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NEW RESULTS ON STABILITY OF PERIODIC SOLUTION
FOR CNNS WITH PROPORTIONAL DELAYS
AND D OPERATOR

Bo Du

The problems related to periodic solutions of cellular neural networks (CNNs) involving
D operator and proportional delays are considered. We shall present Topology degree theory
and differential inequality technique for obtaining the existence of periodic solution to the
considered neural networks. Furthermore, Laypunov functional method is used for studying
global asymptotic stability of periodic solutions to the above system.

Keywords: periodic solution, D operator, existence, stability

Classification: 34D05, 34D20

1. INTRODUCTION

The cellular neural networks(CNNs) was first requested back in 1988 by Chua and
Yang [6], which is investigated in various fields of science and technology. The possibil-
ity of wide practical applications of CNNs explains the still growing interests of many
researchers, the recent literatures on this subject which can be found in [3,13,14,23,30–
33,36]. Oscillation and instability of CNNs may be caused by the delay, the research of
the dynamic properties for delayed neural network has been attracted broad attention
by many authors, see e. g. [8, 10, 24, 37, 38]. In generally, the neural networks contain
different types of time delays, such as constant delays, time-varying delays, finite(or
infinite) delays and distributed delays. A mass of results have been obtained for the
delayed neural networks. For example, by using impulsive control Guan [11] studied
the problem of whole power estimate synchronization of confused neural networks with
unbounded delay and obtained the conditions for the synchronization of the considered
networks with proportional lag. In [34], the authors took into consideration for a kind of
robust synchronization problem of the neural networks with uncertain parameters, and
obtained global robust exponential stability by using the theory of a particular delay
equation. Furthermore, a global optimization control arithmetic is established for esti-
mating the stable interval. Li, Huang and Zhu [15] gave some novel sufficient conditions
for global uniform stability of cellular neural networks with mixed delays by the use of
mathematical technique and Lyapunov functional method.
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Recently, CNNs involving proportional delays has been received close attention. Pro-
portional lags occurring in neural networks have caused widespread concern due to their
numerous applications in a variety of subjects of study, such as quantum electrodynam-
ics, electric simulator and applied mathematics on algebraic structures. Liu [16] studied
stability issue for a CNNs with discrete proportional delays and continuous divulgation
delays. Yu [28] obtained global exponential constriction for a class of neutral delay dif-
ferential equations with proportional delays. After that, Yu [29] further studied a class
of HCNNs with neutral mixed delays. As proportional lag is a unbounded delay, the
traditional methods for bounded delays can not be applied to CNNS with proportional
lags. Hence, some new techniques should be developed for dealing with CNNS with
unbounded delays.

Stimulated by the previous discussions, the main target of this paper is to derive
some sufficient criteria on the global asymptotic stability for the following CNNs with
proportional lags and D operator:

 (Aixi)
′(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) +

n∑
j=1

bij(t)gj(xj(qijt)) + Ii(t),

xi(t) = φi(t), t ∈ [−τ, 0], i = 1, 2, . . . , n,

(1.1)

where τ = max{γ(t), qij , i, j = 1, 2, . . . , n}, Ai is D operator defined by

(Aixi)(t) = xi(t)− pi(t)xi(t− γ(t)), i = 1, 2, . . . , n, (1.2)

where xi(t) and Ii(t) stand for the energizing and external input of the ith neuron in
the I−lever at time t, respectively, ci(t) stands for the rate with which the ith unit will
recompound its potential to the relaxation state when disconnected from the network
and outside inputs at time t, aij(t) refers the power of the jth unit on the ith unit at
time t, bij(t) refers the power of the jth unit on the ith unit at time qijt, fj(x) and gj(x)
describe the energizing of the ith neuron, proportionallags factors qij meets 0 < qij < 1
and qijt = t− (1− qij)t in which (1− qij)t is the modification delay functions.

Throughout this paper, we always presume take for granted that pi(t), ci(t), aij(t),
bij(t), γ(t), Ii(t) are continuously periodic functions defined on t ∈ [0,∞) with period
T , ci(t), aij(t), bij(t), γ(t) and Ii(t) are all positive functions on t ∈ [0,∞). Moreover,
fj(xj) and gj(xj) meet continuous condition on the R.

Remark 1.1. Remember the research of neutral-type neural networks, we determine
find out ascertain which the neutral character in neural networks expresses by the deriva-
tives of system states or D operator. For example, Guo and Zhang etc. [12] discussed
the under complex-valued bidirectional associative memory (BAM) neutral-type neural
networks: z1(t) = −D1z1(t) +A1f(z2(t)) +B1f(z2(t− τ(t))) + C1z

′
1(t− σ(t)) + I1,

z2(t) = −D2z2(t) +A2g(z1(t)) +B2g(z1(t− τ(t))) + C2z
′
2(t− σ(t)) + I2,

z1(s) = ζ(s), z2(s) = ξ(s).
(1.3)

Zhang, Qiu and Xiong [35] studied the following stochastic stability problem for a class
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of neutral-type neural networks with additive continuous delay and robust Markov jump:

x′(t)− Cr(t)x′(t− δ3(t)) = −Br(t)x(t) +Ar(t)f(x(t)),

+Aδr(t)f(x(t− δ1(t)− δ2(t))),

x(t0 + θ) = φ(θ), θ ∈ [−max{δ1 + δ2, δ3}, 0].

