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MEAN ALMOST PERIODICITY AND MOMENT
EXPONENTIAL STABILITY OF DISCRETE-TIME
STOCHASTIC SHUNTING INHIBITORY CELLULAR
NEURAL NETWORKS WITH TIME DELAYS

Tianwei Zhang and Lijun Xu

By using the semi-discrete method of differential equations, a new version of discrete ana-
logue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which
gives a more accurate characterization for continuous-time stochastic SICNNs than that by
Euler scheme. Firstly, the existence of the 2pth mean almost periodic sequence solution of the
discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder
inequality and Krasnoselskii’s fixed point theorem. Secondly, the moment global exponential
stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills
and the proof of contradiction. Finally, two examples are given to demonstrate that our results
are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the
almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.

Keywords: semi-discrete method, stochastic, Krasnoselskii’s fixed point theorem, almost
periodicity, global exponential stability

Classification: 39A50, 39A24, 39A30, 92B20

1. INTRODUCTION

In [5], Bouzerdoum and Pinter propounded a new version of cellular neural networks [33,
35, 42, 43, 44], named by shunting inhibitory cellular neural networks (SICNNs), which
have been widely applied in psychophysics, parallel computing, perception, robotics,
adaptive pattern recognition, associative memory, image processing pattern recognition
and combinatorial optimization. All of these applications heavily depend on the (almost)
periodicity and global exponential stability. Specifically, there are lots of articles focus
on the issue of the existence and global exponential stability of the equilibrium point,
periodic and almost periodic solutions of SICNNs with time delays in the literature [6,
9, 19, 36, 38]. For instance, Yılmaz et al. [28] considered the following SICNNs:

dxij(t)

dt
= −aij(t)xij(t)− Fij(t, x)xij(t) + Iij(t), (1.1)
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where

Fij(t, x) =
∑

bhl∈Nr(i,j)

bhlij (t)fij(xhl(t)) +
∑

chl∈Nq(i,j)

chlij (t)gij(xhl(t− µhl(t))), (1.2)

where cij denotes the cell at the (i, j) position of the lattice. Denote by Nr(i, j) the
r-neighborhood of cij such that

Nr(i, j) = {chl : max{|h− i|, |l − j|} ≤ r, 1 ≤ h ≤ m, 1 ≤ l ≤ n}.

Nq(i, j) is similarly specified, xij is the activity of the cell cij , Iij is the external input to
cij , the constant aij represents the passive decay rate of the cell activity, bhlij and chlij are
the connection or coupling strength of postsynaptic activity of the cell transmitted to the
cell cij , the activity functions fij(·) and gij(·) are continuous functions representing the
output or firing rate of the cell cij , and the continuous function µhl corresponds to the
transmission delay along the axon of the (h, l)th cell from the (i, j)th cell, i = 1, 2, . . . ,m,
j = 1, 2, . . . , n.

Uncertain models described by stochastic differential equations have caused great
concerns since they have wide applications in practice such as engineering, physics,
chemistry and biology [3, 4, 11, 18, 27, 46]. In the actual situations, uncertainties have
a consequence on the performance of the neural networks. In neural networks, the
connection weights of the neurons depend on certain resistance and capacitance values
that include modeling errors or uncertainties during the parameter identification process.
The uncertainties come mainly from the deviations and perturbations in parameters. In
particular, when modeling neural networks, the parameters uncertainties should be taken
into consideration. Therefore, we consider the following stochastic SICNNs [32, 37]:

dxij(t) =

[
− aij(t)xij(t)− Fij(t, x)xij(t) + Iij(t)

]
dt

+
∑

dhl∈Ne(i,j)

dhlij (t)σij(xij(t))dwij(t), (1.3)

where dhlij and Ne(i, j) are similarly specified as that in system (1.1), Fij is defined as
that in (1.2), wij is the standard Brownian motion defined on a complete probability
space, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Periodicity [47] often appears in implicit ways in various natural phenomena. This
is the case when one studies the effects of fluctuating environments. Though one can
deliberately periodically fluctuate environmental parameters in controlled laboratory
experiments, fluctuations in nature are hardly periodic. Almost periodicity is more
likely to accurately describe natural fluctuations [39, 40, 48, 41, 45]. The concept of
almost periodicity is important in probability especially for investigations on stochastic
processes. The interest in such a notion lies in its significance and applications arising
in engineering, statistics, etc, see [1, 7, 16, 30, 31].

The discrete-time neural networks become more important than the continuous-time
counterparts when implementing the neural networks in a digital way. In order to
investigate the dynamical characteristics with respect to digital signal transmission, it
is essential to formulate the discrete analog of neural networks. In recent years, many
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researches have been obtained for the dynamic analysis of discrete-time determinant or
stochastic neural networks formulated by Euler scheme [2, 8, 10, 12, 20, 25, 26, 34].

Mohamad and Gopalsamy [22, 23] proposed a novel method (i. e., semi-discretization
technique) in formulating a discrete-time analogue of the continuous-time neural net-
works, which faithfully preserved the characteristics of their continuous-time counter-
parts. In [22], the authors employed computer simulations to show that semi-discrete
models give a more accurate characterization for the corresponding continuous-time
models than that by Euler scheme. With the help of the semi-discretization tech-
nique [22], many scholars obtained the semi-discrete analogue of the continuous-time
neural networks and some meaningful results were gained for the dynamic behaviours of
the semi-discrete neural networks, such as periodic solutions, almost periodic solutions
and global exponential stability, see [13, 14, 15, 21, 24, 49, 50].

