ∈ (A×θB)∗∗ such that m(0, ψ) = 0 and m(h · (a, b)) = h(a, b)
for all (a, b) ∈ A×θ B and h ∈ ∆(A×θ B), where h 6= (0, ψ). Define mϕ ∈ B∗∗ by
mϕ(g) = m(0, g). So mϕ(ψ) = m(0, ψ) = 0 and

mϕ(ψ′ · b) = m(0, ψ′ · b) = m
(
(0, ψ′) · (0, b)

)
= (0, ψ′)(0, b′) = ψ′(b) ,

for all b ∈ B and ψ′ ∈ ∆(B) \ {ψ}. Therefore B is ∆-weak character amenable.
Conversely, let A and B be ∆-weak character amenable. We show that for every

h ∈ ∆(A×θ B), A×θ B is ∆-weak h-amenable. To see this we first assume that
h = (0, ψ), where ψ ∈ ∆(B). Since B is ∆-weak character amenable, by Theorem 2.5
there exists a net (bβ)β ⊆ kerψ such that |ψ′(bbβ)−ψ′(b)| −→ 0, for all b ∈ B and
ψ′ ∈ ∆(B), where ψ′ 6= ψ. Consider the bounded net ((eA−θ(bβ)eA, bβ))β ⊆ A×θB.
A similar argument as in the proof of Proposition 3.1, shows that∣∣(ϕ, θ)((a, b)(eA − θ(bβ)eA, bβ)

)
− (ϕ, θ)(a, b)

∣∣ −→ 0 ,
and ∣∣(0, ψ)

(
(a, b)(eA − θ(bβ)eA, bβ)

)
− (0, ψ)(a, b)

∣∣ −→ 0 ,
for all ϕ ∈ ∆(A), ψ ∈ ∆(B) and a ∈ A, b ∈ B. Also one can easily check that
((eA−θ(bβ)eA, bβ))β ⊆ kerh. So, by Theorem 2.5, A×θB is ∆-weak (0, ψ)-amenable.

Now let h = (ϕ, θ), where ϕ ∈ ∆(A). Since A is ∆-weak ϕ-amenable, by Theorem
2.5 there exists a net (aα)α ⊆ kerϕ such that |ϕ′(aaα)−ϕ′(a)| −→ 0, for all a ∈ A
and ϕ′ ∈ ∆(A), where ϕ′ 6= ϕ. Also since B is ∆-weak θ-amenable again by Theorem
2.5, there exists a net (bβ)β ⊆ ker(θ) such that |ψ′(bbβ)−ψ′(b)| −→ 0, for all b ∈ B
and ψ′ ∈ ∆(B), where ψ′ 6= θ. Consider the bounded net ((aα, bβ))(α,β) ⊆ A×θ B.
It is easy to see that ((aα, bβ))(α,β) ⊆ ker(ϕ, θ). For every a ∈ A, b ∈ B and
ψ′ ∈ ∆(B), we have∣∣(0, ψ′)((a, b)(aα, bβ)

)
− (0, ψ′)

(
a, b
)∣∣ =

∣∣ψ′(bbβ)− ψ′(b)
∣∣ −→ 0 ,

and for every ϕ′ ∈ ∆(A),∣∣(ϕ′, θ)((a, b)(aα, bβ)
)
− (ϕ′, θ)

(
(a, b)

)∣∣
=
∣∣ϕ′(aaα) + θ(bβ)ϕ′(a) + θ(b)ϕ′(aα) + θ(bbβ)− ϕ′(a)− θ(b)

∣∣
=
∣∣ϕ′(aaα) + θ(b)ϕ′(aα)− ϕ′(a)− θ(b)

∣∣
≤
∣∣ϕ′(aaα)− ϕ′(a)

∣∣+ |θ(b)|
∣∣ϕ′(aαeA)− ϕ′(eA)

∣∣ −→ 0 .

So, Theorem 2.5, yields that A×θ B is ∆-weak (ϕ, θ)-amenable. Therefore A×θ B
is ∆-weak character amenable. �

4. ∆-weak character amenability of abstract Segal algebras

We start this section with the basic definition of abstract Segal algebra; see [2]
for more details. Let (A, ‖ · ‖A) be a Banach algebra. A Banach algebra (B, ‖ · ‖B)
is an abstract Segal algebra with respect to A if:

(i) B is a dense left ideal in A;
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(ii) there exists M > 0 such that ‖b‖A ≤M‖b‖B for all b ∈ B;
(iii) there exists C > 0 such that ‖ab‖B ≤ C‖a‖A‖b‖B for all a, b ∈ B.
Several authors have studied various notions of amenability for abstract Segal

algebras; see, for example, [1, 12].
To prove our next result we need to quote the following lemma from [1].

Lemma 4.1. Let A be a Banach algebra and let B be an abstract Segal algebra
with respect to A. Then ∆(B) = {ϕ|B : ϕ ∈ ∆(A)}.

Theorem 4.2. Let A be a Banach algebra and let B be an abstract Segal algebra
with respect to A. If B is ∆-weak character amenable, then so is A. In the case
that B2 is dense in B and B has a bounded approximate identity the converse is
also valid.

