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ON HYPONORMAL OPERATORS IN KREIN SPACES

Kevin Esmeral, Osmin Ferrer, Jorge Jalk, and Boris Lora Castro

Abstract. In this paper the hyponormal operators on Krein spaces are
introduced. We state conditions for the hyponormality of bounded operators
focusing, in particular, on those operators T for which there exists a funda-
mental decomposition K = K+ ⊕K− of the Krein space K with K+ and K−

invariant under T .

1. Introduction

Let (H, 〈· , ·〉) be a Hilbert space. An operator T ∈ B(H) is called hyponormal
if T ∗T − TT ∗ is a positive operator. This class of operators was introduced in
1950 by P.R. Halmos in [8] and its properties have been extensively studied
[1, 5, 10, 11, 12, 13].
If T is a bounded operator acting on H = H1⊕H2 by means of the rule T (x1+x2) =
T1x1 + T2x2, with Ti a hyponormal operator on the Hilbert space Hi, i = 1, 2 and
x1 + x2 ∈ H1 ⊕H2, we have that T is hyponormal in H = H1 ⊕H2. However if
T is hyponormal in H = H1 ⊕H2, then T1 = TP1 and T2 = TP2 are hyponormal
in H1 and H2 respectively if and only if H1 and H2 are invariant under T , see,
for instance [3, §9]. In 1962 J.G. Stampfli established important results about
hyponomal operators and their invariant subspaces [12]. This fact is a motivation
to study hyponormal operators in these sum-spaces, in particular, in Krein spaces.

A vector space K over the complex numbers C with a sesquilinear form [·, ·] : K×
K→ C is a Krein space if K can be decomposed as K = K+⊕K− where (K+, [·, ·]),
(K−, −[·, ·]) are Hilbert spaces [2, 4]. The representation K = K+ ⊕ K−, where
(K+, [·, ·]) and (K−,−[·, ·]) are Hilbert spaces is called a fundamental decomposition
of the Krein space K and it is not unique. Since every x ∈ K can be written as
x = x+ + x− with x+ ∈ K+ and x− ∈ K− it follows that the operator J : K→ K

given by Jx = x+−x− is well defined and it is the so-called fundamental symmetry
associated to the given fundamental decomposition. This operator allows to introduce
on K a positive definite inner product through the formula [x, y]J = [Jx, y] and
also a norm in K associated with each fundamental decomposition by means of the
formula ||x||J =

√
[x, Jx]. It was proved (see [2, 4]) that even though the norms

induced by different fundamental decompositions are different themselves, they are
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equivalent, so they induced the same topology. This topology is called the strong
topology on K, for details see [4]. From now on all the topological concepts used in
this paper are related to this topology.

An operator T acting on the Krein space K is said to be fundamentally reducible
if there is a fundamental decomposition of K = K+

1 ⊕ K−1 sucht that K+
1 and

K−1 are invariant under T . This property has been largely studied [2, 4, 6, 7, 9]
and plays an important role due to the relation with their invariant subspaces.
Since the fundamental decomposition of K could not be the same decomposition
by which the operator is fundamental reducible, it is very important to specify
the fundamental decomposition we are working with in each situation. It is worth
mentioning that even though fundamental symmetries generate equivalent norms
the related adjoint operators are different. Various conditions for an operator to be
fundamentally reducible have been given, see for example [4, 6].

The paper is devoted to the study of hyponormal operators on Krein spaces
and it is structured as follows. Section 2 is based on the references [2, 4]. We will
consider some basic aspects related to the Krein spaces and bounded operators
that are fundamentally reducibles. In Section 3 we present the main results. We
introduce the hyponormal operators on Krein spaces and study some of their basic
properties. The Proposition 3.13 states that the fundamentally reducible operators
by the fundamental decomposition K = K+ ⊕K− that are hyponormal both in

the Krein space and in the associated Hilbert space have the form
(
U 0
0 V

)
where

U is hyponormal in K+ and V is normal in K−. We also show that T ∈ B(K) is
hyponormal in a Krein space (K = K+ ⊕K−, [·, ·]) and fundamentally reducible by
the fundamental decomposition K = K+ ⊕K− if and only if it is hyponormal in
the associated Hilbert space (K, [·, ·]J ), TK− ⊂ K− and T |K− is a normal operator
(Theorem 3.14). Finally, we prove that if T is a bounded, hyponormal operator
which is fundamentally reducible by the fundamental decomposition K = K+

T ⊕K−T
with K±T 6= K± then there exists an associated Hilbert space (K=K+

T ⊕K−T , 〈· , ·〉)
where T is hyponormal and T |K−

T
is normal (Theorem 3.16).