However, the disquisitive models in literatures [13, 15, 14, 21, 24, 49, 50] are deter-
ministic. Stimulated by this point, we should consider random factors in the studied
models, such as system (1.3). By using the semi-discretization technique [22], Kras-
noselskii’s fixed point theorem and stochastic theory, the main aim of this paper is to
establish some decision theorems for the existence of 2pth mean almost periodic sequence
solutions and pth moment global exponential stability for the semi-discrete analogue of
uncertain system (1.3). The work of this paper is a continuation of that in [13, 14, 15]
and the results in this paper complement the corresponding results in [13, 14, 15].

In order to get the discrete analogue of system (1.3) by the semi-discrete method [22],
the following stochastic SICNNs with piecewise constant arguments corresponding to
system (1.3) has been taken into account:

dxij(t) =

[
− aij([t])xij(t)− Fij([t], x)xij([t]) + Iij([t])

+
∑

dhl∈Ne(i,j)

dhlij ([t])σij(xij([t]))∆wij([t])

]
dt,

where [t] denotes the integer part of t, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Here the dis-
crete analogue of the stochastic parts of system (1.3) is obtained by Euler scheme, i. e.,
dwij(t) ≈ ∆wij([t])dt = [wij([t] + 1) − wij([t])]dt, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. For
each t ∈ R, there exists an integer k ∈ Z such that k ≤ t < k + 1. Then the above
equation becomes

dxij(t) =

[
− aij(k)xij(t)− Fij(k, x)xij(k) + Iij(k)

+
∑

dhl∈Ne(i,j)

dhlij (k)σij(xij(k))∆wij(k)

]
dt,

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Integrating the above equation from k to t and
letting t→ k + 1, we achieve the discrete analogue of system (1.3) as follows:

xij(k + 1) = e−aij(k)xij(k)

−1− e−aij(k)

aij(k)

[
Fij(k, x)xij(k)−Gij(k, x)∆wij(k)− Iij(k)

]
, (1.4)
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where Gij(k, x) =
∑
dhl∈Ne(i,j) d

hl
ij (k)σij(xij(k)), ∆wij(k) = wij(k+ 1)−wij(k) and Fij

is defined as that in (1.2), k ∈ Z, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Stimulated by the above discussions, the main purpose of this paper is to establish

a set of sufficient conditions for the existence and global exponential stability of mean
almost periodic sequence solutions of system (1.4). The paper is organized as follows.
In Section 2, we give some basic definitions and necessary lemmas which will be used
in later sections. In Section 3, we employ Krasnoselskii’s fixed point theorem to obtain
sufficient conditions for the existence of at least one 2pth mean almost periodic sequence
solution of system (1.4). In Section 4, we consider the global exponential stability of
system (1.4). Two examples and simulations are also given to illustrate our main results.

Throughout this paper, we use the following notations. Let R and Z denote the sets
of real numbers and integers, respectively. Rn denotes the n-dimensional real vector
space. Let (Ω,F , P ) be a complete probability space. Denote by BC(Z, Lp(Ω,Rm×n))
the vector space of all bounded continuous functions from Z to Lp(Ω,Rm×n), where
Lp(Ω,Rm×n) denotes the collection of all pth integrable Rm×n-valued random variables.
ThenBC(Z, Lp(Ω,Rm×n)) is a Banach space with the norm ‖X‖p = supk∈Z |X|p, |X|p =

max(i,j)(E|xij(k)|p)
1
p , ∀X = {xij} := {x11, x12, . . . , xmn} ∈ BC(Z, Lp(Ω,Rm×n)), where

p > 1 and E(·) stands for the expectation operator with respect to the given probability
measure P . Set f̄ = sup k ∈ Z|f(k)| and f = inf k ∈ Z|f(k)| for bounded real function
f defined on Z. [a, b]Z = [a, b] ∩ Z, ∀a, b ∈ R.

2. PRELIMINARIES

Before we derive our main results, we shall introduce several basic definitions and im-
portant lemmas.

Definition 2.1. (Bezandry and Diagana [4]) A stochastic process X ∈ BC(Z;L2p(Ω;
Rm×n)) is said to be 2pth mean almost periodic sequence if for each ε > 0, there exists
an integer l(ε) > 0 such that each interval of length l(ε) contains an integer τ for which

E|X(k + τ)−X(k)|2p < ε, ∀k ∈ Z.

A stochastic process X, which is 2-nd mean almost periodic sequence will be called
square-mean almost periodic sequence. Like for classical almost periodic functions, the
number τ will be called an ε-translation of X.

Lemma 2.2. (Kuang [17]) (Minkowski inequality) Assume that p ≥ 1, E|ξ|p < ∞,
E|η|p <∞, then

(E|ξ + η|p)1/p ≤ (E|ξ|p)1/p + (E|η|p)1/p.

Lemma 2.3. (Kuang [17]) (Hölder inequality) Assume that p > 1, then

∑
k

|akbk| ≤
[∑

k

|ak|
]1−1/p[∑

k

|ak||bk|p
]1/p

.

