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Abstract. Let Q be a finite union of Dynkin quivers, G ⊆ Aut(kQ) a finite abelian group,

Q̂ the generalized McKay quiver of (Q,G) and ΓQ the Auslander-Reiten quiver of kQ.
Then G acts functorially on the quiver ΓQ. We show that the Auslander-Reiten quiver

of kQ̂ coincides with the generalized McKay quiver of (ΓQ, G).
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1. Introduction

Let Q = (I, E) be a quiver, let Aut(Q), Aut(kQ) be the automorphism groups

of Q and the path algebra kQ, respectively. For the skew group algebra kQ ∗ G

corresponding to the pair (Q,G) with G ⊆ Aut(Q), there has been a lot of literature

on kQ ∗G (for example see [8], [10], [11], [15], [17]).

It is shown in [15] that if Q has no oriented cycles and G ⊆ Aut(Q) is a cyclic

group, then the skew group algebra kQ∗G is Morita equivalent to the path algebra of

another quiver Γ. The authors illustrate this through several examples. In [10], [11],

Hubery showed the duality of (Q,G), that is, there exists an action of G on Γ such

that kΓ ∗ G is Morita equivalent to kQ. More generally, for an arbitrary finite

group G and an action of G on the path algebra kQ permuting the set of primitive

idempotents and stabilizing the vector space spanned by the arrows, Demonet in [3]

defined a quiver Q̂ (we call it the generalized McKay quiver) and proved that the
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skew group algebra kQ ∗ G is Morita equivalent to kQ̂. Obviously, if G ⊆ Aut(Q)

is a cyclic group, the generalized McKay quiver Q̂ coincides with the Γ constructed

in [10], [11], [15].

For the relationship between Q-representations and kQ∗G-modules, the paper [17]

gives a detailed description whenever G ⊆ Aut(Q) is cyclic. By a similar technique,

for a quiver Q with relations in R and a finite abelian group G ⊆ Aut(Q) pre-

serving the relations in R, we gave in [8] the condition for a (Q,R)-representation

to be a Λ ∗ G-module and determined the number of non-isomorphic indecompos-

able Λ ∗G-modules which are induced from the same (Q,R)-representation, where

Λ = kQ/〈R〉. In the paper [9], we discussed the duality of (Q,G) in the case that

G ⊆ Aut(kQ) is finite abelian, and by the duality, gave the correspondence between

the indecomposable Q̂-representations and the positive roots of the valued graph

of (Q,G). In this paper, we consider the duality of the Auslander-Reiten quiver

of kQ.

The Auslander-Reiten quiver ΓQ of kQ codifies the structure of the category of

finitely generated kQ-modules. Vertices are the indecomposable kQ-modules, ar-

rows are the irreducible morphisms between them. Note that an automorphism

σ ∈ Aut(kQ) also acts functorially on the category of Q-representations and this

determines an action on the set of isomorphism classes. That is to say, σ induces

a quiver automorphism of the Auslander-Reiten quiver ΓQ of kQ. If k is the al-

gebraic closure of a finite field Fq and F is the Frobenius morphism induced by σ,

Deng and Du have shown that the Auslander-Reiten quiver of the fixed point algebra

(kQ)F is just the Fq-species associated to (ΓQ, σ) (see [4], [5]). If Q is a connected

Dynkin quiver, the order of σ is only 1, 2, or 3. In this case, Zhang showed that

the generalized McKay quiver Γ̂Q of (ΓQ, σ) is just the Auslander-Reiten quiver ΓQ̂

of Q̂ via case-by-case analysis, where Q̂ is the generalized McKay quiver of (Q, σ)

(see [16]). Here, we will give a uniform proof for this result whenever Q is a finite

union of Dynkin quivers and G ⊆ Aut(kQ) is a finite abelian group.

Let Q be a finite union of Dynkin quivers, G ⊆ Aut(kQ) a finite abelian group,

Q̂ and ΓQ the generalized McKay quiver of (Q,G) and the Auslander-Reiten quiver

of kQ. Then G also acts functorially on the quiver ΓQ. By the duality of (Q,G)

discussed in [9], there is an action of G on Q̂ so that it also induces an action on the

quiver ΓQ̂. Our main result is:

Theorem 1.1. Let Γ̂Q and Γ̂Q̂ be the generalized McKay quivers of ΓQ and ΓQ̂,

respectively. Then

ΓQ̂ = Γ̂Q and ΓQ = Γ̂Q̂.
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That is, the group action also induces a dual for the Auslander-Reiten quiver of kQ

and kQ̂. Since path algebra kQ̂ is Morita equivalent to kQ∗G, we identify ΓQ̂ with the

Auslander-Reiten quiver of kQ ∗G. Based on the understanding of the relationship

between indecomposable kQ-modules and indecomposable kQ ∗G-modules, and the

relationship between the almost split sequences in the category of kQ-modules and

in the category of kQ ∗G-modules, we give a proof of this theorem.

This paper is organized as follows. In Section 1, we shortly review some ba-

sic concepts of representations of quivers, Auslander-Reiten quivers and generalized

McKay quivers. In Section 2, we discuss the relationship between indecomposable

kQ-modules and indecomposable kQ ∗ G-modules. In fact, similarly to [8], Sec-

tion 2, we show that all finite dimensional kQ ∗ G-modules can be obtained from

kQ-modules, and the number of non-isomorphic indecomposable kQ ∗ G-modules

induced from the same indecomposable G-invariant kQ-module can be determined.

In Section 3, we apply the results of Section 2 and Reiten and Riedtmann’s results

about the almost split sequences in categories of kQ-modules and kQ ∗ G-modules

to give the proof of our main theorem. In the last section, we use an interesting

example to show the duality of (Q,G), (ΓQ, G) and the valued quiver corresponding

to (Q,G), respectively.

Throughout this paper, G will denote a finite group, k denotes an algebraic closed

field whose characteristic does not divide the order of G, mod-Λ denotes the category

of finite-dimensional right Λ-modules for any Artin algebra Λ. Unless otherwise

stated all modules we consider are finite-dimensional and ⊗ := ⊗k.

2. Preliminaries

We recall in this section some basic facts about quivers and their representations,

Auslander-Reiten quivers and generalized McKay quivers.

