Czechoslovak Mathematical Journal

Bo Hou; Shilin Yang

The duality of Auslander-Reiten quiver of path algebras

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 4, 925-943

Persistent URL: http://dml.cz/dmlcz/147904

Terms of use:

© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

THE DUALITY OF AUSLANDER-REITEN QUIVER OF PATH ALGEBRAS

Bo Hou, Kaifeng, Shilin Yang, Beijing

Received November 28, 2017. Published online February 18, 2019.

Abstract. Let Q be a finite union of Dynkin quivers, $G \subseteq \operatorname{Aut}(k Q)$ a finite abelian group, \widehat{Q} the generalized McKay quiver of (Q, G) and Γ_{Q} the Auslander-Reiten quiver of $\mathbb{k} Q$. Then G acts functorially on the quiver Γ_{Q}. We show that the Auslander-Reiten quiver of $\ltimes \widehat{Q}$ coincides with the generalized McKay quiver of $\left(\Gamma_{Q}, G\right)$.

Keywords: Auslander-Reiten quiver; generalized McKay quiver; duality
MSC 2010: 16G10, 16G20, 16G70

1. Introduction

Let $Q=(I, E)$ be a quiver, let $\operatorname{Aut}(Q), \operatorname{Aut}(\mathbb{k} Q)$ be the automorphism groups of Q and the path algebra $\mathbb{k} Q$, respectively. For the skew group algebra $\mathbb{k} Q * G$ corresponding to the pair (Q, G) with $G \subseteq \operatorname{Aut}(Q)$, there has been a lot of literature on $\mathbb{k} Q * G$ (for example see [8], [10], [11], [15], [17]).

It is shown in [15] that if Q has no oriented cycles and $G \subseteq \operatorname{Aut}(Q)$ is a cyclic group, then the skew group algebra $\mathbb{k} Q * G$ is Morita equivalent to the path algebra of another quiver Γ. The authors illustrate this through several examples. In [10], [11], Hubery showed the duality of (Q, G), that is, there exists an action of G on Γ such that $\mathbb{k} \Gamma * G$ is Morita equivalent to $\mathbb{k} Q$. More generally, for an arbitrary finite group G and an action of G on the path algebra $\mathbb{k} Q$ permuting the set of primitive idempotents and stabilizing the vector space spanned by the arrows, Demonet in [3] defined a quiver \widehat{Q} (we call it the generalized McKay quiver) and proved that the

The research has been supported by National Natural Science Foundation (Grant No. 11771122, 11671024, 11471186) and the Natural Science Foundation of Beijing (Grant No. 1162002).
skew group algebra $\mathbb{k} Q * G$ is Morita equivalent to $\mathbb{k} \widehat{Q}$. Obviously, if $G \subseteq \operatorname{Aut}(Q)$ is a cyclic group, the generalized McKay quiver \widehat{Q} coincides with the Γ constructed in [10], [11], [15].

For the relationship between Q-representations and $\mathbb{k} Q * G$-modules, the paper [17] gives a detailed description whenever $G \subseteq \operatorname{Aut}(Q)$ is cyclic. By a similar technique, for a quiver Q with relations in \mathscr{R} and a finite abelian group $G \subseteq \operatorname{Aut}(Q)$ preserving the relations in \mathscr{R}, we gave in [8] the condition for a (Q, \mathscr{R})-representation to be a $\Lambda * G$-module and determined the number of non-isomorphic indecomposable $\Lambda * G$-modules which are induced from the same (Q, \mathscr{R})-representation, where $\Lambda=\mathbb{k} Q /\langle\mathscr{R}\rangle$. In the paper [9], we discussed the duality of (Q, G) in the case that $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ is finite abelian, and by the duality, gave the correspondence between the indecomposable \widehat{Q}-representations and the positive roots of the valued graph of (Q, G). In this paper, we consider the duality of the Auslander-Reiten quiver of $\mathbb{k} Q$.

The Auslander-Reiten quiver Γ_{Q} of $\mathbb{k} Q$ codifies the structure of the category of finitely generated $\mathbb{k} Q$-modules. Vertices are the indecomposable $\mathbb{k} Q$-modules, arrows are the irreducible morphisms between them. Note that an automorphism $\sigma \in \operatorname{Aut}(k Q)$ also acts functorially on the category of Q-representations and this determines an action on the set of isomorphism classes. That is to say, σ induces a quiver automorphism of the Auslander-Reiten quiver Γ_{Q} of $\mathbb{k} Q$. If \mathbb{k} is the algebraic closure of a finite field F_{q} and F is the Frobenius morphism induced by σ, Deng and Du have shown that the Auslander-Reiten quiver of the fixed point algebra $(\mathbb{k} Q)^{F}$ is just the F_{q}-species associated to $\left(\Gamma_{Q}, \sigma\right)$ (see [4], [5]). If Q is a connected Dynkin quiver, the order of σ is only 1,2 , or 3 . In this case, Zhang showed that the generalized McKay quiver $\widehat{\Gamma_{Q}}$ of $\left(\Gamma_{Q}, \sigma\right)$ is just the Auslander-Reiten quiver $\Gamma_{\widehat{Q}}$ of \widehat{Q} via case-by-case analysis, where \widehat{Q} is the generalized McKay quiver of (Q, σ) (see [16]). Here, we will give a uniform proof for this result whenever Q is a finite union of Dynkin quivers and $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ is a finite abelian group.

Let Q be a finite union of Dynkin quivers, $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ a finite abelian group, \widehat{Q} and Γ_{Q} the generalized McKay quiver of (Q, G) and the Auslander-Reiten quiver of $\mathbb{k} Q$. Then G also acts functorially on the quiver Γ_{Q}. By the duality of (Q, G) discussed in [9], there is an action of G on \widehat{Q} so that it also induces an action on the quiver $\Gamma_{\widehat{Q}}$. Our main result is:

Theorem 1.1. Let $\widehat{\Gamma_{Q}}$ and $\widehat{\Gamma_{\widehat{Q}}}$ be the generalized McKay quivers of Γ_{Q} and $\Gamma_{\widehat{Q}}$, respectively. Then

$$
\Gamma_{\widehat{Q}}=\widehat{\Gamma_{Q}} \quad \text { and } \quad \Gamma_{Q}=\widehat{\Gamma_{\widehat{Q}}}
$$

That is, the group action also induces a dual for the Auslander-Reiten quiver of $\mathbb{k} Q$ and $\mathbb{k} \widehat{Q}$. Since path algebra $\mathbb{k} \widehat{Q}$ is Morita equivalent to $\mathbb{k} Q * G$, we identify $\Gamma_{\widehat{Q}}$ with the Auslander-Reiten quiver of $\mathbb{k} Q * G$. Based on the understanding of the relationship between indecomposable $\mathbb{k} Q$-modules and indecomposable $\mathbb{k} Q * G$-modules, and the relationship between the almost split sequences in the category of $\mathbb{k} Q$-modules and in the category of $\mathfrak{k} Q * G$-modules, we give a proof of this theorem.

This paper is organized as follows. In Section 1, we shortly review some basic concepts of representations of quivers, Auslander-Reiten quivers and generalized McKay quivers. In Section 2, we discuss the relationship between indecomposable $\mathbb{k} Q$-modules and indecomposable $\mathbb{k} Q * G$-modules. In fact, similarly to [8], Section 2 , we show that all finite dimensional $\mathbb{k} Q * G$-modules can be obtained from $\mathbb{k} Q$-modules, and the number of non-isomorphic indecomposable $\mathbb{k} Q * G$-modules induced from the same indecomposable G-invariant $\mathbb{k} Q$-module can be determined. In Section 3, we apply the results of Section 2 and Reiten and Riedtmann's results about the almost split sequences in categories of $\mathbb{k} Q$-modules and $\mathbb{k} Q * G$-modules to give the proof of our main theorem. In the last section, we use an interesting example to show the duality of $(Q, G),\left(\Gamma_{Q}, G\right)$ and the valued quiver corresponding to (Q, G), respectively.

Throughout this paper, G will denote a finite group, \mathbb{k} denotes an algebraic closed field whose characteristic does not divide the order of G, mod- Λ denotes the category of finite-dimensional right Λ-modules for any Artin algebra Λ. Unless otherwise stated all modules we consider are finite-dimensional and $\otimes:=\otimes_{k}$.

2. Preliminaries

We recall in this section some basic facts about quivers and their representations, Auslander-Reiten quivers and generalized McKay quivers.

A quiver $Q=(I, E)$ is an oriented graph with I the set of vertices and E the set of arrows. Quiver Q is called finite if I and E are finite sets. For any given quiver Q, we have an associative \mathbb{k}-algebra $\mathbb{k} Q$, called the path algebra of Q (see [1], [2]). A representation $X=\left(X_{i}, X_{\alpha}\right)$ of a quiver Q over \mathbb{k} consists of a family of \mathbb{k}-vector spaces X_{i} for $i \in I$, together with a family of \mathbb{k}-linear maps $X_{\alpha}: X_{i} \rightarrow X_{j}$ for $\alpha: i \rightarrow j$ in E. A morphism $\varphi: X \rightarrow Y$ between two representations X and Y is given by \mathbb{k}-linear maps $\varphi_{i}: X_{i} \rightarrow Y_{i}$ for all $i \in I$, satisfying $\varphi_{j} \circ X_{\alpha}=Y_{\alpha} \circ \varphi_{i}$ for each arrow $\alpha: i \rightarrow j$. It is well-known that the category of finite-dimensional Q-representations over \mathbb{k} is naturally equivalent to the category mod- $\mathbb{k} Q$. Thus in this paper, we identify a Q-representation with a $\mathbb{k} Q$-module. For background on the representation theory of quivers, the reader is referred to $[1],[2]$ and $[6]$.

