Communications in Mathematics

Maid Mirmiran
Insertion of a Contra-Baire-1 (Baire-.5) Function

Communications in Mathematics, Vol. 27 (2019), No. 2, 89-101

Persistent URL: http://dml.cz/dmlcz/147984

Terms of use:

© University of Ostrava, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Insertion of a Contra-Baire-1 (Baire-.5) Function

Majid Mirmiran

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire- 5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [17]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [17].

Recall that a real-valued function f defined on a topological space X is called A-continuous [20] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4], [10]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1], [3], [7], [8], [9], [11], [12], [19].

Results of Katětov [13], [14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition for the insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

[^0]A real-valued function f defined on a topological space X is called contra-Baire-. 5 (Baire-.5) if the preimage of every open subset of \mathbb{R} is a G_{δ}-set in $X[21]$.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g<f$) in case $g(x) \leq f(x)$ (resp. $g(x)<f(x))$ for all x in X.

The following definitions are modifications of conditions considered in [15].
A property P defined relative to a real-valued function on a topological space is a B-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire- .5 function also has property P. If P_{1} and P_{2} are B-.5-properties, the following terminology is used:
(i) A space X has the weak B-.5-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g \leq h \leq f$.
(ii) A space X has the B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g<f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g<h<f$.

In this paper, for a topological space that F_{σ}-kernel of sets are F_{σ}-sets, is given a sufficient condition for the weak B-. 5 -insertion property. Also for a space with the weak B-. 5 -insertion property, we give a necessary and sufficient condition for the space to have the $B-.5$-insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-. 5 function, the necessary definitions and terminology are stated.

Definition 1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:

$$
A^{\Lambda}=\bigcap\{O: O \supseteq A, O \in(X, \tau)\}
$$

and

$$
A^{V}=\bigcup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}
$$

In [6], [16], [18], A^{Λ} is called the kernel of A.
Definition 2. We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$
G_{\delta}(A)=\bigcup\left\{O: O \subseteq A, O \text { is } G_{\delta} \text {-set }\right\}
$$

and

$$
F_{\sigma}(A)=\bigcap\left\{F: F \supseteq A, F \text { is } F_{\sigma} \text {-set }\right\} .
$$

$F_{\sigma}(A)$ is called the F_{σ}-kernel of A.
The following first two definitions are modifications of conditions considered in [13], [14].

Definition 3. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 4. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1. If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2. If $A \subseteq B$, then $A \bar{\rho} B$.
3. If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 5. If f is a real-valued function defined on a space X and if

$$
\{x \in X: f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}
$$

for a real number ℓ, then $A(f, \ell)$ is a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main results:
Theorem 1. Let g and f be real-valued functions on the topological space X, that F_{σ}-kernel of sets in X are F_{σ}-sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a Baire-. 5 function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [14] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let

$$
h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}
$$

We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence
$g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have

$$
h^{-1}\left(t_{1}, t_{2}\right)=G_{\delta}\left(H\left(t_{2}\right)\right) \backslash F_{\sigma}\left(H\left(t_{1}\right)\right) .
$$

Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is a G_{δ}-set in X, i.e., h is a Baire-. 5 function on X.
The above proof used the technique of Theorem 1 of [13].
Theorem 2. Let P_{1} and P_{2} be B-.5-property and X be a space that satisfies the weak B-.5-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g<f, g$ has property P_{1} and f has property P_{2}. The space X has the B-.5-insertion property for (P_{1}, P_{2}) if and only if there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a decreasing sequence $\left\{D_{n}\right\}$ of subsets of X with empty intersection and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire-. 5 functions.

Proof. Assume that X has the weak B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$. Let g and f be functions such that $g<f, g$ has property P_{1} and f has property P_{2}. By hypothesis there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a sequence $\left(D_{n}\right)$ such that $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$ and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire- .5 functions. Let k_{n} be a Baire- .5 function such that $k_{n}=0$ on $A\left(f-g, 3^{-n+1}\right)$ and $k_{n}=1$ on $X \backslash D_{n}$. Let a function k on X be defined by

$$
k(x)=1 / 2 \sum_{n=1}^{\infty} 3^{-n} k_{n}(x) .
$$

By the Cauchy condition and the B-. 5 -properties, the function k is a Baire-. 5 function. Since $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$ and since $k_{n}=1$ on $X \backslash D_{n}$, it follows that $0<k$. Also $2 k<f-g$: In order to see this, observe first that if x is in $A\left(f-g, 3^{-n+1}\right)$, then $k(x) \leq 1 / 4\left(3^{-n}\right)$. If x is any point in X, then $x \notin A(f-g, 1)$ or for some n,

$$
x \in A\left(f-g, 3^{-n+1}\right)-A\left(f-g, 3^{-n}\right) ;
$$

in the former case $2 k(x)<1$, and in the latter $2 k(x) \leq 1 / 2\left(3^{-n}\right)<f(x)-g(x)$. Thus if $f_{1}=f-k$ and if $g_{1}=g+k$, then $g<g_{1}<f_{1}<f$. Since P_{1} and P_{2} are $B-.5$-properties, then g_{1} has property P_{1} and f_{1} has property P_{2}. Since X has the weak B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function such that $g_{1} \leq h \leq f_{1}$. Thus $g<h<f$, it follows that X satisfies the B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$. (The technique of this proof is by Katětov [13].)