A quiver Q = (I, E) is an oriented graph with I the set of vertices and E the set

of arrows. Quiver Q is called finite if I and E are finite sets. For any given quiver Q,

we have an associative k-algebra kQ, called the path algebra of Q (see [1], [2]).

A representation X = (Xi, Xα) of a quiver Q over k consists of a family of k-vector

spaces Xi for i ∈ I, together with a family of k-linear maps Xα : Xi → Xj for

α : i → j in E. A morphism ϕ : X → Y between two representations X and Y

is given by k-linear maps ϕi : Xi → Yi for all i ∈ I, satisfying ϕj ◦ Xα = Yα ◦ ϕi

for each arrow α : i → j. It is well-known that the category of finite-dimensional

Q-representations over k is naturally equivalent to the category mod-kQ. Thus in

this paper, we identify a Q-representation with a kQ-module. For background on

the representation theory of quivers, the reader is referred to [1], [2] and [6].
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The important notion of Auslander-Reiten quivers was introduced in the 70’s by

Auslander and Reiten and since then it has played an essential role in the represen-

tation theory of Artin algebras. Recall firstly that a homomorphism f : X → Y in

mod-kQ is called irreducible if f is neither a section nor a retraction, but for any

factorization f = f1f2 either f2 is a section or f1 is a retraction. If Q has no oriented

cycles, then the Auslander-Reiten quiver ΓQ of path algebra kQ is defined as follows:

the vertices of ΓQ are the isomorphism classes [X ] of finitely generated indecompos-

able kQ-modules X ; for two vertices [X ] and [Y ] in ΓQ, the arrows [X ] → [Y ] are in

bijective correspondence with a basis of k-vector space Irr(X,Y ), where Irr(X,Y ) is

the set of all irreducible morphisms from X to Y . It is well-known that the quiver ΓQ

for a connected quiver Q is a finite quiver if and only if Q is a Dynkin quiver of type

An (n > 1), Dn (n > 4), E6, E7 or E8, and then ΓQ contains no multiple edges.

Assume that Λ is a k-algebra and G acts on Λ; the skew group algebra of Λ under

the action of G is by definition the k-algebra whose underlying k-vector space is

Λ⊗k k[G] and whose multiplication is linearly generated by

(λ⊗ g)(λ′ ⊗ g′) = λg(λ′)⊗ gg′

for all λ, λ′ ∈ Λ and g, g′ ∈ G (see [15]). For convenience, we denote this algebra by

Λ ∗G and denote the element λ ⊗ g in Λ ∗ G by λg. One sees that Λ and k[G] can

be viewed as subalgebras of Λ ∗G.

Let Λ = kQ be the path algebra of the quiver Q = (I, E). We consider an action

of G on kQ permuting the set of primitive idempotents {ei : i ∈ I} and stabilizing

the vector space spanned by the arrows. Let I be a set of representatives of the

orbits of I under the action of G. For any i ∈ I, there exists g ∈ G such that

g−1(i) ∈ I . We fix such a g and denote it by κi. For (i, j) ∈ I 2, G acts on Oi ×Oj

diagonally, where Oi and Oj are the orbits of i and j under the action of G. A set

of representatives of the classes of this action will be denoted by Fij .

For i, j ∈ I, define Eij ⊆ kQ to be the vector space spanned by the arrows from i

to j. Let Gi be the subgroup of G stabilizing ei. We regard Eij as a left and right

k[Gij ] := k[Gi ∩ Gj ]-module by restricting the action of G. In [3] Demonet defined

the quiver Q̂ = (Î , Ê) as

Î =
⋃

i∈I

{i} × irrGi,

where irrGi is a set of representatives of isomorphism classes of irreducible represen-

tations of Gi. The set of arrows of Q̂ from (i, ̺) to (j, σ) is a basis of

⊕

(i′,j′)∈Fij

Homk[Gi′j′ ]
((̺ · κi′)|Gi′j′

, (σ · κj′)|Gi′j′
⊗k Ei′j′ ),

928



where the representation ̺ · κi′ of Gi′ is the same as ̺ as a k-vector space, and

(̺ · κi′)g = ̺κi′gκ
−1
i′ for g ∈ Gi′ = κ−1

i′ Giκi′ . Furthermore, Demonet proved the

following theorem.

Theorem 2.1 (see [3]). The category mod-kQ̂ is equivalent to the category

mod-kQ ∗G.

In particular, if the quiver Q is a singular vertex with m loops, we can view G as

a subgroup of GLm(k). Then the quiver Q̂ is just the McKay quiver of G, see [7], [14].

Thus, we view the quiver Q̂ as a generalized McKay quiver and call it the general-

ization of the McKay quiver of (Q,G). Moreover, for any factor algebra kQ/J , it is

easy to see that the skew group algebra (kQ/J) ∗G is Morita equivalent to a factor

algebra of kQ̂. That is to say, the generalized McKay quiver can realize the Gabriel

quiver of Λ ∗G for any basic algebra Λ.

3. Constituting kQ ∗G-modules

Let Q = (I, E) be a finite quiver, G ⊆ Aut(kQ) a finite abelian group. In this

section, we show that all finite dimensional kQ ∗ G-modules can be obtained from

kQ-modules, and the number of non-isomorphic indecomposable kQ ∗ G-modules

induced from the same indecomposable G-invariant kQ-modules can be determined.

Let X be a kQ-module, g ∈ G. We define a twisted kQ-module gX on X by taking

the same underlying vector space as X with the action x · λ = xg−1(λ) for x ∈ X

and λ ∈ kQ. Then, for each g ∈ G, we have an additive autoequivalence functor

Fg : mod -kQ→ mod -kQ

X 7→ gX,

where gψ := Fg(ψ) = ψ for any morphism ψ : X → Y in mod-kQ.

Consider the subpace

X ⊗ g := {x⊗ g : x ∈ X}

of X⊗kQ kQ∗G. Then X⊗g has a natural kQ-module structure given by (x⊗g)λ =

xg−1(λ)⊗ g for any x⊗ g ∈ X ⊗ g and λ ∈ kQ. It is easy to see that gX ∼= X ⊗ g as

kQ-modules.