If p = 1, then
∑
k |akbk| ≤ (

∑
k |ak|)(supk |bk|).
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Lemma 2.4. X = {xij} is a solution of system (1.4) if and only if

xij(k) =

k−1∏
s=k0

e−aij(s)xij(k0)−
k−1∑
v=k0

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)[
Fij(v, x)xij(v)−Gij(v, x)∆wij(v)− Iij(v)

]
, (2.1)

where k0 ∈ Z, k ∈ (k0,+∞)Z, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

P r o o f . By ∆[u(k)v(k)] = [∆u(k)]v(k) + u(k + 1)[∆v(k)] and system (1.4), it gets

∆

[ k−1∏
s=0

eaij(s)xij(k)

]

= −
k∏
s=0

eaij(s)[1− e−aij(k)]

aij(k)

[
Fij(k, x)xij(k)−Gij(k, x)∆wij(k)− Iij(k)

]
,

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. So

k−1∑
v=k0

∆

[ v−1∏
s=0

eaij(s)xij(v)

]

= −
k−1∑
v=k0

v∏
s=0

eaij(s)[1− e−aij(v)]

aij(v)

[
Fij(v, x)xij(v)−Gij(v, x)∆wij(v)− Iij(v)

]
is equivalent to

k−1∏
s=0

eaij(s)xij(k) =

k0−1∏
s=0

eaij(s)xij(k0)−
k−1∑
v=k0

v∏
s=0

eaij(s)[1− e−aij(v)]

aij(v)[
Fij(v, x)xij(v)−Gij(v, x)∆wij(v)− Iij(v)

]
,

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. By the above equations, we can easily
derive (2.1). This completes the proof. �

Lemma 2.5. (Hu at al. [11]) Suppose that g ∈ L2([a, b],R), then

E

[
sup
t∈[a,b]

∣∣∣∣ ∫ t

a

g(s) dω(s)

∣∣∣∣p] ≤ CpE[ ∫ b

a

|g(t)|2 dt

] p
2

,

where

Cp =


(32/p)p/2, 0 < p < 2,
4, p = 2,[

pp+1

2(p−1)(p−1)

] p
2

, p > 2.
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Lemma 2.6. Assume that {x(k) : k ∈ Z} is real-valued stochastic process and w(k) is
the standard Brownian motion, then

E
∣∣x(k)∆w(k)

∣∣p ≤ CpE∣∣x(k)
∣∣p, ∀k ∈ Z,

where Cp is defined as that in Lemma 2.5, p > 0.

P r o o f . By Lemma 2.5, it follows that

E
∣∣x(k)∆w(k)

∣∣p = E

∣∣∣∣ ∫ k+1

k

x(k) dw(s)

∣∣∣∣p ≤ CpE∣∣∣∣ ∫ k+1

k

x2(k) ds

∣∣∣∣
p
2

≤ CpE
∣∣x(k)

∣∣p, k ∈ Z.

This completes the proof. �

Lemma 2.7. (Smart [29]) Assume that Λ is a closed convex nonempty subset of a Ba-
nach space X. Suppose further that B and C map Λ into X such that

(1) x, y ∈ Λ implies that Bx+ Cy ∈ Λ;

(2) B is continuous and BΛ is contained in a compact set;

(3) C is a contraction mapping.

Then there exists a z ∈ Λ with z = Bz + Cz.

Throughout this paper, suppose that the following conditions are satisfied:

(H1) aij is a bounded sequence defined on Z with aij > 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

(H2) There exists several constants f∗ij , g
∗
ij , σ

∗
ij , L

f
ij , L

g
ij and Lσij such that fij(k) ≤ f∗ij ,

gij(k) ≤ g∗ij , σij(k) ≤ σ∗ij and

|fij(u)− fij(v)| ≤ Lfij |u− v|, |gij(u)− gij(v)| ≤ Lgij |u− v|,

|σij(u)− σij(v)| ≤ Lσij |u− v|,

for all u, v ∈ R, where i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

3. 2PTH MEAN ALMOST PERIODIC SEQUENCE SOLUTION

Define
ā := max

(i,j)
āij , a := min

(i,j)
aij , β2p :=

α2p

1− r2p
,

r2p :=
(1− e−ā)

a(1− e−a)
max
(i,j)

{
D∗ +K∗C

1/2p
2p

}
,

α2p :=
(1− e−ā)

a(1− e−a)
max
(i,j)

[
Īij +

∑
dhl∈Ne(i,j)

d̄hlijσ
∗
ijC

1/2p
2p

]
, 2p ≥ 1,
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D∗ := max
(i,j)

 ∑
bhl∈Nr(i,j)

b̄hlij f
∗
ij +

∑
chl∈Nq(i,j)

c̄hlij g
∗
ij

 ,

K∗ := max
(i,j)

 ∑
dhl∈Ne(i,j)

d̄hlijL
σ
ij ,

∑
dhl∈Ne(i,j)

d̄hlijσ
∗
ij

 .

Theorem 3.1. Assume that all of the coefficients in system (1.4) are almost periodic
sequences, (H1)-(H2) and the following condition are satisfied:

(H3) r2p < 1, 2p ≥ 1.

Then there exists a 2p-mean almost periodic sequence solution X of system (1.4) with
‖X‖2p ≤ β2p.

P r o o f . Let Λ ⊆ BC(Z;L2p(Ω;Rm×n)) be the collection of all 2p-mean almost periodic
sequences X = {xij} satisfying ‖X‖2p ≤ β2p.