The important notion of Auslander-Reiten quivers was introduced in the 70's by Auslander and Reiten and since then it has played an essential role in the representation theory of Artin algebras. Recall firstly that a homomorphism $f: X \rightarrow Y$ in $\bmod -\mathbb{k} Q$ is called irreducible if f is neither a section nor a retraction, but for any factorization $f=f_{1} f_{2}$ either f_{2} is a section or f_{1} is a retraction. If Q has no oriented cycles, then the Auslander-Reiten quiver Γ_{Q} of path algebra $\mathbb{k} Q$ is defined as follows: the vertices of Γ_{Q} are the isomorphism classes $[X]$ of finitely generated indecomposable $\mathbb{k} Q$-modules X; for two vertices $[X]$ and $[Y]$ in Γ_{Q}, the arrows $[X] \rightarrow[Y]$ are in bijective correspondence with a basis of \mathbb{k}-vector space $\operatorname{Irr}(X, Y)$, where $\operatorname{Irr}(X, Y)$ is the set of all irreducible morphisms from X to Y. It is well-known that the quiver Γ_{Q} for a connected quiver Q is a finite quiver if and only if Q is a Dynkin quiver of type $A_{n}(n \geqslant 1), D_{n}(n \geqslant 4), E_{6}, E_{7}$ or E_{8}, and then Γ_{Q} contains no multiple edges.

Assume that Λ is a \mathbb{k}-algebra and G acts on Λ; the skew group algebra of Λ under the action of G is by definition the \mathbb{k}-algebra whose underlying \mathbb{k}-vector space is $\Lambda \otimes_{\mathfrak{k}} \mathbb{k}[G]$ and whose multiplication is linearly generated by

$$
(\lambda \otimes g)\left(\lambda^{\prime} \otimes g^{\prime}\right)=\lambda g\left(\lambda^{\prime}\right) \otimes g g^{\prime}
$$

for all $\lambda, \lambda^{\prime} \in \Lambda$ and $g, g^{\prime} \in G$ (see [15]). For convenience, we denote this algebra by $\Lambda * G$ and denote the element $\lambda \otimes g$ in $\Lambda * G$ by λg. One sees that Λ and $\mathbb{k}[G]$ can be viewed as subalgebras of $\Lambda * G$.

Let $\Lambda=\mathbb{k} Q$ be the path algebra of the quiver $Q=(I, E)$. We consider an action of G on $\mathbb{k} Q$ permuting the set of primitive idempotents $\left\{e_{i}: i \in I\right\}$ and stabilizing the vector space spanned by the arrows. Let \mathscr{I} be a set of representatives of the orbits of I under the action of G. For any $i \in I$, there exists $g \in G$ such that $g^{-1}(i) \in \mathscr{I}$. We fix such a g and denote it by κ_{i}. For $(i, j) \in \mathscr{I}^{2}, G$ acts on $\mathscr{O}_{i} \times \mathscr{O}_{j}$ diagonally, where \mathscr{O}_{i} and \mathscr{O}_{j} are the orbits of i and j under the action of G. A set of representatives of the classes of this action will be denoted by $\mathscr{F}_{i j}$.

For $i, j \in I$, define $E_{i j} \subseteq \mathbb{k} Q$ to be the vector space spanned by the arrows from i to j. Let G_{i} be the subgroup of G stabilizing e_{i}. We regard $E_{i j}$ as a left and right $\mathbb{k}\left[G_{i j}\right]:=\mathbb{k}\left[G_{i} \cap G_{j}\right]$-module by restricting the action of G. In [3] Demonet defined the quiver $\widehat{Q}=(\hat{I}, \widehat{E})$ as

$$
\hat{I}=\bigcup_{i \in \mathscr{I}}\{i\} \times \operatorname{irr} G_{i}
$$

where $\operatorname{irr} G_{i}$ is a set of representatives of isomorphism classes of irreducible representations of G_{i}. The set of arrows of \widehat{Q} from (i, ϱ) to (j, σ) is a basis of

$$
\bigoplus_{\left(i^{\prime}, j^{\prime}\right) \in \mathscr{F}_{i j}} \operatorname{Hom}_{\mathbb{k}\left[G_{i^{\prime} j^{\prime}}\right]}\left(\left.\left(\varrho \cdot \kappa_{i^{\prime}}\right)\right|_{G_{i^{\prime} j^{\prime}}},\left.\left(\sigma \cdot \kappa_{j^{\prime}}\right)\right|_{G_{i^{\prime} j^{\prime}}} \otimes_{\mathbb{k}} E_{i^{\prime} j^{\prime}}\right),
$$

where the representation $\varrho \cdot \kappa_{i^{\prime}}$ of $G_{i^{\prime}}$ is the same as ϱ as a \mathbb{k}-vector space, and $\left(\varrho \cdot \kappa_{i^{\prime}}\right) g=\varrho \kappa_{i^{\prime}} g \kappa_{i^{\prime}}^{-1}$ for $g \in G_{i^{\prime}}=\kappa_{i^{\prime}}^{-1} G_{i} \kappa_{i^{\prime}}$. Furthermore, Demonet proved the following theorem.

Theorem 2.1 (see [3]). The category $\bmod -k \widehat{Q}$ is equivalent to the category $\bmod -\mathbb{k} Q * G$.

In particular, if the quiver Q is a singular vertex with m loops, we can view G as a subgroup of $\mathrm{GL}_{m}(\mathbb{k})$. Then the quiver \widehat{Q} is just the McKay quiver of G, see [7], [14]. Thus, we view the quiver \widehat{Q} as a generalized McKay quiver and call it the generalization of the McKay quiver of (Q, G). Moreover, for any factor algebra $\mathbb{k} Q / J$, it is easy to see that the skew group algebra $(\mathbb{k} Q / J) * G$ is Morita equivalent to a factor algebra of $\mathbb{k} \widehat{Q}$. That is to say, the generalized McKay quiver can realize the Gabriel quiver of $\Lambda * G$ for any basic algebra Λ.

3. Constituting $\mathbb{k} Q * G$-modules

Let $Q=(I, E)$ be a finite quiver, $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ a finite abelian group. In this section, we show that all finite dimensional $\mathbb{k} Q * G$-modules can be obtained from $\mathbb{k} Q$-modules, and the number of non-isomorphic indecomposable $\mathbb{k} Q * G$-modules induced from the same indecomposable G-invariant $\mathbb{k} Q$-modules can be determined.

Let X be a $k Q$-module, $g \in G$. We define a twisted $\mathbb{k} Q$-module ${ }^{g} X$ on X by taking the same underlying vector space as X with the action $x \cdot \lambda=x g^{-1}(\lambda)$ for $x \in X$ and $\lambda \in \mathbb{k} Q$. Then, for each $g \in G$, we have an additive autoequivalence functor

$$
\begin{aligned}
F_{g}: \quad \bmod -\mathbb{k} Q & \rightarrow \bmod -\mathfrak{k} Q \\
X & \mapsto{ }^{g} X,
\end{aligned}
$$

where ${ }^{g} \psi:=F_{g}(\psi)=\psi$ for any morphism $\psi: X \rightarrow Y$ in mod- $\mathbb{k} Q$.
Consider the subpace

$$
X \otimes g:=\{x \otimes g: x \in X\}
$$

of $X \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G$. Then $X \otimes g$ has a natural $\mathbb{k} Q$-module structure given by $(x \otimes g) \lambda=$ $x g^{-1}(\lambda) \otimes g$ for any $x \otimes g \in X \otimes g$ and $\lambda \in \mathbb{k} Q$. It is easy to see that ${ }^{g} X \cong X \otimes g$ as $\mathbb{k} Q$-modules.

Recall that a $\mathbb{k} Q$-module X is said to be G-invariant if $F_{g}(X) \cong X$ for any $g \in G$; a G-invariant $\mathbb{k} Q$-module X is said to be indecomposable G-invariant if X is nonzero and X cannot be written as the direct sum of two nonzero G-invariant $\mathbb{k} Q$-modules. For each $X \in \bmod -\mathbb{k} Q$, let

$$
H_{X}=\left\{g \in G: F_{g}(X) \cong X \text { as } \mathbb{k} Q \text {-modules }\right\} .
$$

Clearly, H_{X} is a subgroup of G. We denote by G_{X} a complete set of left coset representatives of H_{X} in G. Then one can see that any indecomposable G-invariant $\mathbb{k} Q$-module has the form

$$
\bigoplus_{g \in G_{X}}^{g} X
$$

for some indecomposable $X \in \bmod -\mathbb{k} Q$, and the full subcategory of $\bmod -\mathbb{k} Q$ generated by the G-invariant $\mathbb{k} Q$-modules is a Krull-Schmidt category.

For the G-invariant $\mathbb{k} Q$-modules and the $\mathbb{k} Q * G$-modules, we have:

Proposition 3.1. $A \mathbb{k} Q$-module X is a $\mathbb{k} Q * G$-module if and only if X is G-invariant.

Proof. Let X be a $\mathbb{k} Q * G$-module. We first show that X is G-invariant, i.e, ${ }^{g} X \cong X$ for any $g \in G$. For each $g \in G$, we define a map $f_{g}:{ }^{g} X \rightarrow X$ by $f_{g}(x)=x g^{-1}$ for all $x \in X$. Then, f_{g} is a $\mathbb{k} Q$-module isomorphism since

$$
f_{g}(x \cdot \lambda)=(x \cdot \lambda) g^{-1}=\left(x g^{-1}(\lambda)\right) g^{-1}=\left(x g^{-1}\right) \lambda=f_{g}(x) \lambda
$$

for all $\lambda \in \mathbb{k} Q$ and $x \in X$.
Conversely, if X is a G-invariant $\mathbb{k} Q$-module, that is, there exists a module isomorphism $\theta_{g}:{ }^{g} X \rightarrow X$ for any $g \in G$. Then, as observed in [??], page 95, there exists a $\mathbb{k} Q$-module isomorphism $\varphi_{g}:{ }^{g} X \rightarrow X$ such that ${ }^{g^{1-|g|}} \varphi_{g} \circ \ldots \circ{ }^{g^{-1}} \varphi_{g} \circ \varphi_{g}=\operatorname{id}_{g Y}$, where $|g|$ is the order of g. We define an action of $\mathbb{k} Q * G$ on X by $x \cdot \lambda g=\varphi_{g^{-1}}(x \lambda)$ for any $\lambda g \in \mathbb{k} Q * G$ and $x \in X$. One can check that X is a $\mathbb{k} Q * G$-module under this action.