Recall that a kQ-module X is said to be G-invariant if Fg(X) ∼= X for any g ∈ G;

a G-invariant kQ-module X is said to be indecomposable G-invariant if X is nonzero

and X cannot be written as the direct sum of two nonzero G-invariant kQ-modules.

For each X ∈ mod-kQ, let

HX = {g ∈ G : Fg(X) ∼= X as kQ-modules}.

929



Clearly, HX is a subgroup of G. We denote by GX a complete set of left coset

representatives of HX in G. Then one can see that any indecomposable G-invariant

kQ-module has the form ⊕

g∈GX

gX

for some indecomposable X ∈ mod-kQ, and the full subcategory of mod-kQ gener-

ated by the G-invariant kQ-modules is a Krull-Schmidt category.

For the G-invariant kQ-modules and the kQ ∗G-modules, we have:

Proposition 3.1. A kQ-module X is a kQ ∗ G-module if and only if X is

G-invariant.

P r o o f. Let X be a kQ ∗ G-module. We first show that X is G-invariant, i.e,
gX ∼= X for any g ∈ G. For each g ∈ G, we define a map fg :

gX → X by

fg(x) = xg−1 for all x ∈ X . Then, fg is a kQ-module isomorphism since

fg(x · λ) = (x · λ)g−1 = (xg−1(λ))g−1 = (xg−1)λ = fg(x)λ

for all λ ∈ kQ and x ∈ X .

Conversely, if X is a G-invariant kQ-module, that is, there exists a module isomor-

phism θg :
gX → X for any g ∈ G. Then, as observed in [??], page 95, there exists

a kQ-module isomorphism ϕg :
gX → X such that g1−|g|

ϕg ◦ . . . ◦
g−1

ϕg ◦ ϕg = idgY ,

where |g| is the order of g. We define an action of kQ ∗G on X by x ·λg = ϕg−1 (xλ)

for any λg ∈ kQ ∗ G and x ∈ X . One can check that X is a kQ ∗ G-module under

this action. �

For a given G-invariant kQ-module X , the map ϕg is not unique in general. Thus,

it is possible that there are many kQ∗G-module structure on X induced by different

maps ϕg, g ∈ G. How many non-isomorphic kQ ∗G-module structures are induced

on a given G-invariant kQ-module? We can give an answer by the following lemmas.

Note that HX is an abelian group. It follows that the regular representation kHX

can be decomposed as

kHX =

r⊕

i=1

̺i,

where all the ̺i are one dimensional irreducible HX -representations, r = |HX | is the

order of HX , and ̺i ≇ ̺j if i 6= j.

Since X is a natural HX -invariant kQ-module, X has a kQ∗HX-module structure

by Proposition 3.1. Therefore, ̺i ⊗X is also a kQ ∗HX -module defined by

(l ⊗ x)λg = lg ⊗ x · λg
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for any λg ∈ kQ ∗ HX and l ⊗ x ∈ ̺i ⊗ X . Consequently, HomkQ(X, ̺i ⊗ X) is

a kHX -module given by

(f ⊳ g)(x) = f(x) · g

for f ∈ HomkQ(X, ̺i ⊗X), g ∈ HX , and x ∈ X ; ̺i ⊗ EndkQ(X) is a kHX -module

given by

(l ⊗ f)g = lg ⊗ f ⊳ g

for l⊗ f ∈ ̺i ⊗EndkQ(X) and g ∈ HX . Note that all the representations ̺i are one

dimensional as k-vector spaces, one can check that

HomkQ(X, ̺i ⊗X) ∼= ̺i ⊗ EndkQ(X)

as kHX -modules. Therefore, we have:

Lemma 3.2. Let X be an indecomposable kQ-module. Then

(1) ̺i⊗X ∼= X as kQ-modules and ̺i⊗X is indecomposable as a kQ∗HX-module

for each i ∈ {1, 2, . . . , r};

(2) ̺i ⊗X ≇ ̺j ⊗X as kQ ∗HX -modules if i 6= j;

(3) X ⊗kQ kQ ∗HX
∼=

r⊕
i=1

̺i ⊗X as kQ ∗HX -modules;

(4) for any kQ∗HX -module Y , if Y ∼= X as kQ-modules, then there exists a unique

i ∈ {1, 2, . . . , r} such that Y ∼= ̺i ⊗X as kQ ∗HX -modules. Hence there are r

non-isomorphic kQ ∗HX -modules induced from X .

P r o o f. (1) Note that for each 0 6= l ∈ ̺i, there is a kQ-module isomorphism

f : X → ̺j ⊗X given by x 7→ l ⊗ x. We obtain that ̺i ⊗X is an indecomposable

kQ-module, and hence an indecomposable kQ ∗HX -module.

(2) If ̺i ⊗ X ∼= ̺j ⊗ X , we have ̺i ⊗ EndkQ(X) ∼= ̺j ⊗ EndkQ(X). Since

EndkQ(X)/radEndkQ(X) ∼= k and radEndkQ(X) is closed under the action of HX ,

we have

̺i ⊗ EndkQ(X)/radEndkQ(X) ∼= ̺j ⊗ EndkQ(X)/radEndkQ(X).

This means ̺i ∼= ̺j as kHX -modules and we get a contradiction.

(3) By [13], Lemma 3.2.1, (̺i ⊗X)⊗X | (̺i ⊗X)⊗kQ kQ ∗HX , that is, ̺i ⊗X

is a direct summand of (̺i ⊗ X) ⊗kQ kQ ∗ HX as kQ ∗ HX -modules. Then we

have ̺i ⊗ X | X ⊗kQ kQ ∗ HX , since ̺i ⊗ X ∼= X as kQ-modules. Note that

̺i ⊗X ≇ ̺j ⊗X if i 6= j, hence we get that
( r⊕

i=1

̺i ⊗X
)∣∣∣X ⊗kQ kQ ∗HX , so that

X ⊗kQ kQ ∗HX
∼=

r⊕
i=1

̺i ⊗X by [15], Proposition 1.8.