Proof. Let ϕ ∈ ∆(A). Since B is ∆-weak character amenable, by Lemma 4.1 B is
∆-weak ϕ|B-amenable. Now from the Theorem 2.5, it follows that there exists a
bounded net (bα)α in ker(ϕ|B) such that∣∣ψ|B(bbα)− ψ|B(b)

∣∣ −→ 0 ,

for all b ∈ B and ψ ∈ ∆(A), with ψ 6= ϕ|B. Let ψ ∈ ∆(A) and a ∈ A. From the
density of B in A it follows that there exists a net (bi)i ⊆ B such that limi bi = a.
So ∣∣ψ(abα)− ψ(a)

∣∣∣ = lim
i

∣∣∣ψ|B(bibα)− ψ|B(bi)
∣∣ −→ 0 .

Then Theorem 2.5 implies that A is ∆-weak ϕ-amenable. Therefore A is ∆-weak
character amenable.

Conversely, suppose that A is ∆-weak character amenable. Let ϕ|B ∈ ∆(B).
By Theorem 2.5, there exists a bounded net (aα)α in ker(ϕ) such that

∣∣ψ(aaα)−
ψ(a)

∣∣ −→ 0, for all a ∈ A and ψ ∈ ∆(A), with ψ 6= ϕ. Let (ei)i be a bounded
approximate identity for B with bound M > 0. Set bα = limi(eiaαei), for all
α. From the fact that B2 is dense in B and the continuity of ϕ, we infer that
bα ⊆ ker(ϕ|B). Moreover, for every b ∈ B and ψ|B ∈ ∆(B), with ψ 6= ϕ, we have∣∣ψ|B(bbα)− ψ|B(b)

∣∣∣ = lim
i

∣∣ψ|B(beiaαei)− ψ|B(b)
∣∣

= lim
i

∣∣ψ|B(be2
i aα)− ψ|B(b)

∣∣
=
∣∣ψ|B(baα)− ψ|B(b)

∣∣ −→ 0 .

Hence, B is ∆-weak ϕ|B-amenable by Theorem 2.5. Therefore B is ∆-weak character
amenable. �

5. ∆-weak character amenability of module extension Banach
algebras

Let A be a Banach algebra and X be a Banach A-bimodule. The l1-direct sum
of A and X, denoted by A⊕1 X, with the product defined by

(a, x)(a′, x′) = (aa′, a · x′ + x · a′) (a, a′ ∈ A, x, x′ ∈ X) ,
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is a Banach algebra that is called the module extension Banach algebra of A and
X.

Using the fact that the element (0, x) is nilpotent in A⊕1 X for all x ∈ X, it is
easy to verify that

∆(A⊕1 X) = {ϕ̃ : ϕ ∈ ∆(A)} ,
where ϕ̃(a, x) = ϕ(a) for all a ∈ A and x ∈ X.

Theorem 5.1. Let A be a Banach algebra and X be a Banach A-bimodule. Then
A⊕1X is ∆-weak character amenable if and only if A is ∆-weak character amenable.

Proof. Suppose that A is ∆-weak character amenable. Let ϕ̃ ∈ ∆(A⊕1 X). By
Theorem 2.5, there exists a bounded net (aα)α in ker(ϕ) such that

∣∣ψ(aaα) −
ψ(a)

∣∣ −→ 0, for all a ∈ A and ψ ∈ ∆(A), with ψ 6= ϕ. Choose a bounded net
(aα, 0)α in A ⊕1 X. Clearly, (aα, 0)α ⊆ ker(ϕ̃). For every a ∈ A, x ∈ X and
ψ̃ ∈ ∆(A⊕1 X), we have∣∣ψ̃((a, x)(aα, 0)

)
− ψ̃(a, x)

∣∣ =
∣∣ψ̃(aaα, x · aα)− ψ̃(a, x)

∣∣
=
∣∣ψ(aaα)− ψ(a)

∣∣ −→ 0 .
So, Theorem 2.5 implies that A⊕1 X is ∆-weak ϕ̃-amenable. Therefore A⊕1 X is
∆-weak character amenable.

For the converse, let ϕ ∈ ∆(A). Again by Theorem 2.5 there exists a bounded
net (aα, xα)α in ker(ϕ̃) such that

∣∣ψ̃((a, x)(aα, xα)
)
− ψ̃(a, x)

∣∣ −→ 0, for all a ∈ A,
x ∈ X and ψ̃ ∈ ∆(A⊕1 X), with ψ̃ 6= ϕ̃. So,∣∣ψ(aaα)− ψ(a)

∣∣ =
∣∣ψ̃(aaα, a · xα + x · aα)− ψ̃(a, x)

∣∣
=
∣∣ψ̃((a, x)(aα, xα)

)
− ψ̃(a, x)

∣∣ −→ 0 ,
for all a ∈ A and ψ ∈ ∆(A). Moreover, ϕ(aα) = ϕ̃(aα, xα) = 0, for all α. Thus
(aα)α ⊆ ker(ϕ). By Theorem 2.5, A is ∆-weak ϕ-amenable. Therefore A is ∆-weak
character amenable. �
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