2. Preliminaries

The purpose of this section is to fix the notations and to recall the basic elements
of the Krein spaces theory. For more details on Krein spaces, see, for instance, [2]
and [4].

Throughout this paper, (K, [·, ·]) denotes a Krein space with fundamental de-
composition K = K+ ⊕K− and fundamental symmetry J given by

(2.1) J(k+ + k−) = k+ − k−, k+ + k− ∈ K+ ⊕K− ,

the J-inner product

[h+ +h− , k+ +k−]J := [h+ +h−, J(k+ +k−)]
= [h+, k+]− [h−, k−] , h±, k± ∈K± ,(2.2)
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turns (K, [·, ·]J) into a Hilbert space with the topology induced by the J-norm

(2.3) ‖k‖J :=
√

[k , k]J =
√

[k , Jk] , k ∈ K ,

thus K+ ⊕K− becomes the orthogonal sum of Hilbert spaces. Note that J2 = 1
by (2.1). The Hilbert space (K, [·, ·]J) is used to study linear operators acting on
the Krein space (K, [·, ·]). Topological concepts such as continuity, closedness of
operators, spectral theory and so on, refer to the topology induced by theJ-norm
given in (2.3). Therefore, we may apply the same definitions as in the operator
theory of Hilbert spaces. For instance, the adjoint of an operator T in Krein spaces(
T [∗]) satisfies [T (x), y] = [x, T [∗](y)], but we must take into account that T also has

an adjoint operator in the Hilbert space (K, [·, ·]J ), denoted by T ∗J , where J is the
fundamental symmetry in K. The relation between T ∗J and T [∗] is T [∗] = JT ∗JJ .
Moreover, let K and K′ be Krein spaces with fundamental symmetries JK and
JK′ respectively. If T ∈ B(K,K′) then T [∗] = JKT

∗JKJK′ . An operator T ∈ B(K)
is said to be self-adjoint if T = T [∗], and J-self-adjoint if T = T ∗J , it is said
to be normal if TT [∗] = T [∗]T , it is called positive if [Tk, k] ≥ 0 for all k ∈ K.
Equivalently, since [Tk, k] = [JTk, k]J , we have that T is positive if JT is positive
on the Hilbert space (K, [·, ·]J). The fundamental projections
(2.4) P+ := 1

2 (Id + J) , P− := 1
2 (Id− J)

act on K = K+⊕K− by P+(k++k−) = k+ and P−(k++k−) = k−. Equation (2.4)
implies immediately that P± and J commute. Moreover, P+ and P− are orthogonal
projections, i.e. P 2

± = P± = P ∗±, regardless of whether we consider [·, ·] or [·, ·]J on
K. For more details on Krein spaces, see [2, 4].

Definition 2.1. Let V be a closed subspace of the Krein space (K, [·, ·]). The
subspaces

V [⊥] = {x ∈ K : [x, y] = 0 for all y ∈ V }(2.5)

V ⊥ = {x ∈ K : [x, y]J = 0 for all y ∈ V }(2.6)
are called the orthogonal complement of V and the J-orthogonal complement of V
respectively.

Definition 2.2. A closed subspace V of K such that V ∩V [⊥] = {0} and V +V [⊥] =
K, where V [⊥] is given in (2.5), is called projectively complete.

The following result is important in the development of this paper its proof can
be found in [4, 6].

Proposition 2.3. Let K be a Krein space and J be the fundamental symmetry
associated to the fundamental decomposition K = K+ ⊕K− and T ∈ B(K). The
following statements are equivalent

(i) TJ = JT

(ii) T [∗]J = JT [∗]

(iii) T ∗J = T [∗]

(iv) TP+ = P+T and TP− = P−T
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(v) K+ and K− are invariant under T .

Definition 2.4. Let (K, [·, ·]) be a Krein space. A bounded operator T is said to be
fundamentally reducible if there exists a fundamental decomposition K = K+⊕K−

such that K+ and K− are invariant under T .