For a given G-invariant $\mathbb{k} Q$-module X, the map φ_{g} is not unique in general. Thus, it is possible that there are many $k Q * G$-module structure on X induced by different maps $\varphi_{g}, g \in G$. How many non-isomorphic $\mathbb{k} Q * G$-module structures are induced on a given G-invariant $\mathbb{k} Q$-module? We can give an answer by the following lemmas.

Note that H_{X} is an abelian group. It follows that the regular representation $\mathbb{k} H_{X}$ can be decomposed as

$$
\mathbb{k} H_{X}=\bigoplus_{i=1}^{r} \varrho_{i},
$$

where all the ϱ_{i} are one dimensional irreducible H_{X}-representations, $r=\left|H_{X}\right|$ is the order of H_{X}, and $\varrho_{i} \not \not \varrho_{j}$ if $i \neq j$.

Since X is a natural H_{X}-invariant $\mathbb{k} Q$-module, X has a $k Q * H_{X}$-module structure by Proposition 3.1. Therefore, $\varrho_{i} \otimes X$ is also a $\mathbb{k} Q * H_{X}$-module defined by

$$
(l \otimes x) \lambda g=l g \otimes x \cdot \lambda g
$$

for any $\lambda g \in \mathbb{k} Q * H_{X}$ and $l \otimes x \in \varrho_{i} \otimes X$. Consequently, $\operatorname{Hom}_{k Q}\left(X, \varrho_{i} \otimes X\right)$ is a $\mathbb{k} H_{X}$-module given by

$$
(f \triangleleft g)(x)=f(x) \cdot g
$$

for $f \in \operatorname{Hom}_{k Q}\left(X, \varrho_{i} \otimes X\right), g \in H_{X}$, and $x \in X ; \varrho_{i} \otimes \operatorname{End}_{k Q}(X)$ is a $\mathbb{k} H_{X}$-module given by

$$
(l \otimes f) g=l g \otimes f \triangleleft g
$$

for $l \otimes f \in \varrho_{i} \otimes \operatorname{End}_{\mathrm{k} Q}(X)$ and $g \in H_{X}$. Note that all the representations ϱ_{i} are one dimensional as \mathbb{k}-vector spaces, one can check that

$$
\operatorname{Hom}_{k Q}\left(X, \varrho_{i} \otimes X\right) \cong \varrho_{i} \otimes \operatorname{End}_{k Q}(X)
$$

as $\mathbb{k} H_{X}$-modules. Therefore, we have:
Lemma 3.2. Let X be an indecomposable $\mathbb{k} Q$-module. Then
(1) $\varrho_{i} \otimes X \cong X$ as $\mathbb{k} Q$-modules and $\varrho_{i} \otimes X$ is indecomposable as a $\mathbb{k} Q * H_{X}$-module for each $i \in\{1,2, \ldots, r\}$;
(2) $\varrho_{i} \otimes X \nsupseteq \varrho_{j} \otimes X$ as $\mathbb{k} Q * H_{X}$-modules if $i \neq j$;
(3) $X \otimes_{\mathbb{k} Q} \mathbb{k} Q * H_{X} \cong \bigoplus_{i=1}^{r} \varrho_{i} \otimes X$ as $\mathbb{k} Q * H_{X}$-modules;
(4) for any $\mathbb{k} Q * H_{X}$-module Y, if $Y \cong X$ as $\mathbb{k} Q$-modules, then there exists a unique $i \in\{1,2, \ldots, r\}$ such that $Y \cong \varrho_{i} \otimes X$ as $\mathbb{k} Q * H_{X}$-modules. Hence there are r non-isomorphic $k Q * H_{X}$-modules induced from X.

Proof. (1) Note that for each $0 \neq l \in \varrho_{i}$, there is a $\mathbb{k} Q$-module isomorphism $f: X \rightarrow \varrho_{j} \otimes X$ given by $x \mapsto l \otimes x$. We obtain that $\varrho_{i} \otimes X$ is an indecomposable $\mathbb{k} Q$-module, and hence an indecomposable $\mathbb{k} Q * H_{X}$-module.
(2) If $\varrho_{i} \otimes X \cong \varrho_{j} \otimes X$, we have $\varrho_{i} \otimes \operatorname{End}_{\mathfrak{k} Q}(X) \cong \varrho_{j} \otimes \operatorname{End}_{\mathfrak{k} Q}(X)$. Since $\operatorname{End}_{k Q}(X) / \operatorname{radEnd}_{k}(X) \cong \mathfrak{k}$ and $\operatorname{radEnd}_{k Q}(X)$ is closed under the action of H_{X}, we have

$$
\varrho_{i} \otimes \operatorname{End}_{\mathfrak{k} Q}(X) / \operatorname{radEnd}_{k Q}(X) \cong \varrho_{j} \otimes \operatorname{End}_{k Q}(X) / \operatorname{radEnd}_{k Q}(X)
$$

This means $\varrho_{i} \cong \varrho_{j}$ as $\mathbb{k} H_{X}$-modules and we get a contradiction.
(3) By [13], Lemma 3.2.1, $\left(\varrho_{i} \otimes X\right) \otimes X \mid\left(\varrho_{i} \otimes X\right) \otimes_{k} \mathbb{k} Q * H_{X}$, that is, $\varrho_{i} \otimes X$ is a direct summand of $\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q} \mathbb{k} Q * H_{X}$ as $\mathbb{k} Q * H_{X}$-modules. Then we have $\varrho_{i} \otimes X \mid X \otimes_{\mathbb{k} Q} \mathbb{k} Q * H_{X}$, since $\varrho_{i} \otimes X \cong X$ as $\mathbb{k} Q$-modules. Note that $\varrho_{i} \otimes X \nsupseteq \varrho_{j} \otimes X$ if $\underset{r}{i \neq j}$, hence we get that $\left(\underset{i=1}{\bigoplus_{i}} \varrho_{i} \otimes X\right) \mid X \otimes_{\mathfrak{k} Q} \mathbb{k} Q * H_{X}$, so that $X \otimes_{\mathfrak{k} Q} \mathbb{k} Q * H_{X} \cong \bigoplus_{i=1}^{r} \varrho_{i} \otimes X$ by [15], Proposition 1.8.
(4) Let Y be a $\mathbb{k} Q * H_{X}$-module such that $Y \cong X$ as $\mathbb{k} Q$-modules. Then Y is an indecomposable $\mathbb{k} Q * H_{X}$-module. Since $Y \mid Y \otimes_{\mathfrak{k} Q} \mathbb{k} Q * H_{X} \cong X \otimes_{\mathfrak{k} Q} \mathbb{k} Q * H_{X}$, it is easy to see that there exists a unique $i \in\{1,2, \ldots, r\}$ such that $Y \cong \varrho_{i} \otimes X$.

Lifting to the $\mathbb{k} Q * G$-module, we have:
Lemma 3.3. Let X be an indecomposable $\Vdash Q$-module. Then
(1) $\left(\varrho_{i} \otimes X\right) \otimes_{k Q * H_{X}} \mathbb{k} Q * G \cong \bigoplus_{g \in G_{X}}^{g} X$ as $\mathbb{k} Q$-modules;
(2) $\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G$ is an indecomposable $\mathbb{k} Q * G$-module;
(3) $\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G \not \equiv\left(\varrho_{j} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G$ as $\mathbb{k} Q * G$-modules if $i \neq j$;
(4) $X \otimes_{k} Q \mathbb{k} Q * G \cong \bigoplus_{i=1}^{r}\left(\varrho_{i} \otimes X\right) \otimes_{k} Q * H_{X} \mathbb{k} Q * G$ as $\mathbb{k} Q * G$-modules.