(4) Let Y be a kQ ∗HX -module such that Y ∼= X as kQ-modules. Then Y is an

indecomposable kQ ∗HX -module. Since Y | Y ⊗kQ kQ ∗HX
∼= X ⊗kQ kQ ∗HX , it

is easy to see that there exists a unique i ∈ {1, 2, . . . , r} such that Y ∼= ̺i ⊗X . �

931



Lifting to the kQ ∗G-module, we have:

Lemma 3.3. Let X be an indecomposable kQ-module. Then

(1) (̺i ⊗X)⊗kQ∗HX
kQ ∗G ∼=

⊕
g∈GX

gX as kQ-modules;

(2) (̺i ⊗X)⊗kQ∗HX
kQ ∗G is an indecomposable kQ ∗G-module;

(3) (̺i⊗X)⊗kQ∗HX
kQ ∗G ≇ (̺j ⊗X)⊗kQ∗HX

kQ ∗G as kQ ∗G-modules if i 6= j;

(4) X ⊗kQ kQ ∗G ∼=
r⊕

i=1

(̺i ⊗X)⊗kQ∗HX
kQ ∗G as kQ ∗G-modules.

P r o o f. (1) Note that (̺i⊗X)⊗kQ∗HX
kQ∗G ∼=

⊕
g∈GX

̺i⊗X⊗g and ̺i⊗X ∼= X

as kQ-modules, so we have (̺i ⊗X)⊗kQ∗HX
kQ ∗G ∼=

⊕
g∈GX

X ⊗ g ∼=
⊕

g∈GX

gX.

(2) The result follows from the fact that (̺i ⊗X)⊗kQ∗HX
kQ ∗G ∼=

⊕
g∈GX

gX is an

indecomposable G-invariant kQ-module.

(3) Suppose that (̺i ⊗X)⊗kQ∗HX
kQ ∗G ∼= (̺j ⊗X)⊗kQ∗HX

kQ ∗G. We have

that ̺i ⊗X ⊗ e | (̺j ⊗X) ⊗kQ∗HX
kQ ∗ G ∼=

⊕
g∈GX

̺j ⊗X ⊗ g for the unit e of G.

If ̺i ⊗ X ⊗ e ∼= ̺j ⊗ X ⊗ e, then ̺i ⊗ X ∼= ̺j ⊗ X as kQ ∗ HX -modules. This is

a contradiction. If ̺i ⊗X ⊗ e ∼= ̺j ⊗X ⊗ g for some e 6= g ∈ GX , we have X ∼= gX

as kQ-modules. This is also a contradiction.

(4) Note that (̺i ⊗ X) ⊗kQ∗HX
kQ ∗ G | (̺i ⊗ X) ⊗kQ∗HX

kQ ∗ G ⊗kQ kQ ∗ G,

by the statement (1) we have (̺i ⊗ X) ⊗kQ∗HX
kQ ∗ G

∣∣∣
( ⊕

g∈GX

gX
)
⊗kQ kQ ∗ G

and (̺i ⊗ X) ⊗kQ∗HX
kQ ∗ G | X ⊗kQ kQ ∗ G for any i ∈ {1, 2, . . . , r}. Thus,( r⊕

i=1

(̺i⊗X)⊗kQ∗HX
kQ∗G

)∣∣∣X⊗kQkQ∗G, so thatX⊗kQkQ∗G ∼=
r⊕

i=1

(̺i⊗X)⊗kQ∗HX

kQ ∗G by [15], Proposition 1.8. �

By the above discussion, we get the main result of this section.

Theorem 3.4. Let G ⊆ Aut(kQ) be a finite abelian group. For any indecompos-

able kQ-module X and kQ ∗ G-module Y such that Y ∼=
⊕

g∈GX

gX as kQ-modules,

there exists a unique i ∈ {1, 2, . . . , r} such that Y ∼= (̺i ⊗X)⊗kQ∗HX
kQ ∗G. That

is, there are r non-isomorphic kQ ∗ G-modules induced from the indecomposable

G-invariant kQ-module
⊕

g∈GX

gX.

Therefore, a finite dimensional kQ-module Y is an indecomposable kQ∗G-module

if and only if Y is an indecomposable G-invariant kQ-module.

P r o o f. Let Y be a kQ∗G-module such that Y ∼=
⊕

g∈GX

gX for some indecompos-

able kQ-module X . Then Y is an indecomposable kQ ∗G-module. Note that since

Y | Y ⊗kQ kQ ∗G ∼=
( ⊕

g∈GX

gX
)
⊗kQ kQ ∗G and gX ⊗kQ kQ ∗G ∼= X ⊗kQ kQ ∗G for
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any g ∈ G, we have Y | X ⊗kQ kQ ∗G. Thus there exists a unique i ∈ {1, 2, . . . , r}

such that Y ∼= (̺i ⊗X)⊗kQ∗HX
kQ ∗G.

Following from Proposition 3.1, we get that an indecomposable G-invariant

kQ-module Y is a kQ ∗G-module and indecomposable. Conversely, for an indecom-

posable kQ ∗G-module Y , we have Y ∼=
s⊕

j=1

( ⊕
g∈GXj

gXj

)
with some indecomposable

kQ-modules X1, X2, . . . , Xs. Since Y | Y ⊗kQ kQ ∗ G ∼=
s⊕

j=1

⊕
g∈GXj

gXj ⊗kQ kQ ∗ G,

there exists j such that Y | Xj ⊗kQ kQ ∗ G. We denote by kHXj
=

rj⊕
i=0

̺ji the irre-

ducible decomposition of kHXj
asHXj

-representations. Then there exists a unique ̺ji
such that Y ∼= (̺ji ⊗Xj) ⊗kQ∗HXj

kQ ∗G ∼=
⊕

g∈GXj

gXj as kQ-modules, so that Y is

indecomposable. �

Following from this theorem, for any indecomposable kQ-moduleX there are |HX |

indecomposable kQ ∗G-module structures on
⊕

g∈GX

gX which are {(̺i ⊗X)⊗kQ∗HX

kQ ∗ G : 1 6 i 6 |HX |}. And all the irreducible kQ ∗ G-modules can be obtain in

this way.

For convenience, we denote

X
i := (̺i ⊗X)⊗kQ∗HX

kQ ∗G

for all i ∈ {1, 2, . . . , |HX |}.