Let (K = K+⊕K−, [·, ·]) be a Krein space and T ∈ B(K) be a positive operator.
Then denote by

(2.7) µ+(T ) = inf
x∈K++

[Tx, x]
[x, x] ; µ−(T ) = sup

x∈K−−

[Tx, x]
[x, x] ,

where
(2.8) K++ = {x ∈ K : [x, x] > 0} , K−− = {x ∈ K : [x, x] < 0} .
The numbers µ+(T ), µ−(T ) are finite and for every x ∈ K (see [4, Lemma II.6.1,
Theorem II.6.2])
(2.9) [Tx, x] ≥ µ[x, x] for each µ ∈ [µ−(T ), µ+(T )] .

Remark 2.5. Observe that an operator can be fundamentally reducible by a given
fundamental decomposition and not being fundamentally reducible by another one.
Let K = C2 be a Krein space with indefinite inner product [(z, w), (u, v)] = zu−wv.
Observe that K = K+ ⊕K− = K+

1 ⊕K−1 , where
K+ = {λ(2, 1) : λ ∈ C} , K− = {λ(1, 2) : λ ∈ C}(2.10)
K+

1 = {λ(1, 0) : λ ∈ C} , K−1 = {λ(0, 1) : λ ∈ C} .(2.11)
The fundamental symmetry J associated to the fundamental decomposition K =
K+ ⊕K− is given by the rule

J(z, w) = 2z − w
3 (2, 1) + z − 2w

3 (1, 2) , z, w ∈ C ,(2.12)

and the fundamental symmetry J1 associated to the fundamental decomposition
K = K+

1 ⊕K−1 is given by the rule
(2.13) J1(z, w) = (z,−w) = z(1, 0)− w(0, 1) .
On C2 consider the operator S : C2 → C2 given by
(2.14) S(z, w) = (z,−3w) , z, w ∈ C .
For every z, w ∈ C
J1S(z, w) = J1(z,−3w) = (z, 3w) = SJ1(z, w),

JS(z, w) = J(z,−3w) =
(2z + 3w

3 (2, 1) + z + 6w
3 (1, 2)

)
SJ(z, w) = 2z−w

3 (2,−3)+ z−2w
3 (1,−6) = 22z−23w

9 (2, 1)+ 34w−29z
9 (1, 2).

Therefore, S commutes with the fundamental symmetry associated to the fun-
damental decomposition (2.11), but it does not commute with the fundamental
symmetry associated to the fundamental decomposition (2.10). By the (i) and (v)
parts of the Proposition 2.3 we obtain the desired result.
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3. Hyponormal operators on Krein spaces

In this section our main results are stated and proved. First of all we introduce
the hyponormal operators and J-hyponormal operators in Krein spaces.

Definition 3.1. An operator T ∈B(K) is said to be hyponormal if for every x ∈ K

(3.1) [(T [∗]T − TT [∗])x, x] ≥ 0 .

Definition 3.2. An operator T ∈ B(K) is said to be J-hyponormal if for every
x ∈ K

(3.2) [(T ∗JT − TT ∗J)x, x]J ≥ 0 .

Example 3.3. Let K = C2 be a Krein space with indefinite inner product
[(z, w), (u, v)] = zu− wv. Observe that K = K+ ⊕K−, where

K+ = {λ(2, 1) : λ ∈ C} , K− = {λ(1, 2) : λ ∈ C} .

The fundamental symmetry J associated to the fundamental decomposition K =
K+ ⊕ K− is given in (2.12). On C2 consider the operator S : C2 → C2 given in
Remark 2.5. This operator is self-adjoint and hence it is hyponormal. On the other
hand, since S = S[∗] = JS∗JJ , we get by Remark 2.5 that

S∗J(z, w) = JSJ(z, w) = 22z − 23w
9 (2, 1) + 29z − 34w

9 (1, 2) .

Therefore, by direct calculations one gets [(S∗JS − SS∗J )(1, 0), (1, 0)]J < 0. Thus,
S is not a J-hyponormal operator.

The next result is proposed in [3, 12] and its proof is a slight modification of
Example 9 in [3, §9].

Proposition 3.4. Let (K, [·, ·]) be a Krein space with fundamental symmetry J
associated to the fundamental decomposition K = K+ ⊕K− and let T ∈ B(K) be
such that TM ⊂M for some closed subspace M of K. If T is J-hyponormal then
T |M is J-hyponormal in the Hilbert space (M, [·, ·]J).