Proof. (1) Note that $\left(\varrho_{i} \otimes X\right) \otimes_{\mathbb{k} Q * H_{X}} \mathbb{k} Q * G \cong \underset{g \in G_{X}}{\bigoplus} \varrho_{i} \otimes X \otimes g$ and $\varrho_{i} \otimes X \cong X$ as $\mathbb{k} Q$-modules, so we have $\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G \cong \underset{g \in G_{X}}{\bigoplus} X \otimes g \cong \bigoplus_{g \in G_{X}}{ }^{g} X$.
(2) The result follows from the fact that $\left(\varrho_{i} \otimes X\right) \otimes_{k} Q_{Q} H_{X} \mathbb{k} Q * G \cong \underset{g \in G_{X}}{{ }^{g}} X$ is an indecomposable G-invariant $\mathbb{k} Q$-module.
(3) Suppose that $\left(\varrho_{i} \otimes X\right) \otimes_{\mathbb{k} Q * H_{X}} \mathbb{k} Q * G \cong\left(\varrho_{j} \otimes X\right) \otimes_{\mathbb{k} Q * H_{X}} \mathbb{k} Q * G$. We have that $\varrho_{i} \otimes X \otimes e \mid\left(\varrho_{j} \otimes X\right) \otimes_{k} Q * H_{X} \mathbb{k} Q * G \cong \bigoplus_{g \in G_{X}} \varrho_{j} \otimes X \otimes g$ for the unit e of G. If $\varrho_{i} \otimes X \otimes e \cong \varrho_{j} \otimes X \otimes e$, then $\varrho_{i} \otimes X \cong \varrho_{j} \otimes X$ as $\mathbb{k} Q * H_{X}$-modules. This is a contradiction. If $\varrho_{i} \otimes X \otimes e \cong \varrho_{j} \otimes X \otimes g$ for some $e \neq g \in G_{X}$, we have $X \cong{ }^{g} X$ as $\mathbb{k} Q$-modules. This is also a contradiction.
(4) Note that $\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G \mid\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G$, by the statement (1) we have $\left(\varrho_{i} \otimes X\right) \otimes_{k} Q * H_{X} \mathbb{k} Q * G \mid\left(\bigoplus_{g \in G_{X}}^{\bigoplus_{X}} X\right) \otimes_{k} \mathbb{k} Q * G$ and $\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G \mid X \otimes_{k} Q \mathbb{k} Q * G$ for any $i \in\{1,2, \ldots, r\}$. Thus, $\left(\bigoplus_{i=1}^{r}\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G\right) \mid X \otimes_{\mathbb{k} Q} \mathbb{k} Q * G$, so that $X \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G \cong \bigoplus_{i=1}^{r}\left(\varrho_{i} \otimes X\right) \otimes_{\mathbb{k} Q * H_{X}}$ $\mathbb{k} Q * G$ by [15], Proposition 1.8.

By the above discussion, we get the main result of this section.
Theorem 3.4. Let $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ be a finite abelian group. For any indecomposable $\mathbb{k} Q$-module X and $\mathbb{k} Q * G$-module Y such that $Y \cong \bigoplus_{g \in G_{X}}{ }^{g} X$ as $\mathbb{k} Q$-modules, there exists a unique $i \in\{1,2, \ldots, r\}$ such that $Y \cong\left(\varrho_{i} \otimes X\right) \otimes_{\mathbb{k} Q * H_{X}} \mathbb{k} Q * G$. That is, there are r non-isomorphic $\mathbb{k} Q * G$-modules induced from the indecomposable G-invariant $\mathbb{k} Q$-module $\underset{g \in G_{X}}{ }{ }^{g} X$.

Therefore, a finite dimensional $\mathfrak{k} Q$-module Y is an indecomposable $\mathbb{k} Q * G$-module if and only if Y is an indecomposable G-invariant $\mathbb{k} Q$-module.

Proof. Let Y be a $\mathbb{k} Q * G$-module such that $Y \cong \underset{g \in G_{X}}{ }{ }^{g} X$ for some indecomposable $\mathbb{k} Q$-module X. Then Y is an indecomposable $\mathbb{k} Q * G$-module. Note that since

any $g \in G$, we have $Y \mid X \otimes_{\mathbb{k} Q} \mathbb{k} Q * G$. Thus there exists a unique $i \in\{1,2, \ldots, r\}$ such that $Y \cong\left(\varrho_{i} \otimes X\right) \otimes_{k} Q * H_{X} \mathbb{k} Q * G$.

Following from Proposition 3.1, we get that an indecomposable G-invariant $\mathbb{k} Q$-module Y is a $\mathbb{k} Q * G$-module and indecomposable. Conversely, for an indecomposable $\mathbb{k} Q * G$-module Y, we have $Y \cong \bigoplus_{j=1}^{s}\left(\underset{g \in G_{X_{j}}}{g_{j}} X_{j}\right)$ with some indecomposable $\mathbb{k} Q$-modules $X_{1}, X_{2}, \ldots, X_{s}$. Since $Y \mid Y \otimes_{\mathbb{k} Q} \mathbb{k} Q * G \cong \bigoplus_{j=1}^{s} \bigoplus_{g \in G_{X_{j}}}{ }^{g} X_{j} \otimes_{\mathbb{k} Q} \mathbb{k} Q * G$, there exists j such that $Y \mid X_{j} \otimes_{\mathbb{k} Q} \mathbb{k} Q * G$. We denote by $\mathbb{k} H_{X_{j}}=\bigoplus_{i=0}^{r_{j}} \varrho_{i}^{j}$ the irreducible decomposition of $\mathbb{k} H_{X_{j}}$ as $H_{X_{j}}$-representations. Then there exists a unique ϱ_{i}^{j} such that $Y \cong\left(\varrho_{i}^{j} \otimes X_{j}\right) \otimes_{k} Q * H_{X_{j}}$
indecomposable. $Q * G \cong \underset{g \in G_{X_{j}}}{ }{ }^{g} X_{j}$ as $\mathbb{k} Q$-modules, so that Y is
in indecomposable.

Following from this theorem, for any indecomposable $\mathbb{k} Q$-module X there are $\left|H_{X}\right|$ indecomposable $\mathbb{k} Q * G$-module structures on $\underset{g \in G_{X}}{\bigoplus^{g}} X$ which are $\left\{\left(\varrho_{i} \otimes X\right) \otimes_{k} Q * H_{X}\right.$ $\left.\mathbb{k} Q * G: 1 \leqslant i \leqslant\left|H_{X}\right|\right\}$. And all the irreducible $\mathbb{k} Q * G$-modules can be obtain in this way.

For convenience, we denote

$$
\mathscr{X}^{i}:=\left(\varrho_{i} \otimes X\right) \otimes_{\mathfrak{k} Q * H_{X}} \mathbb{k} Q * G
$$

for all $i \in\left\{1,2, \ldots,\left|H_{X}\right|\right\}$.

4. Proof of main theorem

Let Q be a finite union of Dynkin quivers, let $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ be a finite abelian group. In this section, we discuss the structure of the quivers $\widehat{\Gamma_{Q}}$ and $\Gamma_{\widehat{Q}}$, and show the duality of the Auslander-Reiten quiver Γ_{Q} of $k Q$.

For any $g \in G$, we have obtained in Section 2 an autoequivalence functor F_{g} : $\bmod -\mathbb{k} Q \rightarrow \bmod -\mathbb{k} Q, X \mapsto{ }^{g} X$. Therefore, for any finite dimensional $\mathbb{k} Q$-modules X, Y and Z,
(1) $X \xrightarrow{\alpha} Y$ is an irreducible morphism if and only if ${ }^{g} X \xrightarrow{g_{\alpha}}{ }^{g} Y$ is;
(2) $X \xrightarrow{\alpha} Y$ is a (minimal) left (or right) almost split morphism if and only if ${ }^{g} X \xrightarrow{{ }^{g} \alpha}{ }^{g} Y$ is;
(3) a short exact sequence $0 \rightarrow X \xrightarrow{\alpha} Z \xrightarrow{\beta} Y \rightarrow 0$ is an almost split sequence if and only if $0 \rightarrow{ }^{g} X \xrightarrow{g_{\alpha}}{ }^{g} Z \xrightarrow{g}{ }^{g} Y \rightarrow 0$ is.
Denote by Γ_{Q} the Auslander-Reiten quiver of $\mathbb{k} Q$. Note that the quiver Γ_{Q} contains no multiple edges, $F_{g} \circ F_{g^{\prime}}=F_{g g^{\prime}}$ and $F_{g^{-1}} \circ F_{g}=\mathrm{Id}_{\bmod -\mathrm{k} Q}$ for any $g, g^{\prime} \in G$,
there is a natural action of G on Γ_{Q} given by

$$
g([X])=\left[{ }^{g} X\right], \quad g([X] \rightarrow[Y])=\left[{ }^{g} X\right] \rightarrow\left[{ }^{g} Y\right],
$$

such that $G \subseteq \operatorname{Aut}\left(\Gamma_{Q}\right)$. Thus we obtain the generalized McKay quiver $\widehat{\Gamma_{Q}}$ of $\left(\Gamma_{Q}, G\right)$ by the definition.

Let \mathbf{I} denote the vertex set of Γ_{Q}, i.e., $\mathbf{I}=\{[X]: X$ is an indecomposable $\mathbb{k} Q$-module $\}$; let \mathfrak{I} denote the set of representatives of the classes of \mathbf{I} under the action of G; let $G_{\mathbf{i}}$ denote the subgroup of G stabilizing \mathbf{i}, for each $\mathbf{i} \in \mathbf{I}$. Obviously,

$$
G_{\mathbf{i}}=H_{X}=\left\{g \in G: F_{g}(X) \cong X \text { as } \mathbb{k} Q \text {-modules }\right\},
$$

if $\mathbf{i}=[X]$ for an indecomposable $\mathbb{k} Q$-module X. By the definition, the vertex set $\hat{\mathbf{I}}$ of $\widehat{\Gamma_{Q}}$ is

$$
\bigcup_{\mathbf{i} \in \mathfrak{I}}\{\mathbf{i}\} \times \operatorname{irr} G_{\mathbf{i}}=\left\{(\mathbf{i}, \varrho): \mathbf{i} \in \mathfrak{I}, \varrho \in \operatorname{irr} G_{\mathbf{i}}\right\},
$$

where $\operatorname{irr} G_{\mathbf{i}}$ is the set of representatives of isomorphism classes of irreducible representations of $G_{\mathbf{i}}$. Now, we write G as the product of some finite cyclic group, i.e.,

$$
G=\left\langle g_{1}\right\rangle \times\left\langle g_{2}\right\rangle \times \ldots \times\left\langle g_{n}\right\rangle,
$$

where the order of g_{l} is m_{l} for $1 \leqslant l \leqslant n$. Then, each $G_{\mathbf{i}}$ has the form

$$
G_{\mathbf{i}}=\left\langle g_{1}^{d_{i_{1}}}\right\rangle \times\left\langle g_{2}^{d_{\mathbf{i}_{2}}}\right\rangle \times \ldots \times\left\langle g_{n}^{d_{i_{n}}}\right\rangle
$$

where $\nu_{\mathbf{i}_{l}}:=\left|\left\langle g_{j}^{d_{i_{l}}}\right\rangle\right|=m_{l} / d_{\mathbf{i}_{l}}, 1 \leqslant l \leqslant n$, so that

$$
d_{\mathbf{i}}:=\left|\mathscr{O}_{\mathbf{i}}\right|=\frac{|G|}{\left|G_{\mathbf{i}}\right|}=d_{\mathbf{i}_{1}} \times d_{\mathbf{i}_{2}} \times \ldots \times d_{\mathbf{i}_{n}}
$$