4. Proof of main theorem

Let Q be a finite union of Dynkin quivers, let G ⊆ Aut(kQ) be a finite abelian

group. In this section, we discuss the structure of the quivers Γ̂Q and ΓQ̂, and show

the duality of the Auslander-Reiten quiver ΓQ of kQ.

For any g ∈ G, we have obtained in Section 2 an autoequivalence functor Fg :

mod -kQ → mod -kQ, X 7→ gX. Therefore, for any finite dimensional kQ-modules

X , Y and Z,

(1) X
α

−→ Y is an irreducible morphism if and only if gX
gα
−→ gY is;

(2) X
α

−→ Y is a (minimal) left (or right) almost split morphism if and only if
gX

gα
−→ gY is;

(3) a short exact sequence 0 → X
α

−→ Z
β

−→ Y → 0 is an almost split sequence if

and only if 0 → gX
gα
−→ gZ

gβ
−→ gY → 0 is.

Denote by ΓQ the Auslander-Reiten quiver of kQ. Note that the quiver ΓQ con-

tains no multiple edges, Fg ◦ Fg′ = Fgg′ and Fg−1 ◦ Fg = Idmod -kQ for any g, g
′ ∈ G,
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there is a natural action of G on ΓQ given by

g([X ]) = [gX ], g([X ] → [Y ]) = [gX ] → [gY ],

such that G ⊆ Aut(ΓQ). Thus we obtain the generalized McKay quiver Γ̂Q of (ΓQ, G)

by the definition.

Let I denote the vertex set of ΓQ, i.e., I = {[X ] : X is an indecomposable

kQ-module}; let I denote the set of representatives of the classes of I under the

action of G; let Gi denote the subgroup of G stabilizing i, for each i ∈ I. Obviously,

Gi = HX = {g ∈ G : Fg(X) ∼= X as kQ-modules},

if i = [X ] for an indecomposable kQ-module X . By the definition, the vertex set Î

of Γ̂Q is ⋃

i∈I

{i} × irrGi = {(i, ̺) : i ∈ I, ̺ ∈ irrGi},

where irrGi is the set of representatives of isomorphism classes of irreducible repre-

sentations of Gi. Now, we write G as the product of some finite cyclic group, i.e.,

G = 〈g1〉 × 〈g2〉 × . . .× 〈gn〉,

where the order of gl is ml for 1 6 l 6 n. Then, each Gi has the form

Gi = 〈g
di1

1 〉 × 〈g
di2

2 〉 × . . .× 〈g
din
n 〉,

where νil := |〈g
dil

j 〉| = ml/dil , 1 6 l 6 n, so that

di := |Oi| =
|G|

|Gi|
= di1 × di2 × . . .× din .

For each l ∈ {1, 2, . . . , n}, we assume that ξl is a primitive mlth root of unity. Let

e(i,si1 ,si2 ,...,sin ) be

1

|Gi|

νi1−1∑

j1=0

νi2−1∑

j2=0

. . .

νin−1∑

jn=0

ξ
di1

j1si1
1 ξ

di2
j2si2

2 . . . ξ
dinjnsin
n g

di1
j1

1 g
di2

j2
2 . . . g

dinjn
n .

Then one can check that {e(i,si1 ,si2 ,...,sin ) : sil ∈ Z/νilZ for all 1 6 l 6 n} is a com-

plete set of primitive orthogonal idempotents of k[Gi]. Note that each e(i,si1 ,si2 ,...,sin )

corresponding to a unique irreducible representation ̺ of Gi is defined by the group

homomorphism ϕ̺ : Gi → k, g
dil

j 7→ ξdil
sil , 1 6 l 6 n; we reindex Î by

Î = {(i, si1 , si2 , . . . , sin) : i ∈ I, sil ∈ Z/νilZ for all 1 6 l 6 n} .

Obviously, |Î| =
∑
i∈I

|Gi|.
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For any i = [X ], j = [Y ] ∈ I, we consider the group Gij = Gi ∩ Gj = 〈gt11 〉 ×

〈gt22 〉 × . . .×〈gtnn 〉, where tl is the least common multiple of dil and djl for 1 6 l 6 n.

Note that the vector space Eij spanned by arrows α : i → j in ΓQ is a k[Gij]-bimodule

and is 1-dimensional as a k-vector space, the action of g = gt11 g
t2
2 . . . gtnn on Eij is an

identity.

Next, we calculate

e(j,sj1 ,sj2 ,...,sjn )αe(i,si1 ,si2 ,...,sin )

=
didj
|G|2

νi1−1∑

p1=0

. . .

νin−1∑

pn=0

νj1−1∑

q1=0

. . .

νjn−1∑

qn=0

ξ
di1

p1si1+dj1
q1sj1

1 . . . ξ
dinpnsin+djnqnsjn
n

g
dj1

q1
1 . . . g

djnqn
n (α)g

di1
p1+dj1

q1
1 . . . g

dinpn+djnqn
n .

We write

dilpl = Pltl + dilp
′
l, where 0 6 Pl <

ml

tl
, 0 6 p′l <

tl
dil
,

djlql = P ′
l tl + djlq

′
l, where 0 6 P ′

l <
ml

tl
, 0 6 q′l <

tl
djl
,

dilkl ≡ (Pl + P ′
l )tl + dilp

′
l modml, where 0 6 kl < νil

for all 0 6 l 6 n. Then the right-hand side of the equation becomes

didj
|G|2

m1/t1−1∑

P ′
1
=0

ξ
P ′

1
t1(sj1−si1 )

1 . . .

mn/tn−1∑

P ′
n=0

ξ
P ′

ntn(sjn−sin )
n

νi1−1∑

k1=0

. . .

νin−1∑

kn=0

t1/dj1
−1∑

q′
1
=0

. . .

tn/djn−1∑

q′n=0

ξ
di1

k1si1+dj1
q′
1
sj1

1 . . . ξ
dinknsin+djnq′nsjn
n

g
dj1

q′
1

1 . . . g
djnq′n
n (α)g

di1
k1+dj1

q′
1

1 . . . g
dinkn+dinq′n
n .