Proof. Let y ∈ M . For any x ∈ M we have [Tx, y]J = [TPMx, y]J = [Rx, y]J =
[x,R∗Jy]J , where R = TPM and PM is the orthogonal projection from K onto M .
i.e. [x, (T ∗J − R∗J)y]J = 0 for each x ∈ M . It follows that (T ∗J − R∗J)y ∈ M⊥.
Furthermore, for every y ∈M :

[(T ∗J −R∗J)y,R∗Jy]J = [TPMT ∗Jy, y]J − [TPMPMT ∗Jy, y]J = 0 .

By the Pythagorean Theorem, for every y ∈M

‖T ∗Jy‖2
J = ‖(T ∗J −R∗J)y +R∗Jy‖2

J = ‖(T ∗J −R∗J)y‖2
J + ‖R∗Jy‖2

J .

Now, being T a J-hyponormal operator one gets for every y ∈M

‖R∗Jy‖2
J ≤ ‖T ∗Jy‖2

J ≤ ‖Ty‖2
J = ‖TPMy‖2

J = ‖Ry‖2
J .

i.e. the operator R = T |M is hyponormal in the Hilbert space (M, [·, ·]J). �
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Proposition 3.5. Let (K = K+ ⊕K−, [·, ·]) be a Krein space with fundamental
symmetry J associated to the fundamental decomposition K = K+ ⊕K−, M ⊂ K

be a closed subspace with respect to [·, ·]J and T ∈ B(K). If T is J-hyponormal with
T |M normal and TM ⊂M , then M reduces T .

Proof. We now proceed analogously to the proof of Proposition 3.4. Let y ∈M .
Then for any x ∈M we have [Tx, y]J = [TPMx, y]J = [Rx, y]J = [x,R∗Jy]J , where
R = TPM . That is, [x, (T ∗J −R∗J )y] = 0 for each x ∈M . Therefore it follows that
(T ∗J −R∗J)y ∈M⊥ for all y ∈M . Furthermore, for every y ∈M

[(T ∗J −R∗J)y,R∗Jy]J = [TPMT ∗Jy, y]J − [TPMPMT ∗Jy, y] = 0 .

Since R is J-normal one gets that by Pythagorean Theorem for every y ∈M

‖T ∗Jy‖2
J = ‖(T ∗J −R∗J)y‖2

J + ‖R∗Jy‖2
J = ‖(T ∗J −R∗J)y‖2

J + ‖Ry‖2
J

= ‖(T ∗J −R∗J)y‖2
J + ‖TPMy‖2

J = ‖(T ∗J −R∗J)y‖2
J + ‖Ty‖2

J .

This implies that ‖(T ∗J −R∗J )y‖2
J = ‖T ∗Jy‖2

J − ‖Ty‖2
J for each y ∈M , however,

by Proposition 3.4 the operator T |M is hyponormal in the Hilbert space (M, [·, ·]J ),
equivalently,

‖Ty‖2
J − ‖T ∗Jy‖2

J = [Ty, Ty]J − [T ∗Jy, T ∗Jy]J = [(T ∗JT − TT ∗J)y, y]J ≥ 0 .

Therefore, it follows that ‖(T ∗J − R∗J)y‖2
J = 0 for each y ∈ M , i.e. for every

x = yM + yM⊥ ∈ K = M ⊕M⊥ we have

T ∗JPMx = T ∗JyM = R∗JyM = (TPM )∗JyM = PMT
∗JyM = PMT

∗JPMx .

Thus, T ∗JPM = PMT
∗JPM . By Theorem 2 in [3, §9] we conclude that T ∗JM ⊂M .

Since TM ⊂ M , again Theorem 2 in [3, §9] we also have T ∗JM⊥ ⊂ M⊥ and
TM⊥ = (T ∗J)∗JM⊥ ⊂M⊥. According to this, we have that M reduces T . �

The next result is an immediate consequence of Definition 3.1.

Proposition 3.6. Let (K, [·, ·]) be a Krein space. Then T and T [∗] ∈ B(K) are
hyponormal if and only if T is a normal operator.

Definition 3.7. Let (K, [·, ·]) be a Krein space. A pair of bounded operators T ,
V ∈ B(K) are said to be unitarily equivalent if there exists a unitary operator U
on K such that V = UTU [∗].

It is well-known that in the Hilbert case the hyponormality is preserved by
unitary equivalence of operators, see e.g. [11, 12]. Since the proof only depends on
the existence of the unitary operator that relate them, we have that in the Krein
space case this also holds.