For each $l \in\{1,2, \ldots, n\}$, we assume that ξ_{l} is a primitive m_{l} th root of unity. Let $e_{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)}$ be

$$
\frac{1}{\left|G_{\mathbf{i}}\right|} \sum_{j_{1}=0}^{\nu_{\mathbf{i}_{1}}-1} \sum_{j_{2}=0}^{\nu_{\mathbf{i}_{2}}-1} \ldots \sum_{j_{n}=0}^{\nu_{\mathbf{i}_{n}}-1} \xi_{1}^{d_{\mathbf{i}_{1}} j_{1} s_{i_{1}}} \xi_{2}^{d_{\mathbf{i}_{2}} j_{2} s_{\mathbf{i}_{2}}} \ldots \xi_{n}^{d_{\mathbf{i}_{n}} j_{n} s_{\mathbf{i}_{n}}} g_{1}^{d_{\mathbf{i}_{1}} j_{1}} g_{2}^{d_{\mathbf{i}_{2}} j_{2}} \ldots g_{n}^{d_{\mathbf{i}_{n}} j_{n}}
$$

Then one can check that $\left\{e_{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)}\right) s_{\mathbf{i}_{l}} \in \mathbb{Z} / \nu_{\mathbf{i}_{l}} \mathbb{Z}$ for all $\left.1 \leqslant l \leqslant n\right\}$ is a complete set of primitive orthogonal idempotents of $\mathbb{k}\left[G_{\mathbf{i}}\right]$. Note that each $e_{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)}$ corresponding to a unique irreducible representation ϱ of G_{i} is defined by the group homomorphism $\varphi_{\varrho}: G_{\mathbf{i}} \rightarrow \mathbb{k}, g_{j}^{d_{\mathbf{i}_{l}}} \mapsto \xi^{d_{\mathbf{i}_{l}} s_{\mathbf{i}_{l}}}, 1 \leqslant l \leqslant n$; we reindex $\hat{\mathbf{I}}$ by

$$
\hat{\mathbf{I}}=\left\{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right): \mathbf{i} \in \mathfrak{I}, s_{\mathbf{i}_{l}} \in \mathbb{Z} / \nu_{\mathbf{i}_{l}} \mathbb{Z} \text { for all } 1 \leqslant l \leqslant n\right\}
$$

Obviously, $|\hat{\mathbf{I}}|=\sum_{\mathbf{i} \in \mathfrak{I}}\left|G_{\mathbf{i}}\right|$.

For any $\mathbf{i}=[X], \mathbf{j}=[Y] \in \mathfrak{I}$, we consider the group $G_{\mathbf{i j}}=G_{\mathbf{i}} \cap G_{\mathbf{j}}=\left\langle g_{1}^{t_{1}}\right\rangle \times$ $\left\langle g_{2}^{t_{2}}\right\rangle \times \ldots \times\left\langle g_{n}^{t_{n}}\right\rangle$, where t_{l} is the least common multiple of $d_{\mathbf{i}_{l}}$ and $d_{\mathbf{j}_{l}}$ for $1 \leqslant l \leqslant n$. Note that the vector space $E_{\mathbf{i j}}$ spanned by arrows $\alpha: \mathbf{i} \rightarrow \mathbf{j}$ in Γ_{Q} is a $\mathbb{k}\left[G_{\mathbf{i j}}\right]$-bimodule and is 1 -dimensional as a \mathbb{k}-vector space, the action of $g=g_{1}^{t_{1}} g_{2}^{t_{2}} \ldots g_{n}^{t_{n}}$ on $E_{\mathbf{i j}}$ is an identity.

Next, we calculate

$$
\begin{aligned}
& e_{\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)} \alpha e_{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)} \\
& =\frac{d_{\mathbf{i}} d_{\mathbf{j}}}{|G|^{2}} \sum_{p_{1}=0}^{\nu_{\mathbf{i}_{1}}-1} \cdots \sum_{p_{n}=0}^{\nu_{\mathbf{i}_{n}}-1} \sum_{q_{1}=0}^{\nu_{\mathbf{j}_{1}}-1} \ldots \sum_{q_{n}=0}^{\nu_{\mathbf{j}_{n}}-1} \xi_{1}^{d_{\mathbf{i}_{1}} p_{1} s_{\mathbf{i}_{1}}+d_{\mathbf{j}_{1}} q_{1} s_{\mathbf{j}_{1}}} \ldots \xi_{n}^{d_{\mathbf{i}_{n}} p_{n} s_{\mathbf{i}_{n}}+d_{\mathbf{j}_{n}} q_{n} s_{\mathbf{j}_{n}}} \\
& g_{1}^{d_{\mathbf{j}_{1}} q_{1}} \ldots g_{n}^{d_{\mathbf{j}_{n}} q_{n}}(\alpha) g_{1}^{d_{\mathbf{i}_{1}} p_{1}+d_{\mathbf{j}_{1}} q_{1}} \ldots g_{n}^{d_{\mathbf{i}_{n}} p_{n}+d_{\mathrm{j}_{n}} q_{n}} .
\end{aligned}
$$

We write

$$
\begin{aligned}
d_{\mathbf{i}_{l}} p_{l} & =P_{l} t_{l}+d_{\mathbf{i}_{l}} p_{l}^{\prime}, & & \text { where } 0 \leqslant P_{l}<\frac{m}{t_{l}} \\
d_{\mathbf{j}_{l}} q_{l} & =P_{l}^{\prime} t_{l}+d_{\mathbf{j}_{l}} q_{l}^{\prime}, & & \text { where } 0 \leqslant P_{l}^{\prime}<\frac{m}{t_{l}} \\
d_{\mathbf{i}_{l}} k_{l} & \equiv\left(P_{l}+P_{l}^{\prime}\right) t_{l}+d_{\mathbf{i}_{l}} p_{l}^{\prime} \bmod m_{l}, & & \text { where } 0 \leqslant k_{l}<\nu_{\mathbf{i}_{l}}
\end{aligned}
$$

for all $0 \leqslant l \leqslant n$. Then the right-hand side of the equation becomes

$$
\begin{aligned}
& \frac{d_{\mathbf{i}} d_{\mathbf{j}}}{|G|^{2}} \sum_{P_{1}^{\prime}=0}^{m_{1} / t_{1}-1} \xi_{1}^{P_{1}^{\prime} t_{1}\left(s_{\mathbf{j}_{1}}-s_{\mathbf{i}_{1}}\right)} \cdots \sum_{P_{n}^{\prime}=0}^{m_{n} / t_{n}-1} \xi_{n}^{P_{n}^{\prime} t_{n}\left(s_{\mathbf{j}_{n}}-s_{\mathbf{i}_{n}}\right)} \\
& \sum_{k_{1}=0}^{\nu_{\mathbf{i}_{1}}-1} \cdots \sum_{k_{n}=0}^{\nu_{\mathbf{i}_{n}}-1} \sum_{q_{1}^{\prime}=0}^{1} \cdots \sum_{q_{n}^{\prime}=0}^{t_{1} / d_{\mathbf{j}_{1}}-1} \xi_{1}^{t_{n} / d_{\mathbf{j}_{n}}-1} \xi^{d_{\mathrm{i}_{1}} k_{1} s_{\mathrm{i}_{1}}+d_{\mathrm{j}_{1}} q_{1}^{\prime} s_{\mathrm{s}_{1}}} \ldots \xi_{n}^{d_{\mathrm{i}_{n}} k_{n} s_{\mathrm{i}_{n}}+d_{\mathbf{j}_{n}} q_{n}^{\prime} s_{\mathrm{j}_{n}}} \\
& g_{1}^{d_{\mathrm{j}_{1}} q_{1}^{\prime}} \ldots g_{n}^{d_{\mathrm{j}_{n}} q_{n}^{\prime}}(\alpha) g_{1}^{d_{\mathrm{i}_{1}} k_{1}+d_{\mathrm{j}_{1}} q_{1}^{\prime}} \ldots g_{n}^{d_{\mathrm{i}_{n}} k_{n}+d_{\mathbf{i}} q_{n}^{\prime}} .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
&\left\{g_{1}^{d_{\mathbf{j}_{1}} q_{1}^{\prime}} \ldots g_{n}^{d_{\mathbf{j}_{n}} q_{n}^{\prime}}(\alpha) g_{1}^{d_{\mathbf{i}_{1}} k_{1}+d_{\mathbf{j}_{1}} q_{1}^{\prime}} \ldots g_{n}^{d_{\mathbf{i}_{n}} k_{n}+d_{\mathbf{j}_{n}} q_{n}^{\prime}}: 0 \leqslant k_{l}<\nu_{\mathbf{i}_{l}}, 0 \leqslant q_{l}^{\prime}<\frac{t_{l}}{d_{\mathbf{j}_{l}}}\right. \\
&\text { for } 1 \leqslant l \leqslant n\}
\end{aligned}
$$

is a linearly independent set. Thus $e_{\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)} \alpha e_{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)} \neq 0$ if and only if $s_{\mathbf{i}_{l}} \equiv s_{\mathbf{j}_{l}} \bmod m_{l} / t_{l}$ for all $0 \leqslant l \leqslant n$. It follows that, for any arrow $\mathbf{i} \rightarrow \mathbf{j}$ in Γ_{Q}, we get an arrow $\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right) \rightarrow\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$ in $\widehat{\Gamma_{Q}}$ for each sequence
$\left(s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$ satisfying $s_{\mathbf{i}_{l}} \equiv s_{\mathbf{j}_{l}} \bmod m_{l} / t_{l}$ for all $0 \leqslant l \leqslant n$. And all the arrows in $\widehat{\Gamma_{Q}}$ can be got in this way.