It is easy to see that

{
g
dj1

q′
1

1 . . . g
djnq′n
n (α)g

di1
k1+dj1

q′
1

1 . . . g
dinkn+djnq′n
n : 0 6 kl < νil , 0 6 q′l <

tl
djl

for 1 6 l 6 n
}

is a linearly independent set. Thus e(j,sj1 ,sj2 ,...,sjn )αe(i,si1 ,si2 ,...,sin ) 6= 0 if and only

if sil ≡ sjl modml/tl for all 0 6 l 6 n. It follows that, for any arrow i → j in ΓQ,

we get an arrow (i, si1 , si2 , . . . , sin) → (j, sj1 , sj2 , . . . , sjn) in Γ̂Q for each sequence
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(si1 , si2 , . . . , sin , sj1 , sj2 , . . . , sjn) satisfying sil ≡ sjl modml/tl for all 0 6 l 6 n. And

all the arrows in Γ̂Q can be got in this way.

In particular, if Gi ⊇ Gj, there are |G|/di arrows from (i, si1 , si2 , . . . , sin) to

(j, sj1 , sj2 , . . . , sjn) in Γ̂Q, for any irreducible morphism i → j. More precisely, if

|Gi/Gj| = k, i.e.,
n∑

l=1

djl/dil = k. Then, for any fixed vertex (j, sj1 , sj2 , . . . , sjn)

in Γ̂Q, there are k vertices (i, si1 , si2 , . . . , sin) satisfying sil ≡ sjl modml/djl for all

0 6 l 6 n. Thus we can reindex the set
{
(i, si1 , si2 , . . . , sin) : sil ∈ Z/νilZ for all 1 6

l 6 n
}
by

{(j, sjt , sj2 , . . . , sjn)
t : 1 6 t 6 k and sjl ∈ Z/νjlZ for all 1 6 l 6 n},

so that there is an arrow (j, sj1 , sj2 , . . . , sjn)
t → (j, sj1 , sj2 , . . . , sjn) for all t.

Similarly, if |Gj/Gi| = k, we can reindex the set {(j, sj1 , sj2 , . . . , sjn) : sjl ∈ Z/νjlZ

for all 1 6 l 6 n} by

{(i, si1 , si2 , . . . , sin)
t : 1 6 t 6 k and sil ∈ Z/νilZ for all 1 6 l 6 n},

so that there is an arrow (i, si1 , si2 , . . . , sin) → (i, si1 , si2 , . . . , sin)
t for all t.

On the other hand, we consider the Auslander-Reiten quiver ΓQ̂ of kQ̂, where we

identify ΓQ̂ with the Auslander-Reiten quiver of kQ ∗G. Following from the result

in Section 2, all the indecomposable kQ ∗G-modules (up to isomorphism) are

I := {X i : [X ] ∈ I, 1 6 i 6 |HX |}.

Obviously, the vertex set I of ΓQ̂ satisfies |I| =
∑

[X]∈I

|HX | =
∑
i∈I

|Gi| = |Î|.

Before characterizing the arrows in ΓQ̂, we need some facts.

Lemma 4.1 (see [15]). Let X,Y be indecomposable kQ-modules, let X ′, Y ′ be

indecomposable kQ ∗G-modules. Then

(1) if X → Y is a minimal left (or right) almost split morphism in mod-kQ, then

X⊗kQ kQ∗G→ Y ⊗kQ kQ∗G is the direct sum of some minimal left (or right)

almost split morphisms in mod-kQ ∗G;

(2) if X ′ → Y ′ is a minimal left (or right) almost split morphism in mod-kQ ∗ G,

then X ′ → Y ′ in mod-kQ is the direct sum of some minimal left (or right)

almost split morphisms.

Lemma 4.2 (see [2]). Assume that X,Y, Z, Z ′ ∈ mod-kQ and X,Y are indecom-

posable. Then
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(1) a morphism β : Z → Y is irreducible if and only if there exists a morphism

β′ : Z ′ → Y such that (β, β′) : Z ⊕ Z ′ → Y is a minimal right almost split

morphism in mod-kQ;

(2) a morphism α : X → Z is irreducible if and only if there exists a morphism

α′ : X → Z ′ such that
(
α
α′

)
: X → Z⊕Z ′ is a minimal left almost split morphism

in mod-kQ.

Let Q = (I, E) be a finite quiver. For any Q-representation X = (Xi, Xα), we

denote IX := {i ∈ I : Xi 6= 0} and call it the support of X .

Lemma 4.3. LetQ = (I, E) be a finite union of Dynkin quivers andG ⊆ Aut(kQ)

a finite abelian group. For any indecomposable Q-representations X = (Xi, Xα) and

Y = (Yi, Yα), if the supports of X and Y are in the same connected component of Q,

then we have

HX ⊆ HY or HY ( HX .

P r o o f. Let vertices i and j be in the same connected component of Q. Suppose

that there exists an arrow between i and j and |Oi| > |Oj |. Note that the connected

component is Dynkin, and there are at most three edges connections in Dynkin

diagram; we get |Oi| = n|Oj |, where n = 1, 2, or 3. Clearly, Gi = Gj if |Oi| = |Oj |,

and Gi ⊂ Gj if |Oi| > |Oj |. By induction, we have Gi ⊆ Gj or Gj ( Gi for any two

vertices i and j in the same connected component of Q.

Moreover, it is easy to see that

HX =
⋂

i∈IX

Gi and HY =
⋂

i∈IY

Gi.

Hence HX = Gi for some i ∈ IX and HY = Gj for some j ∈ IY . We get the lemma.

�

Now, we consider the arrows in ΓQ̂. Let X → Y be an irreducible morphism

in mod-kQ. We suppose that HX ⊇ HY and denote HX/HY := {g1 + HY , g2 +

HY , . . . , gk +HY }. By Lemma 4.2, there exists a kQ-module M satisfying
gY is not

a summand of M , such that

X →

( k⊕

i=1

giY

)
⊕M

is a minimal left almost split sequence in mod-kQ. By Lemma 4.1,

X ⊗kQ kQ ∗G→

( k⊕

i=1

giY ⊗kQ kQ ∗G

)
⊕M ⊗kQ kQ ∗G,
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i.e., X 1 ⊕ . . .⊕ X |HX | → (Y 1)⊕k ⊕ . . .⊕ (Y |HY |)⊕k ⊕M ⊗kQ kQ ∗G is the direct

sum of some minimal left almost split sequence in mod-kQ ∗ G, where
(
Y i

)⊕k
:=

Y
i ⊕ . . .⊕ Y

i

︸ ︷︷ ︸
k fold

for 1 6 i 6 |HY |.