(1.4)

Aouiti etc. [1] studied the existence and exponential stability problems of pseudo almost
periodic solutions for bidirectional associative memory neural networks (BAMNNs) with
continuous lags and impulsive terms:

xi
′(t) = −ci(t)xi(t− αi(t)) +

m∑
j=1

a
(1)
ji f

(1)
j (yj(t− τji(t)))

+

m∑
j=1

a
(2)
ji f

(2)
j (y′j(t− σji(t)))

+

m∑
j=1

a
(3)
ji

∫ ∞
0

N
(1)
ji (s)f

(3)
j (yj(t− s)) + γi(t), t 6= tk,

∆xi(tk) = xi(t
+
k )− xi(t−k ), t = tk, , k ∈ Z, i = 1, . . . , n,

yj
′(t) = −bj(t)yj(t− βj(t)) +

m∑
j=1

b
(1)
ij g

(1)
i (yj(t− ξij(t)))

+

m∑
j=1

b
(2)
ij g

(2)
i (x′i(t− ςij(t)))

+

m∑
j=1

b
(3)
ij

∫ ∞
0

N
(2)
ij (s)g

(3)
i (xi(t− s)) + ϑi(t), t 6= tk,

∆yj(tk) = yj(t
+
k )− yj(t−k ), t = tk, , k ∈ Z, j = 1, . . . ,m.

(1.5)

Obviously, (1.3)-(1.5) show the neutral properties based on the terms z′1(t−σ(t)), z′2(t−
σ(t)), x′(t− δ3(t)), f

(2)
j (y′j(t−σji(t))) and g

(2)
i (x′i(t− ςij(t))) which are not D operator.

For more results about neutral-type neural networks, see [7, 17, 19, 20, 22]. However,
the literatures for the neural networks with D operator are few. We only notice some
literatures for studying the neural networks with D operator. In [27], Yao studied a
model of cellular neural networks with neutral type lags and D operator and obtained
the stability results of solutions for the proposed neural networks by using differential
inequality and mathematical analysis techniques. Xiao [25] dealt with a class of high-
order neutral neural networks system with proportional lagss and D operator and showed
that all solutions of the considered system tend exponentially to zero vector. In this
paper, we will further study the neutral-type neural networks when neutral term is
showed by Ax(t) which is defined by (1.2).

We give the main contribution of the present paper as follows:

• For obtaining the existence and stability results of periodic solution to (1.1), the
properties of neutral operator Ai in (1.2) are taken into account in the neural
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networks, which is different other papers for studying neutral-type neural networks
see e. g. [1, 7, 16,17,19,20,22,28,29,35].

• Different from most of the existing methods, we develop a new unified framing
to cope with the D operator, proportional delays(unbounded delays). It is worth
pointing out that our main methods are also valid for the case of the non-neutral
systems.

• Based on properties of neutral operator Ai, a new Lyapunov functional has been
constructed which is completely different from the comparable ones of the past
work.

The following sections are formed as follows: Section 2 gives some lemmas and nota-
tions. In Section 3, sufficient conditions are obtained for existence of periodic solutions
to system (1.1). Asymptotic stability of system (1.1) is given in Sections 4. Section 5
presents an numerical example to substantiate the applicability of the results obtained.
Finally, Section 6 offers some conclusions.

2. PRELIMINARIES

In this section, the necessary lemmas and notations are provided.

Lemma 2.1. Let X and Y are two Banach spaces, and L : D(L) ⊂ X → Y, be a
Fredholm operator involving index zero. Furthermore, assume that Ω ⊂ X is an open
bounded set and N : Ω̄→ Y is L-compact on Ω̄. if all the following conditions hold:

(1) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), ∀λ ∈ (0, 1),

(2) Nx /∈ ImL, ∀x ∈ ∂Ω ∩KerL,

(3) deg{JQN ,Ω ∩KerL, 0} 6= 0,

where J : ImQ→ KerL is an isomorphism. Then the operator equation Lx = Nx has
a solution on Ω̄ ∩D(L).

Let

c∞ = max
t∈R
|c(t)|, c0 = min

t∈R
|c(t)|,

CT = {y|y ∈ C(R,R), y(t+ T ) ≡ y(t), ∀t ∈ R}

with the norm

||ω|| = max
t∈[0,T ]

|ω(t)|, ∀ω ∈ CT .