In particular, if $G_{\mathbf{i}} \supseteq G_{\mathbf{j}}$, there are $|G| / d_{\mathbf{i}}$ arrows from ($\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}$) to $\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$ in $\widehat{\Gamma_{Q}}$, for any irreducible morphism $\mathbf{i} \rightarrow \mathbf{j}$. More precisely, if $\left|G_{\mathbf{i}} / G_{\mathbf{j}}\right|=k$, i.e., $\sum_{l=1}^{n} d_{\mathbf{j}_{l}} / d_{\mathbf{i}_{l}}=k$. Then, for any fixed vertex $\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$ in $\widehat{\Gamma_{Q}}$, there are k vertices $\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)$ satisfying $s_{\mathbf{i}_{l}} \equiv s_{\mathbf{j}_{l}} \bmod m_{l} / d_{\mathbf{j}_{l}}$ for all $0 \leqslant l \leqslant n$. Thus we can reindex the set $\left\{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right): s_{\mathbf{i}_{l}} \in \mathbb{Z} / \nu_{\mathbf{i}_{l}} \mathbb{Z}\right.$ for all $1 \leqslant$ $l \leqslant n\}$ by

$$
\left\{\left(\mathbf{j}, s_{\mathbf{j}_{t}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)^{t}: 1 \leqslant t \text { and } s_{\mathbf{j}_{l}} \in \mathbb{Z} / \nu_{\mathbf{j}_{l}} \mathbb{Z} \text { for all } 1 \leqslant l \leqslant n\right\}
$$

so that there is an arrow $\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)^{t} \rightarrow\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$ for all t.
Similarly, if $\left|G_{\mathbf{j}} / G_{\mathbf{i}}\right|=k$, we can reindex the set $\left\{\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right): s_{\mathbf{j}_{l}} \in \mathbb{Z} / \nu_{\mathbf{j}_{l}} \mathbb{Z}\right.$ for all $1 \leqslant l \leqslant n\}$ by

$$
\left\{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)^{t}: 1 \leqslant t \leqslant k \text { and } s_{\mathbf{i}_{l}} \in \mathbb{Z} / \nu_{\mathbf{i}_{l}} \mathbb{Z} \text { for all } 1 \leqslant l \leqslant n\right\}
$$

so that there is an arrow $\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right) \rightarrow\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)^{t}$ for all t.
On the other hand, we consider the Auslander-Reiten quiver $\Gamma_{\widehat{Q}}$ of $k \widehat{Q}$, where we identify $\Gamma_{\widehat{Q}}$ with the Auslander-Reiten quiver of $\mathbb{k} Q * G$. Following from the result in Section 2, all the indecomposable $\mathbb{k} Q * G$-modules (up to isomorphism) are

$$
\mathbb{\square}:=\left\{\mathscr{X}^{i}:[X] \in \mathfrak{I}, 1 \leqslant i \leqslant\left|H_{X}\right|\right\} .
$$

Obviously, the vertex set $\mathbb{\square}$ of $\Gamma_{\widehat{Q}}$ satisfies $|\mathbb{0}|=\sum_{[\mathbf{X}] \in \mathfrak{I}}\left|H_{X}\right|=\sum_{\mathbf{i} \in \mathfrak{I}}\left|G_{\mathbf{i}}\right|=|\hat{\mathbf{I}}|$.
Before characterizing the arrows in $\Gamma_{\widehat{Q}}$, we need some facts.
Lemma 4.1 (see [15]). Let X, Y be indecomposable $\mathbb{k} Q$-modules, let X^{\prime}, Y^{\prime} be indecomposable $\mathbb{k} Q * G$-modules. Then
(1) if $X \rightarrow Y$ is a minimal left (or right) almost split morphism in mod-k Q, then $X \otimes_{k Q} \mathbb{k} Q * G \rightarrow Y \otimes_{k} Q \mathbb{k} Q * G$ is the direct sum of some minimal left (or right) almost split morphisms in mod-k $Q * G$;
(2) if $X^{\prime} \rightarrow Y^{\prime}$ is a minimal left (or right) almost split morphism in mod-k $Q * G$, then $X^{\prime} \rightarrow Y^{\prime}$ in mod-k Q is the direct sum of some minimal left (or right) almost split morphisms.

Lemma 4.2 (see [2]). Assume that $X, Y, Z, Z^{\prime} \in \bmod -\mathbb{k} Q$ and X, Y are indecomposable. Then
(1) a morphism $\beta: Z \rightarrow Y$ is irreducible if and only if there exists a morphism $\beta^{\prime}: Z^{\prime} \rightarrow Y$ such that $\left(\beta, \beta^{\prime}\right): Z \oplus Z^{\prime} \rightarrow Y$ is a minimal right almost split morphism in mod-k Q;
(2) a morphism $\alpha: X \rightarrow Z$ is irreducible if and only if there exists a morphism $\alpha^{\prime}: X \rightarrow Z^{\prime}$ such that $\binom{\alpha}{\alpha^{\prime}}: X \rightarrow Z \oplus Z^{\prime}$ is a minimal left almost split morphism in $\bmod -\mathbb{k} Q$.

Let $Q=(I, E)$ be a finite quiver. For any Q-representation $X=\left(X_{i}, X_{\alpha}\right)$, we denote $I_{X}:=\left\{i \in I: X_{i} \neq 0\right\}$ and call it the support of X.

Lemma 4.3. Let $Q=(I, E)$ be a finite union of Dynkin quivers and $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ a finite abelian group. For any indecomposable Q-representations $X=\left(X_{i}, X_{\alpha}\right)$ and $Y=\left(Y_{i}, Y_{\alpha}\right)$, if the supports of X and Y are in the same connected component of Q, then we have

$$
H_{X} \subseteq H_{Y} \quad \text { or } \quad H_{Y} \subsetneq H_{X} .
$$

Proof. Let vertices i and j be in the same connected component of Q. Suppose that there exists an arrow between i and j and $\left|\mathscr{O}_{i}\right| \geqslant\left|\mathscr{O}_{j}\right|$. Note that the connected component is Dynkin, and there are at most three edges connections in Dynkin diagram; we get $\left|\mathscr{O}_{i}\right|=n\left|\mathscr{O}_{j}\right|$, where $n=1,2$, or 3 . Clearly, $G_{i}=G_{j}$ if $\left|\mathscr{O}_{i}\right|=\left|\mathscr{O}_{j}\right|$, and $G_{i} \subset G_{j}$ if $\left|\mathscr{O}_{i}\right|>\left|\mathscr{O}_{j}\right|$. By induction, we have $G_{i} \subseteq G_{j}$ or $G_{j} \subsetneq G_{i}$ for any two vertices i and j in the same connected component of Q.

Moreover, it is easy to see that

$$
H_{X}=\bigcap_{i \in I_{X}} G_{i} \quad \text { and } \quad H_{Y}=\bigcap_{i \in I_{Y}} G_{i}
$$

Hence $H_{X}=G_{i}$ for some $i \in I_{X}$ and $H_{Y}=G_{j}$ for some $j \in I_{Y}$. We get the lemma.

Now, we consider the arrows in $\Gamma_{\widehat{Q}}$. Let $X \rightarrow Y$ be an irreducible morphism in mod-k Q. We suppose that $H_{X} \supseteq H_{Y}$ and denote $H_{X} / H_{Y}:=\left\{g_{1}+H_{Y}, g_{2}+\right.$ $\left.H_{Y}, \ldots, g_{k}+H_{Y}\right\}$. By Lemma 4.2, there exists a $\mathbb{k} Q$-module M satisfying ${ }^{g} Y$ is not a summand of M, such that

$$
X \rightarrow\left(\bigoplus_{i=1}^{k} g_{i} Y\right) \oplus M
$$

is a minimal left almost split sequence in $\bmod -\mathbb{k} Q$. By Lemma 4.1,

$$
X \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G \rightarrow\left(\bigoplus_{i=1}^{k} g_{i} Y \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G\right) \oplus M \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G,
$$

i.e., $\mathscr{X}^{1} \oplus \ldots \oplus \mathscr{X}^{\left|H_{X}\right|} \rightarrow\left(\mathscr{Y}^{1}\right)^{\oplus k} \oplus \ldots \oplus\left(\mathscr{Y}^{\left|H_{Y}\right|}\right)^{\oplus k} \oplus M \otimes_{\mathfrak{k} Q} \mathbb{k} Q * G$ is the direct sum of some minimal left almost split sequence in $\bmod -\mathbb{k} Q * G$, where $\left(\mathscr{Y}^{i}\right)^{\oplus k}:=$ $\underbrace{\mathscr{Y}^{i} \oplus \ldots \oplus \mathscr{Y}^{i}}_{k \text { fold }}$ for $1 \leqslant i \leqslant\left|H_{Y}\right|$.

Thus, there exist $\left|H_{X}\right|$ arrows in $\Gamma_{\widehat{Q}}$ corresponding to the irreducible morphism $X \rightarrow Y$. More precisely, by Lemma 4.1, there exists a permutation ω on $\left\{1,2, \ldots,\left|H_{X}\right|\right\}$ such that for each i there are irreducible morphisms $\mathscr{X}^{\omega(j)} \rightarrow \mathscr{Y}^{i}$ for all $i k \leqslant j \leqslant(i+1) k-1$.