Proposition 3.8. Let (K, [·, ·]) be a Krein space and T , V ∈ B(K) be unitary
equivalent operators. If T is hyponormal then V is also hyponormal.

If T is a hyponormal operator then by Definition 3.1 the bounded operator
T [∗]T−TT [∗] is positive on the Krein space K. Letting (x, x)1 = [(T [∗]T−TT [∗])x, x]
in Theorem II.6.2 in [4] the following result holds.
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Proposition 3.9. Let (K, [·, ·]) be a Krein space and T ∈ B(K). If T is hyponormal
in K then for every x ∈ K

(3.3) [(T [∗]T − TT [∗])x, x] ≥ µ+(T [∗]T − TT [∗])[x, x] .
Proposition 3.10. Let (K, [·, ·]) be a Krein space. If the linear operator T ∈B(K)
is hyponormal then 0 ∈ [µ−(T [∗]T − TT [∗]), µ+(T [∗]T − TT [∗])], where µ±(T ) are
given in (2.7).
Proof. Let T be a hyponormal operator. Then by (2.8) for every x ∈ K++ and
y ∈ K−− we have that

[(T [∗]T − TT [∗])x, x]
[x, x] ≥ 0 ≥ [(T [∗]T − TT [∗])y, y]

[y, y] .

Therefore 0 ∈ [µ−(T [∗]T − TT [∗]), µ+(T [∗]T − TT [∗])]. �

The following result is a slight modification of Lemma 1 in [12].
Proposition 3.11. Let (K, [·, ·]) be a Krein space and T, W ∈ B(K) be such that
W = W[∗] and TW = WT . Then T is hyponormal in K if and only if for every
λ ∈ C the operator T − λW is hypornormal .
Proof. The equivalence follows since for every λ ∈ C one has that (T −λW)[∗](T −
λW)− (T − λW)(T − λW)[∗] = T [∗]T − TT [∗]. �

3.1. Fundamentally reducible hyponormal operators. As it was mentioned
in the Introduction a bounded operator T on the Krein space K = K+ ⊕ K+

is said to be fundamentally reducible if there is a fundamental decomposition
of K = K+

1 ⊕ K−1 such that K+
1 and K−1 are invariant under T . By proposition

2.3 one gets that TJ1 = J1T , where J1 is the fundamental symmetry associated
to the fundamental decomposition K = K+

1 ⊕ K−1 . In this case, we have two
fundamental symmetries J and J1 associated to K = K+ ⊕K− and K = K+

1 ⊕K−1
respectively. It is well-known that the corresponding J-norms ‖ · ‖J and ‖ · ‖J1

are equivalent, see [2, Theorem 7.19], hence if T is bounded with respect to the
norm ‖ · ‖J also is bounded with respect to the norm ‖ · ‖J1 and by Proposition 2.3
we have T ∗J1 = T [∗] = JT ∗JJ . Thus, T ∗J1 and T ∗J are unitarily equivalent by
Definition 3.7. On the other hand, there are bounded operators that are hyponormal
but not J-hyponormal. In Example 3.3 we have seen such kind of operators, in fact,
the operator considered there, it is not fundamentally reducible with respect to
the given fundamental decomposition of the Krein space. Notice that (2, 1) belongs
to K+ but S(2, 1) = (4,−6) = 14

3 (2, 1)− 16
3 (1, 2).

In what follows we consider hyponormal operators on Krein spaces that are
fundamentally reducibles. Now, a natural question arises here: If T is a hyponormal
operator on a Krein space K = K+ ⊕K− and it is fundamentally reducible by the
fundamental decomposition K = K+

T ⊕K−T , then T is J-hyponormal, where J is
the fundamental symmetry associated to K = K+ ⊕K− or is it JT -hyponormal,
where JT is the fundamental symmetry associated to K = K+

T ⊕K−T ?
First of all, we give some answers to this question assuming that T is fundamen-

tally reducible by the given fundamental decomposition of K.
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As by-product of Proposition 3.4 any J-hypornomal operator which is fundamen-
tally reducible by the given fundamental decomposition is sum of J-hyponormal
operators on K+ and K−.
Proposition 3.12. Let (K = K+ ⊕K−, [·, ·]) be a Krein space with fundamental
symmetry J associated to the fundamental decomposition K = K+ ⊕ K− and
T ∈ B(K) be a fundamentally reducible operator by the fundamental decomposition