It is easy to see that CT is a Banach space. Define linear operator:

A : CT → CT , [Ax](t) = x(t)− c(t)x(t− τ(t)), ∀t ∈ R,

where c(t) and τ(t) are T−periodic continuous functions.
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Lemma 2.2. (Cheng and Li [5]) Assume that |c(t)| < 1, then the difference opera-
tor A exists continuous inverse operator A−1 on CT , satisfying

|(A−1x)(t)| ≤ ||x||
1− c∞

, ∀x ∈ CT .

Lemma 2.3. (Xin and Cheng [26]) Assume that |c(t)| > 1 and τ ′(t) < 1, then the
difference operator A exists continuous inverse operator A−1 on CT , satisfying

|(A−1x)(t)| ≤ ||x||
c0 − 1

, ∀x ∈ CT .

3. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 3.1. Assume that
∫ T
0
Ii(t) dt = 0, i = 1, 2 . . . , n, γ′(t) < 1, and there exist

constants Lfj ≥ 0, Lgj ≥ 0 and K ≥ 0 such that

(H1) |fj(xj)| ≤ Lfj , |gj(xj)| ≤ L
g
j , j = 1, 2, . . . , n.

(H2) xifi(xi) < 0 and xigi(xi) < 0 for xi ∈ (−∞,−K) ∪ (K,+∞), i = 1, 2, . . . , n.

Then neural networks system (1.1) has at least one T−periodic solution, provided that
the following conditions hold:
When |pi|∞ < 1, i = 1, 2, . . . , n,

|ci|∞
1− |pi|∞

+
|p′i|∞

(1− |pi|∞)|1− γ′|∞
< 1 (3.1)

and
Γ1iT < 1, (3.2)

where

|1− γ′|∞ = max
t∈R
{|1− γ′(γ̃(t))|}, γ̃(t) is inverse function of t− γ(t),

Γ1i =

(
|ci|∞

1− |pi|∞
+

|p′i|∞
(1− |pi|∞)|1− γ′|∞

)/(
1− |ci|∞

1− |pi|∞
− |p′i|∞

(1− |pi|∞)|1− γ′|∞

)
,

or when |pi|0 > 1, i = 1, 2, . . . , n,

|ci|∞
|pi|0 − 1

+
|p′i|∞

(|pi|0 − 1)|1− γ′|∞
< 1 (3.3)

and
Γ′1iT < 1, (3.4)

where

Γ′1i =

(
|ci|∞
|pi|0 − 1

+
|p′i|∞

(|pi|0 − 1)|1− γ′|∞

)/(
1− |ci|∞
|pi|0 − 1

− |p′i|∞
(|pi|0 − 1)|1− γ′|∞

)
.
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P r o o f . For studying (1.1) by Lemma 2.1, denote

X = {x|x(t) = (x1(t), x2(t), . . . , xn(t))> ∈ C(R,Rn), x(t+ T ) ≡ x(t), t > 0}

involving the norm ||x|| = max{|xi|∞, i = 1, 2, . . . , n}. Let

L : D(L) ⊂ X → ImL ⊂ X, (Lx)(t) = (Ax)′(t), (3.5)

here (Ax)(t) = ((A1x1)(t), . . . , (Anxn)(t))>, D(L) = {x : x ∈ X, (Ax)′ ∈ X}. It is easy

to see that KerL = Rn, ImL = {x : x ∈ X,
∫ T
0
x(s) ds = 0} is closed in Banach space

X and dimKerL = condimImL = n. Hence, L is a Fredholm operator involving index
zero. We defined the following operators:

P : X → KerL, Q : X → X/ImL,

Px =
1

T

∫ T

0

x(s) ds, Qy =
1

T

∫ T

0

y(s) ds,

and
Lp = L|X∩KerP : X ∩KerP → ImL.

Obviously, Lp exists its right inverse operator L−1P which has the form:

(L−1P y)(t) =

∫ T

0

G(t, s)y(s) ds, ∀y ∈ ImL,

where

G(t, s) =

{
s(t−T )
T , 0 ≤< s < t ≤ T,

t(s−T )
T , 0 ≤< t < s ≤ T.

Let (Nx)(t) = ((N1x1)(t), . . . , (Nnxn)(t))>. Define the operator Ni by

Ni : X → X, (Nixi)(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t))

+

n∑
j=1

bij(t)gj(xj(qijt)) + Ii(t), i = 1, 2, . . . , n.