For the case $H_{X} \subseteq H_{Y}$ and $\left|H_{Y} / H_{X}\right|=k$, we can get a similar conclusion: there exists a permutation ω on $\left\{1,2, \ldots,\left|H_{Y}\right|\right\}$ such that there is an irreducible morphism $\mathscr{X}^{i} \rightarrow \mathscr{Y}^{\omega(j)}$ for all $1 \leqslant i \leqslant\left|H_{X}\right|$ and $i k \leqslant j \leqslant(i+1) k-1$.

We are now in a position to give the proof of Theorem 1.1.
Pro of of Theorem 1.1. Define a map $\Phi: \Gamma_{\widehat{Q}} \rightarrow \widehat{\Gamma_{Q}}$ as follows. For each irreducible morphism $X \rightarrow Y$ in $\bmod -\mathbb{k} Q$, by Lemma 4.3, $H_{X}=G_{\mathbf{i}} \supseteq G_{\mathbf{j}}=H_{Y}$ or $H_{X}=G_{\mathbf{i}} \subsetneq G_{\mathbf{j}}=H_{Y}$.
(1) If $H_{X}=G_{\mathbf{i}} \supseteq G_{\mathbf{j}}=H_{Y}$ and $\left|H_{X} / H_{Y}\right|=k, k \geqslant 1$, then

$$
\begin{aligned}
\Phi: \quad \mathscr{Y}^{i} & \mapsto\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right) \\
\mathscr{X}^{\omega(j)} & \mapsto\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)=\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)^{t},
\end{aligned}
$$

where $t \equiv j \bmod k i$ and $e_{\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)}$ is the idempotent of $\mathbb{k}\left[G_{\mathbf{j}}\right]$ corresponding to the irreducible representation ϱ_{i} of $G_{\mathbf{j}}$. Note that $\left|H_{X}\right|=\left|G_{\mathbf{i}}\right|$ and $\left|H_{Y}\right|=$ $\left|G_{\mathbf{j}}\right| ; \Phi$ defines two one-to-one correspondences between $\left\{\mathscr{X}^{j}: 1 \leqslant j \leqslant\left|H_{X}\right|\right\}$, $\left\{\mathscr{Y}^{i}: 1 \leqslant i \leqslant\left|H_{Y}\right|\right\}$ and $\left\{\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right): s_{\mathbf{i}_{l}} \in \mathbb{Z} / \nu_{\mathbf{i}_{l}} \mathbb{Z}\right.$ for all $\left.1 \leqslant l \leqslant n\right\}$, $\left\{\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right): s_{\mathbf{j}_{l}} \in \mathbb{Z} / \nu_{\mathbf{j}_{l}} \mathbb{Z}\right.$ for all $\left.1 \leqslant l \leqslant n\right\}$, respectively.

In this case, for the irreducible morphism $X \rightarrow Y$, there are an arrow $\mathscr{X}^{\omega(j)} \rightarrow \mathscr{Y}^{i}$ in $\Gamma_{\widehat{Q}}$ and an arrow $\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)^{t} \rightarrow\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$ in $\widehat{\Gamma_{Q}}$. Let Φ map $\mathscr{X}^{\omega(j)} \rightarrow \mathscr{Y}^{i}$ to $\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)^{t} \rightarrow\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)$.
(2) if $H_{X}=G_{\mathbf{i}} \subsetneq G_{\mathbf{j}}=H_{Y}$ and $\left|H_{Y} / H_{X}\right|=k, k>1$, then

$$
\begin{aligned}
\Phi: \quad \mathscr{X}^{i} & \mapsto\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right) \\
\mathscr{Y}^{\omega(j)} & \mapsto\left(\mathbf{j}, s_{\mathbf{j}_{1}}, s_{\mathbf{j}_{2}}, \ldots, s_{\mathbf{j}_{n}}\right)=\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)^{t},
\end{aligned}
$$

where $t \equiv j \bmod k i$ and $e_{\left(\mathbf{i}, s_{i_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)}$ is the idempotent of $\mathbb{k}\left[G_{\mathbf{i}}\right]$ corresponding to the irreducible representation ϱ_{i} of G_{i}. Similarly, Φ defines also two one-to-one correspondences between the vertices in $\Gamma_{\widehat{Q}}$ and $\widehat{\Gamma_{Q}}$ corresponding to X and Y, respectively.

In this case, for the irreducible morphism $X \rightarrow Y$, there are an arrow $\mathscr{X}^{i} \rightarrow \mathscr{Y}^{\omega(j)}$ in $\Gamma_{\widehat{Q}}$ and an arrow $\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right) \rightarrow\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)^{t}$ in $\widehat{\Gamma_{Q}}$. Let Φ map $\mathscr{X}^{i} \rightarrow \mathscr{Y}^{\omega(j)}$ to $\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right) \rightarrow\left(\mathbf{i}, s_{\mathbf{i}_{1}}, s_{\mathbf{i}_{2}}, \ldots, s_{\mathbf{i}_{n}}\right)^{t}$.

Then, it is easy to see that $\Phi: \Gamma_{\widehat{Q}} \rightarrow \widehat{\Gamma_{Q}}$ is a quiver isomorphism, and $\Gamma_{\widehat{Q}}=\widehat{\Gamma_{Q}}$. By [9], Propsoition 3.6, there is an action of G on $\widehat{\Gamma_{Q}}$ such that $\widehat{\Gamma_{\widehat{Q}}}=\widehat{\Gamma_{Q}}=\Gamma_{Q}$. The proof is completed.

5. An example

In the end of this paper, we use an example to show the duality of $(Q, G),\left(\Gamma_{Q}, G\right)$ and the valued quiver corresponding to (Q, G), whenever Q is a finite union of Dynkin quivers and $G \subseteq \operatorname{Aut}(\mathbb{k} Q)$ is abelian.

Let $Q=(I, E)=Q_{1} \cup Q_{2}$ be the quiver

and consider the group $G=\langle a\rangle \times\langle b\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We consider an action of G on $\mathbb{k} Q$ as follows:

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	$e_{1^{\prime}}$	$e_{2^{\prime}}$	$e_{3^{\prime}}$	$e_{4^{\prime}}$	$e_{5^{\prime}}$
a	e_{5}	e_{4}	e_{3}	e_{2}	e_{1}	$e_{5^{\prime}}$	$e_{4^{\prime}}$	$e_{3^{\prime}}$	$e_{2^{\prime}}$	$e_{1^{\prime}}$
b	$e_{1^{\prime}}$	$e_{2^{\prime}}$	$e_{3^{\prime}}$	$e_{4^{\prime}}$	$e_{5^{\prime}}$	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}

	α_{1}	α_{2}	α_{3}	α_{4}	α_{1}^{\prime}	α_{2}^{\prime}	α_{3}^{\prime}	α_{4}^{\prime}
a	$-\alpha_{4}$	$-\alpha_{3}$	$-\alpha_{2}$	$-\alpha_{1}$	$-\alpha_{4}^{\prime}$	$-\alpha_{3}^{\prime}$	$-\alpha_{2}^{\prime}$	$-\alpha_{1}^{\prime}$
b	α_{1}^{\prime}	α_{2}^{\prime}	α_{3}^{\prime}	α_{4}^{\prime}	α_{1}	α_{2}	α_{3}	α_{4}

where e_{i} is the idempotent element of $\mathbb{k} Q$ corresponding to a vertex $i, i \in I$. Then one can calculate directly that the generalized McKay quiver of (Q, G) is

where we take $\mathscr{I}=\{1,2,3\}$ and ϱ_{0}, ϱ_{1} are the non-isomorphism irreducible representations of $G_{3}=\langle a\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$.

Since G is abelian, all the character of G are linear, i.e., the group homomorphism $\chi: G \rightarrow \mathbb{k}$. The group of all the characters of G with multiplication $\chi \chi^{\prime}(g)=$ $\chi(g) \chi^{\prime}(g), g \in G$, is also an abelian group, denoted by \widetilde{G}. Setting $\varphi: G \rightarrow \widetilde{G}$ as $\varphi(g)=\chi_{g}, \chi_{g}\left(g^{\prime}\right)=(-1)^{t_{1} s_{1}+t_{2} s_{2}}$ if $g=a^{t_{1}} b^{t_{2}}$ and $g^{\prime}=a^{s_{1}} b^{s_{2}}$, where $t_{1}, t_{2}, s_{1}, s_{2} \in$ $\{0,1\}$, then φ is a group isomorphism.

Following from [15], we can define a linear action of G on $\mathbb{k} Q * G$ by $g(\lambda h)=$ $\chi_{g}(h) \lambda h, g \in G, \lambda h \in \mathbb{k} Q * G$. Then $G \subseteq \operatorname{Aut}(\mathbb{k} Q * G)$ and under this action, we can prove that $(\mathbb{k} Q * G) * G$ is Morita equivalent to $\mathbb{k} Q$ (see [9], Proposition 3.7). Let $e:=\sum_{i \in \mathscr{I}} e_{i} \in \mathbb{k} Q \subseteq \mathbb{k} Q * G$. Since $e \mathbb{k} Q * G e \cong \mathbb{k} \widehat{Q}$ (see [3], Theorem 1) and the action of G on $\mathbb{k} Q * G$ stabilizes e, the action of G on $\mathbb{k} Q * G$ naturally induces an action of G on $\mathbb{k} \widehat{Q}$ as follows:

	$e_{\widehat{1}}$	$e_{\widehat{2}}$	$e_{\left(3, \varrho_{0}\right)}$	$e_{\left(3, \varrho_{1}\right)}$	α	β	γ
a	$e_{\widehat{1}}$	$e_{\widehat{2}}$	$e_{\left(3, \varrho_{1}\right)}$	$e_{\left(3, \varrho_{0}\right)}$	$\xi_{1} \alpha$	$\xi_{2} \gamma$	$\xi_{3} \beta$
b	$e_{\widehat{1}}$	$e_{\widehat{2}}$	$e_{\left(3, \varrho_{0}\right)}$	$e_{\left(3, \varrho_{1}\right)}$	$\xi_{4} \alpha$	$\xi_{5} \beta$	$\xi_{6} \gamma$

where $\xi_{1}, \xi_{4}, \xi_{5}, \xi_{6} \in\{1,-1\}$, the idempotent element e_{i} corresponds to the vertex i, $i \in\left\{\hat{1}, \widehat{2},\left(3, \varrho_{0}\right),\left(3, \varrho_{1}\right)\right\}$ and $\xi_{2}, \xi_{3} \in \mathbb{k}$ satisfy $\xi_{3} \xi_{4}=1$. Then, one can check that the generalized McKay quiver $\widehat{\hat{Q}}$ of (\widehat{Q}, G) is just the quiver Q.