K = K+ ⊕K−. Then T is J-hyponormal if and only if T =
(
U 0
0 V

)
p, where U ,

V are hyponormal in (K+, [·, ·]) and (K−,−[·, ·]) respectively.
Proof. By Proposition 2.3 one gets that K± are invariant under T and T [∗] (By
item (iii) in Proposition 2.3 we also have T [∗] = T ∗J ). Let U = TP+ and V = TP−,
where P± are the orthogonal projection from K onto K± respectively. Now, the
statement holds since

[(T ∗JT − TT ∗J)x, x]J = [(U∗JU − UU∗J)x+, x+]− [(V ∗JV − V V ∗J)x−, x−]
for each x = x+ + x− ∈ K. �

Proposition 3.13. Let (K = K+ ⊕K−, [·, ·]) be a Krein space with fundamental
symmetry J associated to the fundamental decomposition K = K+ ⊕K− and T ∈
B(K) be a fundamentally reducible hyponormal operator. Then T is J-hyponormal
if and only if T |K− is normal.
Proof. Let T ∈ B(K) be a hyponormal operator in (K, [·, ·]) such that TK± ⊂ K±.
Observe that T ∗J = T [∗] by Proposition 2.3. If T is also J-hyponormal operator
then by Proposition 3.4 we have that TP+ is hyponormal in the Hilbert space
(K+, [·, ·]) and TP− is hyponormal in the Hilbert space (K−,−[·, ·]), i.e., for every
x− ∈ K− we have that

0 ≤ [(T [∗]T − TT [∗])x−, x−] = [Tx−, Tx−]− [T [∗]x−, T [∗]x−]

= [P−TP−x−, P−TP−x−]− [P−T [∗]P−x
−, P−T

[∗]P−x
−]

= [((P−TP−)[∗](P−TP−)− (P−TP−)(P−TP−)[∗])x−, x−]

= −[((P−TP−)(P−TP−)[∗] − (P−TP−)[∗](P−TP−))x−, x−] .

Therefore TP− = P−TP− and P−T
∗JP− = P−T

[∗]P− = (P−TP−)[∗] = (TP−)[∗]

are hyponormal in (K−,−[·, ·]) and hence by Proposition 3.6 we conclude that
T |K− = TP− = P−TP− is normal.

Conversely, if T |K− = TP− = P−TP− is a normal operator, then by Proposi-
tion 2.3 one gets
(T ∗JT − TT ∗J)P−x = ((P−TP−)(P−TP−)[∗] − (P−TP−)[∗](P−TP−))P−x = 0 .

Thus, by direct calculations one has for every x ∈ K

[(T ∗JT −TT ∗J)x, x]J = [(T ∗JT −TT ∗J)P+x, P+x]− [(T ∗JT −TT ∗J)P−x, P−x]

= [(T [∗]T −TT [∗])P+x, P+x] ≥ 0 ,
i.e. T is a J-hyponormal operator in (K, [·, ·]J). �



HYPONORMAL OPERATORS 257

Proposition 3.13 says that the hyponormality of a fundamentally reducible
operator T is hereditary from the Krein space to the associated Hilbert space if T

has the form T =
(
U 0
0 V

)
, where U is a hyponormal operator in (K+, [·, ·]) and

V is normal in (K−,−[·, ·]). On the other hand, since (K+, [·, ·]) and (K−,−[·, ·])
are Hilbert spaces and K = K+ ⊕K−, Proposition 3.12 can be considered for any
T on a Hilbert space H = H1 ⊕H2 such that TP1 = P1T and P2T = TP2, where
Pi are orthogonal projection on Hi respectively i = 1, 2.

The next result establishes a characterization of hyponormal operators in K that
are fundamentally reducible by the fundamental decomposition K = K+ ⊕K−.

Theorem 3.14. Let (K = K+ ⊕ K−, [·, ·]) be a Krein space with fundamental
symmetry J associated to the fundamental decomposition K = K+ ⊕ K− and
T ∈ B(K). Then T is hyponormal and fundamentally reducible by the fundamental
decomposition K = K+ ⊕K− if and only if T is J-hyponormal, T |K− is normal
and TK− ⊂ K−.