(3.6)

Consider the operator equation as follows:

Lx = λNx, λ ∈ (0, 1), (3.7)

where the operators L and N are defined by (3.5) and (3.6), respectively. ∀x ∈ X and
x is an arbitrary T−periodic solution of the operator equation (3.7), then x(t) satisfies
the following equations:

(Aixi)
′(t) + λci(t)xi(t)− λ

n∑
j=1

aij(t)fj(xj(t))− λ
n∑
j=1

bij(t)gj(xj(qijt)) = 0. (3.8)
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Integrate both sides of the system (3.8) over [0, T ], then∫ T

0

[−ci(t)xi(t)] dt+

∫ T

0

n∑
j=1

aij(t)fj(xj(t)) dt+

∫ T

0

n∑
j=1

bij(t)gj(xj(qijt)) dt

=

∫ T

0

[−ci(t)xi(t)] dt+

n∑
j=1

∫ T

0

aij(t)fj(xj(t)) dt+
1

qij

n∑
j=1

∫ qijT

0

aij

(
t

qij
)gj(xj(t)

)
dt

= 0.
(3.9)

We assert that there exists a point t1 ∈ [0, T ] such that

|xi(t1)| ≤ K, i = 1, 2, . . . , n. (3.10)

In reality, if |xi(t)| > K, ∀t ∈ [0, T ], then by assumption (H2) we drive that∫ T

0

[−ci(t)xi(t)] dt+

∫ T

0

n∑
j=1

aij(t)fj(xj(t)) dt+

∫ T

0

n∑
j=1

bij(t)gj(xj(qijt)) dt 6= 0

which contradicts ro the system (3.9). Hence (3.10) holds. Furthermore, ∀x ∈ X, by
(3.10) we drive that

|xi|∞ = max
t∈[0,T ]

∣∣∣∣xi(t1) +

∫ t

t1

x′i(s) ds

∣∣∣∣
≤ |xi(t1)|+

∫ T

0

|x′i(s)|ds

≤ K +

∫ T

0

|x′i(s)|ds, i = 1, 2, . . . , n.

(3.11)

In view of assumption (H1) and (3.8), it follows that

|(Aixi(t))′| ≤ ci(t)|xi(t)|+
n∑
j=1

[|aij(t)fj(xj(t))|+ |bij(t)gj(xj(qijt))|] + |Ii(t)|

≤ |ci|∞|xi|∞ +

n∑
j=1

[Lfj |aij |∞ + Lgj |bij |∞] + |Ii|∞.

Thus,
|(Aixi)′|∞ ≤ |ci|∞|xi|∞ + ei, i = 1, 2, . . . , n, (3.12)

where ei =
∑n
j=1[Lfj |aij |∞+Lgj |bij |∞]+ |Ii|∞. From (Aixi)(t) = xi(t)−pi(t)xi(t−γ(t)),

we also obtain that

(Aixi)
′(t) =

(
xi(t)− pi(t)xi(t− γ(t))

)′
= x′i(t)− p′i(t)xi(t− γ(t))− pi(t)x′i(t− γ(t))(1− γ′(t))
= (Aix

′
i)(t) + pi(t)x

′
i(t− γ(t))γ′(t)− p′i(t)xi(t− γ(t)).

(3.13)
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Next, we consider the boundedness of |xi|∞ as two cases.

Case 1. If |pi(t)| < 1, i = 1, 2, . . . , n, from Lemma 2.2, (3.12) and (3.13), we deduce
that∫ T

0

|x′i(t)|dt =

∫ T

0

|(A−1i Aix
′
i)(t)|dt ≤

1

1− |pi|∞

∫ T

0

|(Aix′i)(t)|dt

=
1

1− |pi|∞

∫ T

0

|(Aixi)′(t)− pi(t)x′i(t− γ(t))γ′(t) + p′i(t)xi(t− γ(t))|dt

≤
(
|ci|∞

1− |pi|∞
+

|p′i|∞
(1− |pi|∞)|1− γ′|∞

)∫ T

0

|xi(t)|dt

+
|γ′|∞|pi|∞

(1− |pi|∞)|1− γ′|∞

∫ T

0

|x′i(t)|dt+
eiT

1− |pi|∞
.

(3.14)
Based on (3.1) and (3.14), then∫ T

0

|x′i(t)|dt ≤ Γ1i

∫ T

0

|xi(t)|dt+ Γ2i

≤ Γ1iT |xi|∞ + Γ2i,

(3.15)

where Γ1i is defined by (3.2) and

Γ2i =

(
eiT

1− |pi|∞

)/(
1− |ci|∞

1− |pi|∞
− |p′i|∞

(1− |pi|∞)|1− γ′|∞

)
> 0.

So from (3.11) and (3.15), it follows that

|xi|∞ ≤ K + Γ1iT |xi|∞ + Γ2i.

Thus, by (3.2) we have

|xi|∞ ≤
K + Γ2i

1− Γ1iT
:= M1i (independent of λ and x). (3.16)

Case 2. If |pi(t)| > 1, i = 1, 2, . . . , n, similar to the above proof, by (3.3) and (3.4) we
have

|xi|∞ ≤
K + Γ′2i
1− Γ′1iT

:= M2i (independent of λ and x), (3.17)

where Γ′1i is defined by (3.4) and

Γ′2i =

(
eiT

|pi|0 − 1

)/(
1− |ci|∞
|pi|0 − 1

− |p′i|∞
(|pi|0 − 1)|1− γ′|∞

)
.