Firstly, X = {xij} is described by

xij(k) = −
k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)[
Fij(v, x)xij(v)−Gij(v, x)∆wij(v)− Iij(v)

]
, (3.1)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. Obviously, (3.1) is well defined and satisfies
(2.1). So we define ΦX(k) = BX(k) + CX(k), where

ΦX(k) = ((ΦX)11(k), (ΦX)12(k), . . . , (ΦX)mn(k))T ,

(ΦX)ij(k) = (BX)ij(k) + (CX)ij(k), (3.2)

(BX)ij(k) = −
k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)

[
Fij(v, x)xij(v)− Iij(v)

]
, (3.3)

(CX)ij(k) =

k−1∑
v=∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
Gij(v, x)∆wij(v), (3.4)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z.
Let X0 = {x0

ij} be defined as

x0
ij(k) =

k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)

[ ∑
dhl∈Ne(i,j)

dhlij (v)σij(0)∆wij(v) + Iij(v)

]
,
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where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. By Minkoswki inequality in Lemma 2.2
and Hölder inequality in Lemma 2.3, we obtain

‖X0‖2p

≤ max
(i,j)

sup
k∈Z

{[
E

∣∣∣∣ k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
Iij(v)

∣∣∣∣2p]1/2p

+

[
E

∣∣∣∣ k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)

∑
dhl∈Ne(i,j)

dhlij (v)σij(0)∆wij(v)

∣∣∣∣2p]1/2p}

≤ max
(i,j)

sup
k∈Z

{
(1− e−ā)Īij
a(1− e−a)

+
∑

dhl∈Ne(i,j)

d̄hlijσ
∗
ij

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)

]1−1/2p

×
[ k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
E|∆wij(v)|2p

]1/2p}
≤ (1− e−ā)

a(1− e−a)
max
(i,j)

[
Īij +

∑
dhl∈Ne(i,j)

d̄hlijσ
∗
ijC

1/2p
2p

]
= α2p. (3.5)

Using Lemmas 2.2 and 2.3, it follows (3.2), (3.3) and (3.4) that

‖ΦX −X0‖2p

≤ max
(i,j)

sup
k∈Z

D∗
{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
|xij(v)|

]2p}1/2p

+ max
(i,j)

sup
k∈Z

K∗
{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
|xij(v)∆wij(v)|

]2p}1/2p

≤ max
(i,j)

sup
k∈Z

D∗
{[ k−1∑

v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)

]2p−1

×
k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
E
∣∣xij(v)

∣∣2p}1/2p

+ max
(i,j)

sup
k∈Z

K∗
{[ k−1∑

v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)

]2p−1

×
k−1∑
v=−∞

k−1∏
s=v+1

e−aij(s)[1− e−aij(v)]

aij(v)
E
∣∣xij(v)∆wij(v)

∣∣2p}1/2p

.

Applying Lemma 2.6 to the above inequality, it derives

‖ΦX −X0‖2p ≤
(1− e−ā)

a(1− e−a)
max
(i,j)

{
D∗ +K∗C

1/2p
2p

}
‖X‖2p = r2p‖X‖2p ≤

r2pα2p

1− r2p
. (3.6)
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Hence, ∀X = {xij} ∈ Λ, it leads from (3.5) and (3.6) to

‖ΦX‖2p ≤ ‖X0‖2p + ‖ΦX −X0‖2p ≤ α2p +
r2pα2p

1− r2p
=

α2p

1− r2p
:= β2p. (3.7)

From (3.7), BΛ is uniformly bounded. Together with the continuity of B, for any
bounded sequence {ϕn} in Λ, we know that there exists a subsequence {ϕnk

} in Λ such
that {B(ϕnk

)} is convergent in B(Λ). Therefore, B is compact on Λ. Then condition (2)
of Lemma 2.7 is satisfied.

The next step is proving condition (1) of Lemma 2.7. Now, we consist in proving the
2pth mean almost periodicity of BX(·) and CX(·). Since X(·) is a 2pth mean almost
periodic sequence and all the coefficients in system (1.4) are almost periodic sequences,
for all ε > 0 there exists lε > 0 such that every interval of length lε > 0 contains a τ
with the property that

E|xij(k + τ)− xij(k)|2p < ε, |aij(k + τ)− aij(k)| < ε,

|bhlij (k + τ)− bhlij (k)| < ε, |chlij (k + τ)− chlij (k)| < ε, |Iij(k + τ)− Iij(k)| < ε,

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. In view of (3.3), it follows that

Tij(k)

=
[
E|(BX)ij(k + τ)− (BX)ij(k)|2p

]1/2p
=

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

∣∣∣∣e−aij(s+τ)[1− e−aij(v+τ)]

aij(v + τ)

(
Fij(v + τ, xij(v + τ))− Iij(v + τ)

)

−e
−aij(s)[1− e−aij(v)]

aij(v)

(
Fij(v, xij(v))− Iij(v)

)∣∣∣∣]2p} 1
2p

≤
[

(1− e−ā)

a
+

(e−aā+ e−a + 1)

a2

]
×
{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a(D∗|xij(v)|+ Īij)|aij(s+ τ)− aij(s)|
]2p}1/2p

+
[1− e−ā]

a

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∣∣Iij(v + τ)− Iij(v)

∣∣]2p} 1
2p

+
[1− e−ā]

a

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∣∣Fij(v + τ, xij(v + τ))− Fij(v, xij(v))

∣∣]2p} 1
2p

=

[
(1− e−ā)

a
+

(e−aā+ e−a + 1)

a2

]
T1ij(k) +

[1− e−ā]

a
T2ij(k) +

[1− e−ā]

a
T3ij(k),

where

T1ij(k) =

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a(D∗|xij(v)|+ Īij)|aij(s+ τ)− aij(s)|
]2p}1/2p

,
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T2ij(k) =

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a|Iij(v + τ)− Iij(v)|
]2p}1/2p

,

T3ij(k)

=

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∣∣Fij(v + τ, xij(v + τ))− Fij(v, xij(v))

∣∣]2p}1/2p

≤
{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∑

bhl∈Nr(i,j)

b̄hlij f
∗
ij

∣∣xij(v + τ)− xij(v)
∣∣]2p}1/2p

+

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∑

bhl∈Nr(i,j)

f∗ij |xij(v)|
∣∣bhlij (v + τ)− bhlij (v)