Proof. Let T be a hyponormal operator and fundamentally reducible by the
fundamental decomposition K = K+ ⊕ K−. Then it follows that TK− ⊂ K−,
T [∗] = T ∗J and [(T [∗]T −TT [∗])x−, x−] ≥ 0 for each x− in K−. On the other hand,
the operator (T [∗]T − TT [∗]) is also fundamentally reducible by the fundamental
decomposition K = K+⊕K−. This implies that [(T [∗]T −TT [∗])P−x, P−x] ≤ 0 for
each x ∈ K. Therefore, T |K− is normal and by Proposition 3.13 we have that T is
J-hyponormal.

Conversely, let T be J-hyponormal, T |K− normal and TK− ⊂ K−. Then by
Proposition 3.5 we have that K− reduces T . That is TK− ⊂ K− and TK+ ⊂ K+

since K+ = (K−)⊥. In consequence T is fundamentally reducible by the fundamental
decomposition K = K+ ⊕K−. According to Proposition 3.12, we have that TP+ is
hyponormal in (K+, [·, ·]) and TP−= T |K− is normal in (K−,−[·, ·]). Therefore, T
is hyponormal in K since [(T ∗JT − TT ∗J )P+x, P+x]J = [(T [∗]T − TT [∗])x, x]. �

From now on, we assume hyponormal operators on the Krein space K with
fundamental decomposition K = K+ ⊕K− that are fundamentally reducibles by
the fundamental decomposition K = K+

T ⊕K−T where K±T 6= K±.

Lemma 3.15. Let (K = K+ ⊕ K−, [·, ·]) be a Krein space with fundamental
decomposition J associated to K = K+ ⊕K− and T ∈ B(K) be a fundamentally
reducible operator. Then there exist a Hilbert space (KT , 〈·, ·〉) associated to K which
is isomorphic to (K, [·, ·]J) such that T [∗] = T ∗, where T ∗ is the adjoint operator
of T with respect to the inner product 〈·, ·〉.

Proof. If T is fundamentally reducible on K, then there exists a fundamental
decomposition K = K+

T ⊕ K−T such that K±T are invariant under T . Let JT be
the fundamental symmetry associated to K = K+

T ⊕ K−T , hence TJT = JTT .
Letting KT = K

‖·‖, where ‖ · ‖ is the norm generated by the scalar inner product
〈x, y〉 = [JTx, y]. Since the norms ‖ · ‖ and ‖ · ‖J are equivalent, it follows that
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KT = (K = K+
T ⊕K−T , 〈·, ·〉). Now, for every x, y ∈ K

〈Tx, y〉 = [JTTx, y] = [TJTx, y] = [JTx, T [∗]y] = 〈x, T [∗]y〉 .

This gives T ∗ = T [∗]. On the other hand, notice for every x, y ∈ K that
〈Jx, y〉 = [JTJx, y] = [x, JJT y] = [JTx, JTJJT y] = 〈x,T JJT y〉 .

Thus J∗ = JTJJT . It is clear that the operator JJT is well defined, positive and
invertible on (K, [·, ·]J). In effect, since JTJT = Id, one gets

[JJTx, x]J = [JJJTx, x] = [JTx, x] = 〈x, x〉 ≥ 0
JJT (JTJ) = JJ2

TJ = JJ = IdK

for each x ∈ K. Let U =
√
JJT : K ⊆ KT → K. Then U2 = JJT and for every x,

y ∈ K ⊆ KT

‖Ux‖2
J = [Ux,Ux]J = [U2x, x]J = [JJTx, x]J = [x, x]JJ = ‖x‖2

JT .

This implies that U is an isometry from K ⊆ KT into (K, [·, ·]J) and hence it has
unitary extension Û on KT . �

Theorem 3.16. Let (K = K+ ⊕ K−, [·, ·]) be a Krein space with fundamental
decomposition J associated to K = K+ ⊕K−. If T ∈ B(K) is a hyponormal and
fundamental reducible operator in the Krein space K then there exists an associated
Hilbert space (KT , 〈·, ·〉) that is isomorphic to (K, [·, ·]J ) in which T is hyponormal
and T |K−

T
is normal.

Proof. Since T is fundamental reducible on the Krein space by Lemma 3.15 there
exists a Hilbert space KT = (K = K+

T ⊕ K−T , 〈·, ·〉) associated to K isomorphic
to the Hilbert space (K, [·, ·]J) where T |K±

T
⊂ K±T and T [∗] = T ∗, where T ∗ is

the adjoint operator of T with respect to the inner product 〈·, ·〉. Therefore, by
Theorem 3.14 we have that T is hyponormal in (KT , 〈· , ·〉) and T |K−

T
is normal. �
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