Using (3.16) and (3.17), we get

||x|| = max{|xi|0, i = 1, 2, . . . , n} ≤ max{M1i,M2i} := M̃.
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Take Ω = {x ∈ X : ||x|| < M̃ + 1}. Then, ∀x ∈ Ω, we know that the first condition of
Lemma 2.1 is true. Furthermore, let x ∈ ∂Ω ∩KerL, obviously, x is a constant vector
in Rn. There exists i such that |xi| = M̃ + 1 and |xj | < M̃ + 1 for j 6= i. We assert that
QNx 6= 0 for all x ∈ ∂Ω ∩KerL. In fact, if QNx = 0, then∫ T

0

[−ci(t)xi(t)] dt+

∫ T

0

n∑
j=1

aij(t)fj(xj(t)) dt+

∫ T

0

n∑
j=1

bij(t)gj(xj(qijt)) dt = 0

However, use |xi| = Mi + 1 > K and assumption (H2), then

∫ T

0

[−ci(t)xi(t)] dt+

∫ T

0

n∑
j=1

aij(t)fj(xj(t)) dt+

∫ T

0

n∑
j=1

bij(t)gj(xj(qijt)) dt 6= 0

which is a contradiction. Hence, for any x ∈ ∂Ω ∩ KerL, QNx 6= 0 holds. Thus, the
second condition of Lemma 2.1 is true. Let

H(x, µ) = −µx+ (1− µ)QNx, µ ∈ [0, 1],

then we assert H(µ, x) 6= 0 for all x ∈ ∂Ω∩KerL. On the contrary, if the above equality
is not true, then

µxi =
1− µ
T

∫ T

0

[−ci(t)xi +

n∑
j=1

[aij(t)fj(xj) + bij(t)gj(qijxj))] dt.

If xi = M̃ + 1 or xi = −(M̃ + 1), assumption (H2) results in the following inequality:

µxi 6=
1− µ
T

∫ T

0

[−ci(t)xi +

n∑
j=1

[aij(t)fj(xj) + bij(t)gj(qijxj))] dt

which is a contradiction. Thus, H(x, µ) 6= 0 for any x ∈ ∂Ω∩KerL. Using the property
of topological degree and taking J to be the identity mapping I : ImQ → KerL, we
have

deg {JQN,Ω ∩KerL, 0} = deg {H(·, 0),Ω ∩KerL, 0}
= deg {H(·, 1),Ω ∩KerL, 0}
= −1 6= 0.

So, we obtain that condition (3) of Lemma 2.1 holds. Therefore, based on Lemma 2.1,
it follows that the operator equation Lx = Nx has at least one T−periodic solution x
in Ω̄. Namely, the neural networks (1.1) has at least one T−periodic solution. �

Remark 3.1. Since system (1.1) contains neutral terms, for obtaining the results of
Theorem 3.1, we give some proper conditions (including (H1) and (H2) ) and develop
some inequality techniques in the proof of Theorem 3.1.
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4. ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS

Now, we discuss global asymptotic stability of periodic solutions for system (1.1).

Definition 4.1. Assume that x∗(t) = (x∗1(t), x∗2(t), . . . , x∗n(t))> is a periodic solution
of system (1.1) and x(t) = (x1(t), x2(t), . . . , xn(t))> is any solution of system (1.1)
satisfying

lim
t→+∞

n∑
i=1

|xi(t)− x∗i (t)| = 0.

Then, x∗(t) is global asymptotic stable.

For convenience of studying global asymptotic stability of system (1.1), let Ii(t) =
0, fi(0) = gi(0) = 0, i = 1, 2, . . . , n. Then (1.1) has the following form:

(Aixi)
′(t) = −ci(t)xi(t) +

n∑
j=1

[cij(t)fj(xj(t)) + bij(t)gj(xj(qijt))], i = 1, 2, . . . , n, (4.1)

and x = 0 is the equilibrium point of (4.1). Here, we give the main Theorem:

Theorem 4.1. Assume that conditions of Theorem 3.1 hold. Suppose further that the
following assumptions hold:

(H3) there is Rf1j > 0, Rg2j > 0 and δ > 0 such that

|fj(x)−fj(y)| ≤ Rf1j |x−y|, |gj(x)−gj(y)| ≤ Rg2j |x−y|, ∀x, y ∈ R, j = 1, 2, . . . , n;

xifi(xi) < −δ|xi|2 for xi ∈ (−∞,−K) ∪ (K,+∞), i = 1, 2, . . . , n,

where K is defined by (H2).