Conversely, let g and f be functions on X such that g has property P_{1}, f has property P_{2} and $g<f$. By hypothesis, there exists a Baire- 5 function such that $g<h<f$. We follow an idea contained in Lane [15]. Since the constant function 0 has property P_{1}, since $f-h$ has property P_{2}, and since X has the B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function k such that $0<k<f-h$. Let $A\left(f-g, 3^{-n+1}\right)$ be any lower cut set for $f-g$ and let

$$
D_{n}=\left\{x \in X: k(x)<3^{-n+2}\right\} .
$$

Since $k>0$ it follows that $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$. Since

$$
A\left(f-g, 3^{-n+1}\right) \subseteq\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\} \subseteq\left\{x \in X: k(x) \leq 3^{-n+1}\right\}
$$

and since

$$
\left\{x \in X: k(x) \leq 3^{-n+1}\right\}
$$

and

$$
\left\{x \in X: k(x) \geq 3^{-n+2}\right\}=X \backslash D_{n}
$$

are completely separated by Baire-. 5 function $\sup \left\{3^{-n+1}, \inf \left\{k, 3^{-n+2}\right\}\right\}$, it follows that for each $n, A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ are completely separated by Baire-. 5 functions.

3 Applications

Definition 6. A real-valued function f defined on a space X is called contra-upper semi-Baire-. 5 (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp. $f^{-1}(t,+\infty)$) is a G_{δ}-set for any real number t.

The abbreviations usc, lsc, cusB-. 5 and clsB- .5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [13], [14]. A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences of Theorem 1, and Theorem 2 we suppose that X is a topological space that F_{σ}-kernel of sets are F_{σ}-sets.

Corollary 1. For each pair of disjoint F_{σ}-sets F_{1}, F_{2}, there are two G_{δ}-sets G_{1} and G_{2} such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\emptyset$ if and only if X has the weak B-.5-insertion property for (cusB-.5, clsB-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is lsc B_{1}, g is usc B_{1}, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right) ;
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a F_{σ}-set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is a G_{δ}-set, it follows that

$$
F_{\sigma}\left(A\left(f, t_{1}\right)\right) \subseteq G_{\delta}\left(A\left(g, t_{2}\right)\right)
$$

Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 1.
On the other hand, let F_{1} and F_{2} are disjoint F_{σ}-sets. Set $f=\chi_{F_{1}^{c}}$ and $g=\chi_{F_{2}}$, then f is clsB-.5, g is cusB-.5, and $g \leq f$. Thus there exists Baire-. 5 function h such that $g \leq h \leq f$. Set

$$
G_{1}=\left\{x \in X: h(x)<\frac{1}{2}\right\}
$$

and

$$
G_{2}=\left\{x \in X: h(x)>\frac{1}{2}\right\}
$$

then G_{1} and G_{2} are disjoint G_{δ}-sets such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$.
Remark 2. [22] A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 2. For every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set if and only if X has the weak B-.5-insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.
Lemma 1. The following conditions on the space X are equivalent:
(i) For every G of G_{δ}-set we have $F_{\sigma}(G)$ is a G_{δ}-set.
(ii) For each pair of disjoint G_{δ}-sets as G_{1} and G_{2} we have $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$.

The proof of Lemma 1 is a direct consequence of the definition F_{σ}-kernel of sets.

We now give the proof of Corollary 2.
Proof of Corollary 2. Let g and f be real-valued functions defined on the X, such that f is clsB-. $5, g$ is cusB-. 5 , and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case

$$
F_{\sigma}(A) \subseteq G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)
$$

for some G_{δ}-set g in X, then by hypothesis and Lemma 1ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(g, t_{1}\right)=\left\{x \in X: g(x)<t_{1}\right\} \subseteq\left\{x \in X: f(x) \leq t_{2}\right\}=A\left(f, t_{2}\right) ;
$$

since $\left\{x \in X: g(x)<t_{1}\right\}$ is a G_{δ}-set and since $\left\{x \in X: f(x) \leq t_{2}\right\}$ is a F_{σ}-set, by hypothesis it follows that $A\left(g, t_{1}\right) \rho A\left(f, t_{2}\right)$. The proof follows from Theorem 1.