∣∣]2p}1/2p

+

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∑

bhl∈Nr(i,j)

b̄hlij

√
2f∗ijL

f
ij |xij(v)|

∣∣xhl(v + τ)− xhl(v)
∣∣1/2]2p}1/2p

+

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∑

chl∈Nr(i,j)

c̄hlij g
∗
ij

∣∣xij(v + τ)− xij(v)
∣∣]2p}1/2p

+

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∑

chl∈Nr(i,j)

g∗ij |xij(v)|
∣∣bhlij (v + τ)− bhlij (v)

∣∣]2p}1/2p

+

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a
∑

chl∈Nr(i,j)

c̄hlij

√
2g∗ijL

g
ij |xij(v)|

×
∣∣xhl(v − µhl(v + τ) + τ)− xhl(v − µhl(v))

∣∣ 12 ]2p} 1
2p

,

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z.
By Minkoswki inequality in Lemma 2.2 and similar to the arguments as that in (3.6),

we obtain

T1ij(k) ≤
{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aD∗|xij(v)|
]2p}1/2p

ε+

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aĪij

]2p}1/2p

ε

≤ (D∗‖X‖p + Īij)

1− e−a
ε ≤ (D∗β2p + Īij)

1− e−a
ε, (3.8)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. In (3.8), we use the Liapunov inequality
|X|p ≤ |X|2p ≤ β2p. Similarly,

T2ij(k) ≤ 1

1− e−a
ε, (3.9)
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T3ij(k)

≤ 1

1− e−a

{ ∑
bhl∈Nr(i,j)

f∗ij(b̄
hl
ij + ‖X‖2p)ε+

∑
chl∈Nr(i,j)

g∗ij(c̄
hl
ij + ‖X‖2p)ε

+
∑

bhl∈Nr(i,j)

b̄hlij

√
2f∗ijL

f
ij

[
E
(∣∣xij(v)

∣∣2p∣∣xhl(v + τ)− xhl(v)
∣∣p)]1/2p

+
∑

chl∈Nr(i,j)

c̄hlij

√
2g∗ijL

g
ij

[
E
(∣∣xij(v)

∣∣2p∣∣xhl(v − σhl + τ)− xhl(v − σhl)
∣∣p)]1/2p}

≤ 1

1− e−a

{ ∑
bhl∈Nr(i,j)

f∗ij(b̄
hl
ij + β2p)ε+

∑
chl∈Nr(i,j)

g∗ij(c̄
hl
ij + β2p)ε

+
∑

bhl∈Nr(i,j)

b̄hlij

√
2f∗ijL

f
ij

[
E
∣∣xij(v)

∣∣2p]1/2p[E∣∣xhl(v + τ)− xhl(v)
∣∣2p]1/2p

+
∑

chl∈Nr(i,j)

c̄hlij

√
2g∗ijL

g
ij

[
E
∣∣xij(v)

∣∣2p] 1
2p
[
E
∣∣xhl(v − µhl(v + τ) + τ)− xhl(v − µhl(v))

∣∣2p] 1
2p

}
≤ 1

1− e−a

{ ∑
bhl∈Nr(i,j)

f∗ij(b̄
hl
ij + β2p) +

∑
chl∈Nr(i,j)

g∗ij(c̄
hl
ij + β2p)

+
∑

bhl∈Nr(i,j)

b̄hlij

√
2f∗ijL

f
ijβ2p +

∑
chl∈Nr(i,j)

c̄hlij

√
2g∗ijL

g
ijβ2p

}
ε, (3.10)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. In the second inequality from the bottom
of (3.10), we use the Hölder inequality E(|ξη|) ≤ [E(|ξ|2)]

1
2 [E(|η|2)]

1
2 . On the other

hand, from (3.4) and Lemma 2.6, we get

Wij(k)

=
[
E|(CX)ij(k + τ)− (CX)ij(k)|2p

]1/2p
=

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

∣∣∣∣e−aij(s+τ)[1− e−aij(v+τ)]

aij(v + τ)∑
dhl∈Ne(i,j)

dhlij (v + τ)σij(xij(v + τ))∆wij(v + τ)

−e
−aij(s)[1− e−aij(v)]

aij(v)

∑
dhl∈Ne(i,j)

dhlij (v)σij(xij(v))∆wij(v)

∣∣∣∣]2p}1/2p

≤
[

(1− e−ā)

a
+

(e−aā+ e−a + 1)

a2

] ∑
dhl∈Ne(i,j)

d̄hlij
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×
{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aσ∗ij |aij(s+ τ)− aij(s)||∆wij(v)|
]2p}1/2p

+
[1− e−ā]

a

∑
dhl∈Ne(i,j)

d̄hlij

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aσ∗ij |∆wij(v + τ)−∆wij(v)|
]2p}1/2p

+
[1− e−ā]

a

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−aLσij
∑

dhl∈Ne(i,j)

d̄hlij
∣∣xij(v + τ)− xij(v)

∣∣∆wij(v)

]2p}1/2p

≤
∑

C
1/2p
2p dhl∈Ne(i,j)

d̄hlij (1− e−ā)

a(1− e−a)

{[
1 +

(e−aā+ e−a + 1)

a(1− e−ā)

]
σ∗ij + Lσij

}
ε, (3.11)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. From (3.8), (3.9), (3.10) and (3.11), BX(·)
and CX(·) are 2pth mean almost periodic processes. Further, by (3.7), it is easy to
obtain that BX + CY ∈ Λ, ∀X,Y ∈ Λ. Then condition (1) of Lemma 2.7 holds.