(H4) Let

ξi = lim
t→+∞

inf

[
2či+2ǎiiδ−αi−βi−|pi|∞|ci|∞−ϑi−κi−ηi(t)

]
> 0, i = 1, 2, . . . , n,

where
či = min

t∈R
{ci(t)}, ǎii = min

t∈R
{aii(t)}, i = 1, 2, . . . , n, (4.2)

αi =

n∑
j=1

|aij |∞Rf1j , βi =

n∑
j=1

|bij |∞Rg2j , i = 1, 2, . . . , n, (4.3)

ϑi = (|pi|∞ + 1)

n∑
j=1

|bij |∞Rg2j
qij

, i = 1, 2, . . . , n, (4.4)

κi = (|pi|∞ + 1)

n∑
j=1

|aij |∞Rf1j , i = 1, 2, . . . , n, (4.5)

ηi(t) = (|pi|∞|ci|∞ + |pi|∞αi + |pi|∞βi)ω(t), i = 1, 2, . . . , n, (4.6)

where ω(t) = 1
1−γ′(γ̃(t)) , γ̃(t) is inverse function of t− γ(t).
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Then the neural networks system (4.1) has unique T−periodic solution x∗(t) = 0 which
is global asymptotic stable.

P r o o f . Assumptions of Theorem 3.1 and 4.1 imply that (4.1) has unique T−periodic
solution x∗(t) = 0. Suppose x(t) be any solution of (4.1). Let

Vi(t) = (Aixi)
2(t), i = 1, 2, . . . , n. (4.7)

Using derivation of (4.7) along the solution of (4.1) and assumption (H3) give

V ′i (t) = −2ci(t)x
2
i (t) + 2xi(t)

n∑
j=1

aij(t)fj(xj(t)) + 2xi(t)

n∑
j=1

bij(t)gj(xj(qijt))

+ 2pi(t)ci(t)xi(t)xi(t− γ(t))− 2pi(t)xi(t− γ(t))

n∑
j=1

aij(t)fj(xj(t))

− 2pi(t)xi(t− γ(t))

n∑
j=1

bij(t)gj(xj(qijt))

≤ −2čix
2
i (t)− 2ǎiiδ|xi|2 + 2|xi(t)|

n∑
j=1,j 6=i

|aij |∞Rf1j |xj(t)|+ 2|xi(t)|

n∑
j=1

|bij |∞Rg2j |xj(qijt))|

+ 2|pi|∞|ci|∞|xi(t)||xi(t− γ(t))|+ 2|pi|∞|xi(t− γ(t))|
n∑
j=1

|aij |∞Rf1j |xj(t)|

+ 2|pi|∞|xi(t− γ(t))|
n∑
j=1

|bij |∞Rg2j |xj(qijt))|

≤ −2čix
2
i (t)− 2ǎiiδ|xi|2 + αix

2
i (t)

+

n∑
j=1,j 6=i

|aij |∞Rf1jx
2
j (t) + βix

2
i (t) +

n∑
j=1

|bij |∞Rg2jx
2
j (qijt)

+ |pi|∞|ci|∞x2i (t) + |pi|∞|ci|∞x2i (t− γ(t))

+ |pi|∞αix2i (t− γ(t)) + |pi|∞
n∑

j=1,j 6=i

|aij |∞Rf1jx
2
j (t)

+ |pi|∞βix2i (t− γ(t)) + |pi|∞
n∑
j=1

|bij |∞Rg2jx
2
j (qijt))

= −(2či + 2ǎiiδ − αi − βi − |pi|∞|ci|∞)x2i (t) + (|pi|∞|ci|∞ + |pi|∞αi + |pi|∞βi)
x2i (t− γ(t))

+ (|pi|∞ + 1)

n∑
j=1,j 6=i

|aij |∞Rf1jx
2
j (t) + (|pi|∞ + 1)

n∑
j=1

|bij |∞Rg2jx
2
j (qijt),

(4.8)



New results on stability of periodic solution for CNNs 863

where či, ǎii, αi, βi, i = 1, 2, . . . , n are defined by (4.2) and (4.3). Define further that

Vγi(t) = (|pi|∞|ci|∞ + |pi|∞αi + |pi|∞βi)
∫ t

t−γ(t)
ω(s)x2i (s) ds (4.9)

and

Vqij (t) = (|pi|∞ + 1)

n∑
j=1

|bij |∞Rg2j
qij

∫ t

qijt

x2i (s) ds. (4.10)

By (4.9) and (4.10) we have

V ′γi(t) = (|pi|∞|ci|∞ + |pi|∞αi + |pi|∞βi)[ω(t)x2i (t)− x2i (t− γ(t))] (4.11)

and

V ′qij (t) = (|pi|∞ + 1)

n∑
j=1

|bij |∞Rg2j
qij

[
x2i (t)−

1

qij
x2i (qijt)