On the other hand, Let G_{1} and G_{2} are disjoint G_{δ}-sets. Set $f=\chi_{G_{2}}$ and $g=\chi_{G_{1}^{c}}$, then f is clsB-. $5, g$ is cusB-. 5 , and $f \leq g$.

Thus there exists Baire-. 5 function h such that $f \leq h \leq g$. Set

$$
F_{1}=\left\{x \in X: h(x) \leq \frac{1}{3}\right\}
$$

and

$$
F_{2}=\left\{x \in X: h(x) \geq \frac{2}{3}\right\}
$$

then F_{1} and F_{2} are disjoint F_{σ}-sets such that $G_{1} \subseteq F_{1}$ and $G_{2} \subseteq F_{2}$. Hence

$$
F_{\sigma}\left(F_{1}\right) \cap F_{\sigma}\left(F_{2}\right)=\emptyset .
$$

Before stating the consequences of Theorem 2, we state and prove the necessary lemmas.

Lemma 2. The following conditions on the space X are equivalent:
(i) Every two disjoint F_{σ}-sets of X can be separated by G_{δ}-sets of X.
(ii) If F is a F_{σ}-set of X which is contained in a G_{δ}-set G, then there exists a G_{δ}-set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ}-set and G_{δ}-set of X, respectively. Hence, G^{c} is a F_{σ}-set and $F \cap G^{c}=\emptyset$.

By (i) there exists two disjoint G_{δ}-sets G_{1}, G_{2} such that $F \subseteq G_{1}$ and $G^{c} \subseteq G_{2}$. But

$$
G^{c} \subseteq G_{2} \Rightarrow G_{2}^{c} \subseteq G,
$$

and

$$
G_{1} \cap G_{2}=\emptyset \Rightarrow G_{1} \subseteq G_{2}^{c}
$$

hence

$$
F \subseteq G_{1} \subseteq G_{2}^{c} \subseteq G
$$

and since G_{2}^{c} is a F_{σ}-set containing G_{1} we conclude that $F_{\sigma}\left(G_{1}\right) \subseteq G_{2}^{c}$, i.e.,

$$
F \subseteq G_{1} \subseteq F_{\sigma}\left(G_{1}\right) \subseteq G
$$

By setting $H=G_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that F_{1}, F_{2} are two disjoint F_{σ}-sets of X.

This implies that $F_{1} \subseteq F_{2}^{c}$ and F_{2}^{c} is a G_{δ}-set. Hence by (ii) there exists a G_{δ}-set H such that $F_{1} \subseteq H \subseteq F_{\sigma}(H) \subseteq F_{2}^{c}$.
But

$$
H \subseteq F_{\sigma}(H) \Rightarrow H \cap\left(F_{\sigma}(H)\right)^{c}=\emptyset
$$

and

$$
F_{\sigma}(H) \subseteq F_{2}^{c} \Rightarrow F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}
$$

Furthermore, $\left(F_{\sigma}(H)\right)^{c}$ is a G_{δ}-set of X. Hence $F_{1} \subseteq H, F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}$ and $H \cap\left(F_{\sigma}(H)\right)^{c}=\emptyset$. This means that condition (i) holds.

Lemma 3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ}-sets by G_{δ}-sets. If F_{1} and F_{2} are two disjoint F_{σ}-sets of X, then there exists a Baire-. 5 function $h: X \rightarrow[0,1]$ such that

$$
h\left(F_{1}\right)=\{0\} \quad \text { and } \quad h\left(F_{2}\right)=\{1\} .
$$

Proof. Suppose F_{1} and F_{2} are two disjoint F_{σ}-sets of X. Since $F_{1} \cap F_{2}=\emptyset$, hence $F_{1} \subseteq F_{2}^{c}$. In particular, since F_{2}^{c} is a G_{δ}-set of X containing F_{1}, by Lemma 2, there exists a G_{δ}-set $H_{1 / 2}$ such that,

$$
F_{1} \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq F_{2}^{c}
$$

Note that $H_{1 / 2}$ is a G_{δ}-set and contains F_{1}, and F_{2}^{c} is a G_{δ}-set and contains $F_{\sigma}\left(H_{1 / 2}\right)$. Hence, by Lemma 2, there exists G_{δ}-sets $H_{1 / 4}$ and $H_{3 / 4}$ such that,

$$
F_{1} \subseteq H_{1 / 4} \subseteq F_{\sigma}\left(H_{1 / 4}\right) \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq H_{3 / 4} \subseteq F_{\sigma}\left(H_{3 / 4}\right) \subseteq F_{2}^{c}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain G_{δ}-sets H_{t} with the property that if $t_{1}, t_{2} \in D$ and $t_{1}<t_{2}$, then $H_{t_{1}} \subseteq H_{t_{2}}$. We define the function h on X by