Finally, ∀X = {xij}, Y = {yij} ∈ Λ, from (3.4), it yields

‖CX − CY ‖2p ≤
[1− e−ā]

a
max
(i,j)

sup
k∈Z

{
E

[ k−1∑
v=−∞

k−1∏
s=v+1

e−a

×
∑

dhl∈Ne(i,j)

dhlij (v)
(
σij(xij(v))− σij(yij(v)))∆wij(v)

]2p} 1
2p

≤ [1− e−ā]

a
max
(i,j)

sup
k∈Z

K∗
{[ k−1∑

v=−∞

k−1∏
s=v+1

e−a
]2p−1

×
k−1∑
v=−∞

k−1∏
s=v+1

e−aE
∣∣[xij(v)− yij(v)]∆wij(v)

∣∣2p} 1
2p

≤
K∗C

1/2p
2p (1− e−ā)

a(1− e−a)
‖X − Y ‖2p

≤ r2p‖X − Y ‖2p. (3.12)

In view of (H3), C is a contraction mapping. Hence condition (3) of Lemma 2.7 is
satisfied. Therefore, all the conditions in Lemma 2.7 hold. By Lemma 2.7, system (1.4)
has a 2pth mean almost periodic sequence solution. This completes the proof. �

4. PTH MOMENT GLOBAL EXPONENTIAL STABILITY

Theorem 4.1. Assume that (H1)-(H2) hold and system (1.4) has a stochastic sequence
solution X∗ = {x∗ij} with initial value ϕ∗ = {ϕ∗ij}. Suppose further that

(H4) there exist positive constants Mij such that |x∗ij(k)| ≤Mij for k ∈ [−µ̄,+∞)Z and

(1− e−ā)(F ∗ + C
1
p
p K∗ +H∗)

a[1− e−a]
< 1,
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where p ≥ 1 and

F ∗ = max
(i,j)

{
D∗ +

∑
bhl∈Nr(i,j)

b̄hlijL
f
ijMij

}
, H∗ = max

(i,j)

∑
chl∈Nq(i,j)

c̄hlijL
g
ijMij .

Then the stochastic sequence solution X∗ of system (1.4) is pth moment globally expo-
nentially stable.

P r o o f . Suppose that X = {xij} with initial value ϕ = {ϕij} is an arbitrary solution
of system (1.4). Then it follows from Lemma 2.4 and (3.10) that

|xij(k)− x∗ij(k)|

≤
k−1∏
s=0

e−aij(s)|ϕij(0)− ϕ∗ij(0)|

+
(1− e−ā)

a

k−1∑
v=0

k−1∏
s=v+1

e−aij(s)
∣∣Fij(v, xij(v))− Fij(v, x∗ij(v))

∣∣
+

(1− e−ā)

a

k−1∑
v=0

k−1∏
s=v+1

e−aij(s)
∑

dhl∈Ne(i,j)

dhlij (v)
∣∣[σij(xij(v))− σij(x∗ij(v))]∆wij(v)

∣∣
≤ e−ak|ϕij(0)− ϕ∗ij(0)|

+
(1− e−ā)

a

k−1∑
v=0

e−a(k−v−1)

{ ∑
bhl∈Nr(i,j)

b̄hlij
[
f∗ij + g∗ij

]
|xij(v)− x∗ij(v)|

+
∑

bhl∈Nr(i,j)

b̄hlijL
f
ijMij |xhl(v)− x∗hl(v)|

+
∑

chl∈Nq(i,j)

c̄hlijL
g
ijMij |xhl(v − µhl(v))− x∗hl(v − µhl(v))|

}

+
(1− e−ā)

a

k−1∑
v=0

e−a(k−v−1)
∑

dhl∈Ne(i,j)

d̄hlijL
σ
ij |[xij(v)− x∗ij(v)]∆wij(v)|, (4.1)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ [−µ̄,+∞)Z, µ̄ = max(i,j) µ̄ij .

Let γp = max(i,j) sups∈[−µ̄,0]Z(E|ϕij(s) − ϕ∗ij(s)|p)
1
p , Z = {zij}, zij(k) = xij(k) −

x∗ij(k), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k ∈ Z. Similar to the argument as that in (3.6),
it gets from (4.1) that

|Z(k)|p
= |X(k)−X∗(k)|p

≤ e−akγp + max
(i,j)

F ∗(1− e−ā)

a

{[ k−1∑
s=0

e−a(k−s−1)

]p−1
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k−1∑
s=0

e−a(k−s−1)E
∣∣xij(s)− x∗ij(s)∣∣p} 1

p

+ max
(i,j)

H∗(1− e−ā)

a

{[ k−1∑
s=0

e−a(k−s−1)

]p−1

×
k−1∑
s=0

e−a(k−s−1)E
∣∣xij(s− µij(s))− x∗ij(s− µij(s))∣∣p} 1

p

+ max
(i,j)

K∗(1− e−ā)

a

{[ k−1∑
s=0

e−a(k−s−1)

]p−1

k−1∑
s=0

e−a(k−s−1)E
∣∣[xij(s)− x∗ij(s)]∆wij(s)∣∣p} 1

p

≤ e−akγp +
F ∗(1− e−ā)

a

{[ k−1∑
s=0

e−a(k−s−1)

]p−1 k−1∑
s=0

e−a(k−s−1)|Z(s)|pp
} 1

p

+
H∗(1− e−ā)

a

{[ k−1∑
s=0

e−a(k−s−1)

]p−1 k−1∑
s=0

e−a(k−s−1)|Z(s− µij(s))|pp
} 1

p

+
C

1
p
p K∗(1− e−ā)

a

{[ k−1∑
s=0

e−a(k−s−1)

]p−1 k−1∑
s=0

e−a(k−s−1)|Z(s)|pp
} 1

p

, (4.2)

where k ∈ [−µ̄,+∞)Z.
Be aware of (H4), there exists a constant λ > 0 small enough such that

eλ(1− e−ā)(F ∗ + C
1
p
p K∗ + eµ̄λH∗)

a[1− e−(a−pλ)]

def
= ρ ≤ 1.