]
, (4.12)

where ω(t) = 1
1−γ′(γ̃(t)) , γ̃(t) is inverse function of t− γ(t). Choose the Lyapunov func-

tional for (4.1) in the following form:

V (t) =

n∑
i=1

[Vi(t) + Vγi(t) + Vqij (t)], j = 1, 2, . . . , n. (4.13)

In view of (4.8), (4.11) and (4.12), derivating (4.13) along the solution of (4.1) gives

V ′(t) ≤
n∑
i=1

[
− (2či + 2ǎiiδ − αi − βi − |pi|∞|ci|∞)x2i (t)

+ (|pi|∞|ci|∞ + |pi|∞αi + |pi|∞βi)ω(t)x2i (t)

+ (|pi|∞ + 1)

n∑
j=1,j 6=i

|aij |∞Rf1jx
2
j (t) + (|pi|∞ + 1)

n∑
j=1

|bij |∞Rg2j
qij

x2i (t)

]

= −
n∑
i=1

[
(2či + 2ǎiiδ − αi − βi − |pi|∞|ci|∞ − ϑi − ηi(t))x2i (t)

− (|pi|∞ + 1)

n∑
j=1,j 6=i

|aij |∞Rf1jx
2
j (t)

]

≤ −
n∑
i=1

[
2či + 2ǎiiδ − αi − βi − |pi|∞|ci|∞ − ϑi − κi − ηi(t)

]
x2i (t),

(4.14)

where ϑi, ηi(t), κi are defined by (4.4)-(4.6). Assumption (H4) yields, for any ε > 0
and ξi − ε > 0, there exists a positive constant L (enough large) such that

2či + 2ǎiiδ − αi − βi − |pi|∞|ci|∞ − ϑi − κi − ηi(t) ≥ ξi − ε for t > L,

which together with (4.14) gives

V ′(t) ≤ −
n∑
j=1

(ξi − ε)x2i (t) < 0 for t > L. (4.15)
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Integrating both sides of (4.15) from L to +∞ gives

V (t) +

∫ +∞

L

n∑
j=1

(ξi − ε)x2i (s) ds ≤ V (0).

Due to Barbalat’s Lemma [4], then

lim
t→+∞

n∑
i=1

|xi(t)| = 0.

The proof of Theorem 4.1 is now completed. �

Remark 4.1. In this paper, a new Lyapunov functional has been constructed which is
completely different from the comparable ones of the past work by using neutral-type
operator Ai(i = 1, 2, . . . , n). In [2], Arik studied the problem for stability of neutral-type
dynamical neural networks involving delay parameters and constructed the following
Lyapunov functional:

V (x(t), x′(t), t) =

n∑
i=1

pi

(
1− αsgn(xi(t)))sgn(x′i(t))

)
|xi(t)|

+
1

n

n∑
i=1

n∑
j=1

pjα

∫ t

t−ξi
|x′j(s)|ds+

n∑
i=1

n∑
j=1

pi

∫ t

t−τij
bij |fj(xj(s))|ds

+ k

n∑
i=1

n∑
j=1

∫ t

t−τij
|xj(s)|ds.

Samli etc. [21] obtained a generalized global stability criteria for delayed Cohen-Grossberg
neural networks of neutral-type and constructed the following Lyapunov functional:

V (z(t)) = [z(t) + Ez(t− τ)]>[z(t) + Ez(t− τ)]

+

n∑
i=1

ki

∫ t

t−τi
z2i (s) ds+

n∑
i=1

hi

∫ t

t−τi
g2i (z2i (s)) ds

+ ρ

n∑
i=1

∫ t

t−τi
z2i (s) ds.

Ozcan [18] considered a Cohen-Grossberg neural networks of neutral-type with multiple
delays and constructed the following Lyapunov functional:

V (t) =

n∑
i=1

[(
zi(t)−

n∑
j=1

eijzj(t− τij)
)2]

+

n∑
i=1

n∑
j=1

(ρj li|bji|+ ρjφi|eji|)
∫ t

t−τji
z2i (s) ds

+

n∑
i=1

n∑
j=1

n∑
k=1

(ρj lk|ajk||eji|+ ρj lkbjk|eji|)
∫ t

t−τji
z2i (s) ds

+

n∑
i=1

n∑
j=1

n∑
k=1

ρkli|bki||ekj |+ η

n∑
i=1

n∑
j=1

∫ t

t−τij
z2i (s) ds.
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The above Lyapunov functionals are different from the corresponding one in the present
paper.

5. A NUMERICAL EXAMPLE

In this section, a numerical example is given to illustrate the effectiveness of the results
obtained in the present paper.