For any quiver Q with an action of G on the path algebra $\mathbb{k} Q$, we can construct a symmetric matrix $B=\left(b_{i j}\right)$ indexed by \mathscr{I} by setting

$$
b_{i j}= \begin{cases}2\left|\mathscr{O}_{i}\right|, & i=j \\ -\mid\left\{\text { edges between vertices in } \mathscr{O}_{i} \text { and } \mathscr{O}_{j}\right\} \mid, & i \neq j\end{cases}
$$

Let $d_{i}:=\frac{1}{2} b_{i i}=\left|\mathscr{O}_{i}\right|$ and $D=\operatorname{diag}\left(d_{i}\right)$. Then $C=\left(c_{i j}\right)=D^{-1} B$ is a symmetrizable generalized Cartan matrix indexed by \mathscr{I}. We write Γ for the corresponding valued graph, that is, Γ has the vertex set \mathscr{I} and we draw an edge $i-j$ equipped with the ordered pair $\left(\left|c_{j i}\right|,\left|c_{i j}\right|\right)$ whenever $c_{i j} \neq 0$.

For our quivers Q and \widehat{Q}, we denote by Γ and $\widehat{\Gamma}$ the corresponding valued graphs (Q, G) and (\widehat{Q}, G), respectively. By direct calculation, it is easy to see that the generalized Cartan matrices of Γ and $\widehat{\Gamma}$ are

$$
C=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -2 & 2
\end{array}\right) \quad \text { and } \quad \widehat{C}=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -2 \\
0 & -1 & 2
\end{array}\right)
$$

Obviously, \widehat{C} is the transposed matrix of C. Therefore Γ and $\widehat{\Gamma}$ are dual valued graphs, in the sense of [12].

Let $\widehat{\Gamma_{Q}}$ denote the generalized McKay quiver of $\left(\Gamma_{Q}, G\right)$ and $\Gamma_{\widehat{Q}}$ the AuslanderReiten quiver of $\mathbb{k} \widehat{Q}$. For the quiver $Q=Q_{1} \cup Q_{2}$ and the action of $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ given as above, we now show that $\widehat{\Gamma_{Q}}=\Gamma_{\widehat{Q}}$ and $\widehat{\Gamma_{\widehat{Q}}}=\Gamma_{Q}$. First, we consider all indecomposable representations of Q_{1}. For $1 \leqslant i \leqslant j \leqslant 5$, we denote by $X_{i j}=$ (X_{i}, X_{α}) the representation of Q_{1} with

$$
X_{l}=\left\{\begin{array}{ll}
\mathfrak{k}, & \text { if } i \leqslant l \leqslant j ; \\
0, & \text { otherwise },
\end{array} \quad X_{\alpha}= \begin{cases}1, & \text { if } \alpha: k \rightarrow l, \text { where } i \leqslant k, l \leqslant j ; \\
0, & \text { otherwise } .\end{cases}\right.
$$

We denote by P_{i}, I_{i} and S_{i} the projective, injective and simple representation corresponding to vertex i, respectively. It is well-known that all the indecomposable Q_{1}-representations are

$$
\begin{array}{lllll}
X_{11}=P_{1}=S_{1}, & X_{12}=P_{2}, & X_{13}=I_{1}, & X_{14}, & X_{15}=P_{3}, \\
X_{22}=S_{2}, & X_{23}=I_{2}, & X_{24}, & X_{25}, & X_{33}=I_{3}=S_{3}, \\
X_{34}=I_{4}, & X_{35}=I_{5}, & X_{44}=S_{4}, & X_{45}=P_{4}, & X_{55}=P_{5}=S_{5}
\end{array}
$$

and the Auslander-Reiten quiver $\Gamma_{Q_{1}}$ is

Thus the Auslander-Reiten quiver Γ_{Q} is a double copy of $\Gamma_{Q_{1}}$.
Secondly, following from the action of G on $\mathbb{k} Q$, the action of $G=\langle a\rangle \times\langle b\rangle \cong$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is as follows: $b\left(X_{i j}\right)=X_{i j}^{\prime}$,

	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{22}	X_{23}	X_{24}	X_{25}	X_{33}	X_{34}	X_{35}	X_{44}	X_{45}	X_{55}
a	X_{55}	X_{45}	X_{35}	X_{25}	X_{15}	X_{44}	X_{34}	X_{24}	X_{14}	X_{33}	X_{23}	X_{13}	X_{22}	X_{12}	X_{11}

and the the action of a on $X_{i j}^{\prime}$ is given by $a\left(X_{i j}^{\prime}\right)=X_{k l}^{\prime}$ if $a\left(X_{i j}\right)=X_{k l}$, where $X_{i j}^{\prime}$ is the indecomposable Q_{2}-representation defined similarly to $X_{i j}$. It is easy to see that the action of G commutes with the Auslander-Reiten translate.

By direct calculation, we have

This quiver coincides with the Auslander-Reiten quiver $\Gamma_{\widehat{Q}}$ of $\mathbb{k} \widehat{Q}$, so that $\widehat{\Gamma_{\widehat{Q}}}=\Gamma_{Q}$.
At last, we remark that if the group is non-abelian, the conclusion is not true in general. For example, let Q be the quiver

We consider the action of S_{3}, the quiver automorphism group of Q. Accordingly, we obtain the generalized McKay quiver \widehat{Q} of $\left(Q, S_{3}\right)$ as follows:

It is well-known that the Auslander-Reiten quivers of $\mathbb{k} Q$ and $\mathbb{k} \widehat{Q}$ are

One can check that there exists no subgroup G^{\prime} of $\operatorname{Aut}(\mathbb{k} \widehat{Q})$ such that the generalized McKay quiver of $\left(\widehat{Q}, G^{\prime}\right)$ is Q, there exists no subgroup G^{\prime} of $\operatorname{Aut}(\mathbb{k} \widehat{Q})$ such that the generalized McKay quiver of $\left(\Gamma_{Q}, G^{\prime}\right)$ is $\Gamma_{\widehat{Q}}$.

References

[1] I. Assem, D. Simson, A.Skowroński: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge, 2006.
[2] M. Auslander, I. Reiten, S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge, 1995.
[3] L. Demonet: Skew group algebras of path algebras and preprojective algebras. J. Algebra 323 (2010), 1052-1059.
[4] B. Deng, J. Du: Frobenius morphisms and representations of algebras. Trans. Am. Math. Soc. 358 (2006), 3591-3622.
[5] B. Deng, J.Du, B. Parshall, J. Wang: Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs 150. American Mathematical Society, Providence, 2008.

```
zbl MR doi
```

zbl MR doi
zbl MR doi
[6] P. Gabriel, A. V. Roйter: Algebra VIII. Representations of Finite-Dimensional Algebras (A.I. Kostrikin, et al., eds.). Encyclopaedia of Mathematical Sciences 73. Springer, Berlin, 1992.
zbl MR
[7] J. Guo: On the McKay quivers and m-Cartan matrices. Sci. China, Ser. A 52 (2009), 511-516.
[8] B. Hou, S. Yang: Skew group algebras of deformed preprojective algebras. J. Algebra 332 (2011), 209-228.
[9] B. Hou, S. Yang: Generalized McKay quivers, root system and Kac-Moody algebras. J. Korean Math. Soc. 52 (2015), 239-268.
zbl MR doi
zbl MR doi
zbl MR doi
zbl MR doi
[10] A. Hubery: Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac. Ph.D. Thesis, University of Leeds, Leeds, 2002.
[11] A. Hubery: Quiver representations respecting a quiver automorphism: a generalization of a theorem of Kac. J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96.
zbl MR doi
[12] V. G. Kac: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge, 1990.
zbl MR doi
[13] G. X. Liu: Classification of Finite Dimensional Basic Hopf Algebras and Related Topics. Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou, 2005.
[14] J. McKay: Graphs, singularities, and finite groups. The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37. American Mathematical Society, Providence, 1980, pp. 183-186.
[15] I. Reiten, C. Riedtmann: Skew group algebras in the representation theory of Artin algebras. J. Algebra 92 (1985), 224-282.
zbl MR doi
zbl MR doi
[16] M. Zhang: The dual quiver of the Auslander-Reiten quiver of path algebras. Algebr. Represent. Theory 15 (2012), 203-210.
[17] M. Zhang, F. Li: Representations of skew group algebras induced from isomorphically invariant modules over path algebras. J. Algebra 321 (2009), 567-581.

Authors' addresses: B o Hou, School of Mathematics and Statistics, Henan University, Ming Lun Street, Kaifeng, Henan, China, e-mail: bohou1981@163.com; Shilin Yang (corresponding author), College of Applied Sciences, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China, e-mail: slyang@bjut.edu.cn.