Next, we claim that there exists a constant M0 > 1 such that

|Z(k)|p ≤M0γpe
−λk, ∀k ∈ [−µ̄,+∞)Z. (4.3)

If (4.3) is invalid, then there must exist k0 ∈ (0,+∞)Z such that

|Z(k0)|p > M0γpe
−λk0 (4.4)

and

|Z(k)|p ≤M0γpe
−λk, ∀k ∈ [−µ̄, k0)Z. (4.5)

In view of (4.2), it follows from (4.5) that

|Z(k0)|p
≤ e−ak0γp

+
(1− e−ā)(F ∗ + C

1
p
p K∗)

a
M0γp

{[ k0−1∑
s=0

e−a(k0−s−1)

]p−1 k0−1∑
s=0

e−a(k0−s−1)e−pλs
} 1

p

+
(1− e−ā)H∗

a
M0γp

{[ k0−1∑
s=0

e−a(k0−s−1)

]p−1 k0−1∑
s=0

e−a(k0−s−1)e−pλ(s−µ̄)

} 1
p
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≤ e−ak0γp

+
(1− e−ā)(F ∗ + C

1
p
p K∗)

a
M0γpe

−λk0eλ
[

1− e−ak0
1− e−a

]1− 1
p
[ k0−1∑
s=0

e−(a−pλ)(k0−s−1)

] 1
p

+
(1− e−ā)H∗

a
M0γpe

−λk0e(µ̄+1)λ

[
1− e−ak0
1− e−a

]1− 1
p
[ k0−1∑
s=0

e−(a−pλ)(k0−s−1)

] 1
p

≤ e−ak0γp

+
(1− e−ā)(F ∗ + C

1
p
p K∗ + eµ̄λH∗)

a
M0γpe

−λk0eλ
[

1− e−ak0
1− e−a

]1− 1
p
[

1− e−(a−pλ)k0

1− e−(a−pλ)

] 1
p

≤ M0γpe
−λk0

{
1

M0
e−(a−λ)k0 +

eλ(1− e−ā)(F ∗ + C
1
p
p K∗ + eµ̄λH∗)

a[1− e−(a−pλ)]
[1− e−(a−λ)k0 ]

}
≤ M0γpe

−λk0
{
e−(a−λ)k0 + ρ[1− e−(a−λ)k0 ]

}
≤ M0γpe

−λk0 . (4.6)

In the fourth inequality from the bottom of (4.6), we use the fact [1 − e−ak0 ]1−
1
p [1 −

e−(a−pλ)k0 ]
1
p ≤ 1− e−(a−λ)k0 and [1− e−a]

1
p ≥ [1− e−(a−pλ)]

1
p . (4.6) contradicts (4.4).

Hence, (4.3) is satisfied. Therefore, the stochastic sequence solution X∗ of system (1.4)
is pth moment globally exponentially stable. This completes the proof. �

According to Theorem 3.1, system (1.4) has a 2pth mean almost periodic sequence
solution X� = {x�ij}. We obtain

Theorem 4.2. Assume that (H1)-(H3) hold. Suppose further that

(H5) there exist positive constants M�ij such that |x�ij(k)| ≤M�ij for k ∈ [−µ̄,+∞)Z and

(1− e−ā)(F̃ ∗ + C
1
2p

2p K
∗ + H̃∗)

a[1− e−a]
< 1, 2p ≥ 1,

where

F̃ ∗ = max
(i,j)

{
D∗ +

∑
bhl∈Nr(i,j)

b̄hlijL
f
ijM

�
ij

}
, H̃∗ = max

(i,j)

∑
chl∈Nq(i,j)

c̄hlijL
g
ijM

�
ij .

Then the 2pth mean almost periodic sequence solutionX� of system (1.4) is 2pth moment
globally exponentially stable.

P r o o f . The result can be easily obtained by Theorem 4.1, so we omit it. This com-
pletes the proof. �

Remark 4.3. In literature [14], Huang et al. studied a simple semi-discrete cellular
neural networks and obtained some sufficient conditions for the existence of a unique
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almost periodic sequence solution which is globally attractive. In [13], they considered
the semi-discrete models for a class of general neural networks and studied the dynamics
of 2N almost periodic sequence solutions. But neither of them considered the uncertain
factors. Therefore, the work in this paper complements the corresponding results in
[13, 14].

Remark 4.4. Assume that X(t) = (x11(t), . . . , x1n(t), . . . , xm1(t), . . . , xmn(t)) is a so-
lution of system (1.1), the length of X(t) is usually measured by

‖X‖∞ = sup
t∈R

max
1≤i≤m,1≤j≤n

|xij(t)|.

However, if X(t) is a solution of stochastic system, its length should not be measured
by ‖X‖∞ because X(t) is a random variable. In this paper, we use norm ‖X‖2p =

max1≤i≤m,1≤j≤n supk∈Z(E|xij(k)|2p)
1
2p (2p > 1) for random variable X(k). Owing to

the expectation E and order 2p in ‖X‖2p, the computing processes of this paper are
more complicated than that in literatures [13, 15, 14, 21, 24, 49, 50]. It is worth men-
tioning that Minkoswki inequality in Lemma 2.2 and Hölder inequality in Lemma 2.3 are
crucial to the computing processes. The facts above are obvious from the computations
of (3.5), (3.10), (4.2) and (4.6) in Theorems 3.1 and 4.1. Further, the stochastic term
Gij(k, x)∆wij (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) in system (1.4) also increases the com-
plexity of computing. This point is also clear from the computations of (3.5), (3.10),
(4.2) and (4.6) in Theorems 3.1 and 4.1.