Example 5.1. Consider the following neutral-type neural networks:

(A1x1)′(t) = −c1(t)x1(t) +

2∑
j=1

[a1j(t)fj(xj(t)) + b1j(t)gj(xj(q1jt))],

(A2x2)′(t) = −c2(t)x2(t) +

2∑
j=1

[a2j(t)fj(xj(t)) + b2j(t)gj(xj(q2jt))],

(5.1)

where [
A1x1(t)
A2x2(t)

]
=

[
x1(t)− 1

2x1(t− 1
4 cos 2t)

x2(t)− 1
2x2(t− 1

4 cos 2t)

]
,

γ(t) = 1
4 cos 2t, then 1− γ′(t) = 1 + 1

2 sin 2t > 0,

pi(t) = 0.5 < 1, qij = 0.5 < 1, i, j = 1, 2,

fj(xj) = gj(xj) =
−0.2xj
x2j + 1

, Rf1j = Rg2j = 0.2, j = 1, 2.[
c1(t)
c2(t)

]
=

[
1

100cos2t+ 101
100

− 1
100 sin2 t+ + 101

100

]
> 0,[

a11(t) a12(t)
a21(t) a22(t)

]
=

[
1
10 + 1

10 sin2 t 1
10 + 1

10 cos2 t
1
10 + 1

10 cos2 t 1
10 + 1

10 sin2 t

]
> 0,[

b11(t) b12(t)
b21(t) b22(t)

]
=

[
1
4 cos2 t+ 1

4
1
2 + 1

2 cos2 t
1
2 cos2 t+ 1

4
1
4 + 1

4 cos2 t

]
> 0.

After a simple calculation, it follows that

č1 = min
t∈R
{c1(t)} = 1, č2 = min

t∈R
{c2(t)} = 1, ǎii = min

t∈R
{aii(t)} = 0.1, i = 1, 2,

α1 =

2∑
j=1

|a1j |∞Rf1j = 0.08, α2 =

2∑
j=1

|a2j |∞Rf2j = 0.08,

β1 =

2∑
j=1

|b1j |∞Rg2j = 0.3, β2 =

2∑
j=1

|b2j |∞Rg2j = 0.25,

ϑ1 = (|p1|∞ + 1)

2∑
j=1

|b1j |∞Rg2j
q1j

= 0.9, ϑ2 = (|p2|∞ + 1)

2∑
j=1

|b2j |∞Rg2j
q2j

= 0.75,
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κ1 = (|p1|∞ + 1)

2∑
j=1

|a1j |∞Rf1j = 0.12, κ2 = (|p2|∞ + 1)

2∑
j=1

|a2j |∞Rf1j = 0.12,

η1(t) = (|p1|∞|c1|∞ + |p1|∞α1 + |p1|∞β1)ω(t) =
7

10
ω(t),

η2(t) = (|p2|∞|c2|∞ + |p2|∞α2 + |p2|∞β2)ω(t) =
27

40
ω(t),

ω(t) =
1

1− γ′(γ̃(t))
=

1

1 + 0.5 sin(2γ̃(t))
,

where γ̃(t) is inverse function of t− γ(t). Choose δ = 20, then

ξ1 = lim
t→+∞

inf

[
2č1 + 2ǎ11δ − α1 − β1 − |p1|∞|c1|∞ − ϑ1 − κ1 − η1(t)

]
= 3.04 > 0,

ξ2 = lim
t→+∞

inf

[
2č2 + 2ǎ22δ − α2 − β2 − |p2|∞|c2|∞ − ϑ2 − κ2 − η2(t)

]
= 2.875 > 0.

By Theorem 4.1, system (5.1) has an unique periodic solution which is global asymptotic
stable. The corresponding numerical simulations are presented in Figure 1.
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Fig. 1. Asymptotic stable periodic solution for neutral-type neural

networks (5.1).
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6. CONCLUSIONS

In this paper, we proposed some valuable results about existence and global asymptotic
stability of periodic solution for a class of CNNs involving proportional lags and D op-
erator. Since the proportional delay is unbounded, the key idea is how to deal with
unbounded delays. We develop new technique which avoid the difficulties caused by
unbounded lags. In the last past decades, CNNs with different types of delays have been
studied and obtained lots of results on the dynamics of CNNs, including the stability,
instability, oscillation and attractivity. The time delay as an inherent feature of signal
transmission between different neurons, is one of the main sources for causing dynamic
properties of neural networks, the dynamics of CNNs with time delay has been exten-
sively investigated. However, we find that, rather than occurring in the system states,
time delays can also appear in the derivatives of system states. This kind of time delays
is referred to as the neutral time delays that can be found a variety of applications includ-
ing transmission lines, electronic circuit system, chemical reactors and Lotka–Volterra
systems. Note that, up to now, most neutral-type neural networks expressed the neu-
tral character by the derivatives of system states. In this paper, system (1.1) expresses
neutral character by D operator which is different from the other most literatures. Fur-
thermore, we obtain some existence and stability results of periodic solution by using
properties of D operator which is novel and of significance.

(Received June 10, 2019)
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