Thus, there exist |HX | arrows in ΓQ̂ corresponding to the irreducible mor-

phism X → Y . More precisely, by Lemma 4.1, there exists a permutation ω on

{1, 2, . . . , |HX |} such that for each i there are irreducible morphisms X ω(j) → Y i

for all ik 6 j 6 (i+ 1)k − 1.

For the case HX ⊆ HY and |HY /HX | = k, we can get a similar conclusion: there

exists a permutation ω on {1, 2, . . . , |HY |} such that there is an irreducible morphism

X i → Y ω(j) for all 1 6 i 6 |HX | and ik 6 j 6 (i+ 1)k − 1.

We are now in a position to give the proof of Theorem 1.1.

P r o o f of Theorem 1.1. Define a map Φ: ΓQ̂ → Γ̂Q as follows. For each irre-

ducible morphism X → Y in mod-kQ, by Lemma 4.3, HX = Gi ⊇ Gj = HY or

HX = Gi ( Gj = HY .

(1) If HX = Gi ⊇ Gj = HY and |HX/HY | = k, k > 1, then

Φ: Y
i 7→ (j, sj1 , sj2 , . . . , sjn)

X
ω(j) 7→ (i, si1 , si2 , . . . , sin) = (j, sj1 , sj2 , . . . , sjn)

t,

where t ≡ j mod ki and e(j,sj1 ,sj2 ,...,sjn) is the idempotent of k[Gj] corresponding

to the irreducible representation ̺i of Gj. Note that |HX | = |Gi| and |HY | =

|Gj|; Φ defines two one-to-one correspondences between {X j : 1 6 j 6 |HX |},

{Y i : 1 6 i 6 |HY |} and {(i, si1, si2 , . . . , sin) : sil ∈ Z/νilZ for all 1 6 l 6 n},

{(j, sj1 , sj2 , . . . , sjn) : sjl ∈ Z/νjlZ for all 1 6 l 6 n}, respectively.

In this case, for the irreducible morphismX → Y , there are an arrowX ω(j) → Y i

in ΓQ̂ and an arrow (j, sj1 , sj2 , . . . , sjn)
t → (j, sj1 , sj2 , . . . , sjn) in Γ̂Q. Let Φ map

X ω(j) → Y i to (j, sj1 , sj2 , . . . , sjn)
t → (j, sj1 , sj2 , . . . , sjn).

(2) if HX = Gi ( Gj = HY and |HY /HX | = k, k > 1, then

Φ: X
i 7→ (i, si1 , si2 , . . . , sin)

Y
ω(j) 7→ (j, sj1 , sj2 , . . . , sjn) = (i, si1 , si2 , . . . , sin)

t,

where t ≡ j mod ki and e(i,si1 ,si2 ,...,sin ) is the idempotent of k[Gi] corresponding

to the irreducible representation ̺i of Gi. Similarly, Φ defines also two one-to-one

correspondences between the vertices in ΓQ̂ and Γ̂Q corresponding to X and Y ,

respectively.

In this case, for the irreducible morphismX → Y , there are an arrowX i → Y ω(j)

in ΓQ̂ and an arrow (i, si1 , si2 , . . . , sin) → (i, si1 , si2 , . . . , sin)
t in Γ̂Q. Let Φ map

X i → Y ω(j) to (i, si1 , si2 , . . . , sin) → (i, si1 , si2 , . . . , sin)
t.

938



Then, it is easy to see that Φ: ΓQ̂ → Γ̂Q is a quiver isomorphism, and ΓQ̂ = Γ̂Q.

By [9], Propsoition 3.6, there is an action of G on Γ̂Q such that Γ̂Q̂ =
̂̂
ΓQ = ΓQ. The

proof is completed. �

5. An example

In the end of this paper, we use an example to show the duality of (Q,G), (ΓQ, G)

and the valued quiver corresponding to (Q,G), wheneverQ is a finite union of Dynkin

quivers and G ⊆ Aut(kQ) is abelian.

Let Q = (I, E) = Q1 ∪Q2 be the quiver

Q1 :
1 2

3

45 α4

α1

α2

α3

Q2 :
1
′

2
′

3
′

4
′

5
′ α′

4

α′

1

α′

2

α′

3

and consider the group G = 〈a〉 × 〈b〉 ∼= Z/2Z× Z/2Z. We consider an action of G

on kQ as follows:

e1 e2 e3 e4 e5 e1′ e2′ e3′ e4′ e5′

a e5 e4 e3 e2 e1 e5′ e4′ e3′ e2′ e1′

b e1′ e2′ e3′ e4′ e5′ e1 e2 e3 e4 e5

α1 α2 α3 α4 α′
1 α′

2 α′
3 α′

4

a −α4 −α3 −α2 −α1 −α′
4 −α′

3 −α′
2 −α′

1

b α′
1 α′

2 α′
3 α′

4 α1 α2 α3 α4

where ei is the idempotent element of kQ corresponding to a vertex i, i ∈ I. Then

one can calculate directly that the generalized McKay quiver of (Q,G) is

Q̂ :

1̂ 2̂

(3, ̺1)

(3, ̺0)

α

β

γ

where we take I = {1, 2, 3} and ̺0, ̺1 are the non-isomorphism irreducible repre-

sentations of G3 = 〈a〉 ∼= Z/2Z.
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Since G is abelian, all the character of G are linear, i.e., the group homomorphism

χ : G → k. The group of all the characters of G with multiplication χχ′(g) =

χ(g)χ′(g), g ∈ G, is also an abelian group, denoted by G̃. Setting ϕ : G → G̃ as

ϕ(g) = χg, χg(g
′) = (−1)t1s1+t2s2 if g = at1bt2 and g′ = as1bs2 , where t1, t2, s1, s2 ∈

{0, 1}, then ϕ is a group isomorphism.