5. EXAMPLES AND SIMULATIONS

Example 5.1. Considering the following discrete stochastic SICNNs:

x11(k + 1) = 0.4x11(k)− 0.6

[
0.01 cos(

√
2k) cos(x11(k))x11(k)

+0.02 sin(
√

3k) cos(x21(k − 1))x11(k) + 0.1∆w11(k)

]
,

x21(k + 1) = 0.4x21(k)− 0.6

[
0.01 sin(

√
3k) sin(x21(k))x21(k)

+0.02 cos(
√

5k) sin(x11(k − 1))x21(k) + 0.1∆w21(k)

]
,

(5.1)

where k ∈ Z.

Corresponding to system (1.4), we have a = ā = 1, f∗ij = g∗ij = σ∗ij = 1, Lfij = Lgij =

Lσij = 1, b̄hlij = 0.01, c̄hlij = 0.02, d̄hlij = 0.1, i = 1, 2, j = 1. Taking p = 1, by simple
calculation,

C
1/2
2 = 4, D∗ ≈ 0.06, K∗ ≈ 0.2, r2 ≈ 0.86 < 1.

According to Theorem 3.1, system (5.1) admits a square-mean almost periodic sequence
solution, see Figure 1.
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Fig. 1. Almost periodicity of state variables (x11, x21)T in stochastic

model (5.1).

Considering the corresponding determinant model of system (5.1) as follows:

x11(k + 1) = 0.4x11(k)− 0.6

[
0.01 cos(

√
2k) cos(x11(k))x11(k)

+0.02 sin(
√

3k) cos(x21(k − 1))x11(k) + 0.1

]
,

x21(k + 1) = 0.4x21(k)− 0.6

[
0.01 sin(

√
3k) sin(x21(k))x21(k)

+0.02 cos(
√

5k) sin(x11(k − 1))x21(k) + 0.1

]
,

(5.2)

where k ∈ Z. In Figures 2 – 3, we give results of contrast between stochastic model
(5.1) and determinant model (5.2). Figures 2 – 3 indicate that the effect of stochastic
perturbation on state variable x21 is more obvious than that on state variable x11.

Example 5.2. Considering the following discrete stochastic SICNNs:
x11(k + 1) = 0.4x11(k)− 0.006 sin(x11(k))x11(k)

+0.6 + 0.006 sin 1 + 0.1(x21(k)− 2)∆w11(k),
x21(k + 1) = 0.4x21(k)− 0.006 cos(x21(k − 1))x21(k)

+1.2 + 0.012 cos 2 + 0.1(x11(k)− 1)∆w21(k),

(5.3)

where k ∈ Z.
It is evident that system (5.3) has a equilibrium point (1, 2)T . Taking p = 2, by

simple calculation,

C
1/2
2 = 2, F ∗ ≈ 0.03, K∗ ≈ 0.1, H∗ ≈ 0.024.

Hence,

(1− e−ā)(F ∗ + C
1
2
2 K

∗ +H∗)

a[1− e−a]
≈ 0.254 < 1.
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Fig. 2. State variable x11’s comparison between stochastic model

(5.1) and determinant model (5.2).

0 50 100 150 200 250 300 350 400 450 500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

k

x 21
(k

)

 

 
stochastic model (5.1)
determinant model (5.2)

Fig. 3. State variable x21’s comparison between stochastic model

(5.1) and determinant model (5.2).

According to Theorem 4.1, the equilibrium point (1, 2)T of system (5.3) is globally
exponentially stable, see Figures 4 – 5.

Considering the corresponding determinant model of system (5.3) as follows:
x11(k + 1) = 0.4x11(k)

−0.006 sin(x11(k))x11(k) + 0.6 + 0.006 sin 1 + 0.1(x21(k)− 2),
x21(k + 1) = 0.4x21(k)

−0.006 cos(x21(k − 1))x21(k) + 1.2 + 0.012 cos 2 + 0.1(x11(k)− 1),

(5.4)

where k ∈ Z. In Figures 6 – 7, we give results of globally exponentially stable contrast
between stochastic model (5.3) and determinant model (5.4). Figures 6 – 7 reveal that
the convergence speed of stochastic model (5.3) is faster than determinant model (5.4).
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6. DISCUSSION

In recent years, the semi-discrete method of differential equations has been applied into
the investigations of determinant neural networks. But few people employ this method
to study stochastic neural networks. In this paper, we formulate a new kind of discrete
analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) by using
semi-discrete method, which gives a more accurate characterization for continuous-time
stochastic SICNNs than that by Euler scheme. Besides, the stability of discrete-time
stochastic neural networks has been studied by many scholars in recent years and yet
there are few people to consider the issue of almost periodicity and global exponential
stability of discrete-time stochastic neural networks. Therefore, in this paper, we in-
vestigate the existence of mean almost periodic sequence solution and moment global
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exponential stability of a discrete-time stochastic SICNNs with the help of Minkowski
inequality, Hölder inequality, Krasnoselskii’s fixed point theorem and the proof of con-
tradiction. The main results obtained in this paper are completely new and the methods
used in this paper provide a possible technique to study the almost periodic sequence
solution and global exponential stability of the semi-discrete models with stochastic
perturbations.
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