Following from [15], we can define a linear action of G on kQ ∗ G by g(λh) =

χg(h)λh, g ∈ G, λh ∈ kQ ∗ G. Then G ⊆ Aut(kQ ∗ G) and under this action, we

can prove that (kQ ∗ G) ∗ G is Morita equivalent to kQ (see [9], Proposition 3.7).

Let e :=
∑
i∈I

ei ∈ kQ ⊆ kQ ∗G. Since ekQ ∗Ge ∼= kQ̂ (see [3], Theorem 1) and the

action of G on kQ ∗ G stabilizes e, the action of G on kQ ∗ G naturally induces an

action of G on kQ̂ as follows:

e1̂ e2̂ e(3,̺0) e(3,̺1) α β γ

a e1̂ e2̂ e(3,̺1) e(3,̺0) ξ1α ξ2γ ξ3β
b e1̂ e2̂ e(3,̺0) e(3,̺1) ξ4α ξ5β ξ6γ

where ξ1, ξ4, ξ5, ξ6 ∈ {1,−1}, the idempotent element ei corresponds to the vertex i,

i ∈ {1̂, 2̂, (3, ̺0), (3, ̺1)} and ξ2, ξ3 ∈ k satisfy ξ3ξ4 = 1. Then, one can check that

the generalized McKay quiver
̂̂
Q of (Q̂, G) is just the quiver Q.

For any quiver Q with an action of G on the path algebra kQ, we can construct

a symmetric matrix B = (bij) indexed by I by setting

bij =

{
2|Oi|, i = j;

−|{edges between vertices in Oi and Oj}|, i 6= j.

Let di :=
1
2 bii = |Oi| and D = diag(di). Then C = (cij) = D−1B is a symmetrizable

generalized Cartan matrix indexed by I . We write Γ for the corresponding valued

graph, that is, Γ has the vertex set I and we draw an edge i—j equipped with the

ordered pair (|cji|, |cij |) whenever cij 6= 0.

For our quivers Q and Q̂, we denote by Γ and Γ̂ the corresponding valued graphs

(Q,G) and (Q̂, G), respectively. By direct calculation, it is easy to see that the

generalized Cartan matrices of Γ and Γ̂ are

C =




2 −1 0

−1 2 −1

0 −2 2


 and Ĉ =




2 −1 0

−1 2 −2

0 −1 2


 .

Obviously, Ĉ is the transposed matrix of C. Therefore Γ and Γ̂ are dual valued

graphs, in the sense of [12].
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Let Γ̂Q denote the generalized McKay quiver of (ΓQ, G) and ΓQ̂ the Auslander-

Reiten quiver of kQ̂. For the quiver Q = Q1∪Q2 and the action of G ∼= Z/2Z×Z/2Z

given as above, we now show that Γ̂Q = ΓQ̂ and Γ̂Q̂ = ΓQ. First, we consider all

indecomposable representations of Q1. For 1 6 i 6 j 6 5, we denote by Xij =

(Xi, Xα) the representation of Q1 with

Xl =

{
k, if i 6 l 6 j;

0, otherwise,
Xα =

{
1, if α : k → l, where i 6 k, l 6 j;

0, otherwise.

We denote by Pi, Ii and Si the projective, injective and simple representation cor-

responding to vertex i, respectively. It is well-known that all the indecomposable

Q1-representations are

X11 = P1 = S1, X12 = P2, X13 = I1, X14, X15 = P3,

X22 = S2, X23 = I2, X24, X25, X33 = I3 = S3,

X34 = I4, X35 = I5, X44 = S4, X45 = P4, X55 = P5 = S5

and the Auslander-Reiten quiver ΓQ1
is

[P1]

[P2]

[P3]

[X14]

[I1]

[S2]

[X25]

[X24]

[I2]

[I5]

[I4]

[I3]

[P4]

[S4][P5]

Thus the Auslander-Reiten quiver ΓQ is a double copy of ΓQ1
.

Secondly, following from the action of G on kQ, the action of G = 〈a〉 × 〈b〉 ∼=

Z/2Z× Z/2Z is as follows: b(Xij) = X ′
ij ,

X11 X12 X13 X14 X15 X22 X23 X24 X25 X33 X34 X35 X44 X45 X55

a X55 X45 X35 X25 X15 X44 X34 X24 X14 X33 X23 X13 X22 X12 X11

and the the action of a on X ′
ij is given by a(X

′
ij) = X ′

kl if a(Xij) = Xkl, where X
′
ij

is the indecomposable Q2-representation defined similarly to Xij . It is easy to see

that the action of G commutes with the Auslander-Reiten translate.
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By direct calculation, we have

Γ̂Q :

This quiver coincides with the Auslander-Reiten quiver ΓQ̂ of kQ̂, so that Γ̂Q̂ = ΓQ.

At last, we remark that if the group is non-abelian, the conclusion is not true in

general. For example, let Q be the quiver

We consider the action of S3, the quiver automorphism group of Q. Accordingly, we

obtain the generalized McKay quiver Q̂ of (Q,S3) as follows:

It is well-known that the Auslander-Reiten quivers of kQ and kQ̂ are

Γ
Q̂
:ΓQ :

One can check that there exists no subgroup G′ of Aut(kQ̂) such that the gener-

alized McKay quiver of (Q̂, G′) is Q, there exists no subgroup G′ of Aut(kQ̂) such

that the generalized McKay quiver of (ΓQ, G
′) is ΓQ̂.
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[1] I.Assem, D. Simson, A. Skowroński: Elements of the Representation Theory of Asso-
ciative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical
Society Student Texts 65. Cambridge University Press, Cambridge, 2006. zbl MR doi

[2] M.Auslander, I. Reiten, S. O. Smalø: Representation Theory of Artin Algebras. Cam-
bridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge,
1995. zbl MR doi

[3] L.Demonet: Skew group algebras of path algebras and preprojective algebras. J. Algebra
323 (2010), 1052–1059. zbl MR doi

[4] B.Deng, J. Du: Frobenius morphisms and representations of algebras. Trans. Am. Math.
Soc. 358 (2006), 3591–3622. zbl MR doi

[5] B.Deng, J. Du, B.Parshall, J.Wang: Finite Dimensional Algebras and Quantum
Groups. Mathematical Surveys and Monographs 150. American Mathematical Society,
Providence, 2008. zbl MR doi
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