$$
h(x)=\inf \left\{t: x \in H_{t}\right\}
$$

for $x \notin F_{2}$ and $h(x)=1$ for $x \in F_{2}$.
Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1$]$. Also, we note that for any $t \in D, F_{1} \subseteq H_{t}$; hence $h\left(F_{1}\right)=\{0\}$. Furthermore, by definition, $h\left(F_{2}\right)=\{1\}$. It remains only to prove that h is a Baire- 5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X: h(x)<\alpha\}=\emptyset$ and if $0<\alpha$ then

$$
\{x \in X: h(x)<\alpha\}=\bigcup\left\{H_{t}: t<\alpha\right\}
$$

hence, they are G_{δ}-sets of X. Similarly, if $\alpha<0$ then

$$
\{x \in X: h(x)>\alpha\}=X
$$

and if $0 \leq \alpha$ then

$$
\{x \in X: h(x)>\alpha\}=\bigcup\left\{\left(F_{\sigma}\left(H_{t}\right)\right)^{c}: t>\alpha\right\}
$$

hence, every of them is a G_{δ}-set. Consequently h is a Baire- .5 function.
Lemma 4. Suppose that X is the topological space such that every two disjoint F_{σ}-sets can be separated by G_{δ}-sets. The following conditions are equivalent:
(i) Every countable convering of G_{δ}-sets of X has a refinement consisting of G_{δ}-sets such that, for every $x \in X$, there exists a G_{δ}-set containing x such that it intersects only finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection there exists a decreasing sequence $\left\{G_{n}\right\}$ of G_{δ}-sets such that, $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$.

Proof. (i) \Rightarrow (ii). suppose that $\left\{F_{n}\right\}$ be a decreasing sequence of F_{σ}-sets with empty intersection. Then $\left\{F_{n}^{c}: n \in \mathbb{N}\right\}$ is a countable covering of G_{δ}-sets. By hypothesis (i) and Lemma 2, this covering has a refinement $\left\{V_{n}: n \in \mathbb{N}\right\}$ such that every V_{n} is a G_{δ}-set and $F_{\sigma}\left(V_{n}\right) \subseteq F_{n}^{c}$. By setting $F_{n}=\left(F_{\sigma}\left(V_{n}\right)\right)^{c}$, we obtain a decreasing sequence of G_{δ}-sets with the required properties.
(ii) \Rightarrow (i). Now if $\left\{H_{n}: n \in \mathbb{N}\right\}$ is a countable covering of G_{δ}-sets, we set for $n \in \mathbb{N}, F_{n}=\left(\bigcup_{i=1}^{n} H_{i}\right)^{c}$. Then $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. By (ii) there exists a decreasing sequence $\left\{G_{n}\right\}$ consisting of G_{δ}-sets such that, $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$. Now we define the subsets W_{n} of X in the following manner:
W_{1} is a G_{δ}-set of X such that $G_{1}^{c} \subseteq W_{1}$ and $F_{\sigma}\left(W_{1}\right) \cap F_{1}=\emptyset$.
W_{2} is a G_{δ}-set of X such that $F_{\sigma}\left(W_{1}\right) \cup G_{2}^{c} \subseteq W_{2}$ and $F_{\sigma}\left(W_{2}\right) \cap F_{2}=\emptyset$, and so on. (By Lemma 2, W_{n} exists).

Then since $\left\{G_{n}^{c}: n \in \mathbb{N}\right\}$ is a covering for X, hence $\left\{W_{n}: n \in \mathbb{N}\right\}$ is a covering for X consisting of G_{δ}-sets. Moreover, we have
(i) $F_{\sigma}\left(W_{n}\right) \subseteq W_{n+1}$
(ii) $G_{n}^{c} \subseteq W_{n}$
(iii) $W_{n} \subseteq \bigcup_{i=1}^{n} H_{i}$.

Now suppose that $S_{1}=W_{1}$ and for $n \geq 2$, we set $S_{n}=W_{n+1} \backslash F_{\sigma}\left(W_{n-1}\right)$.
Then since $F_{\sigma}\left(W_{n-1}\right) \subseteq W_{n}$ and $S_{n} \supseteq W_{n+1} \backslash W_{n}$, it follows that $\left\{S_{n}: n \in \mathbb{N}\right\}$ consists of G_{δ}-sets and covers X. Furthermore, $S_{i} \cap S_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$$
\begin{array}{llll}
S_{1} \cap H_{1}, & S_{1} \cap H_{2} & & \\
S_{2} \cap H_{1}, & S_{2} \cap H_{2}, & S_{2} \cap H_{3} & \\
S_{3} \cap H_{1}, & S_{3} \cap H_{2}, & S_{3} \cap H_{3}, & S_{3} \cap H_{4}
\end{array}
$$

and continue ad infinitum. These sets are G_{δ}-sets, cover X and refine $\left\{H_{n}: n \in \mathbb{N}\right\}$. In addition, $S_{i} \cap H_{j}$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_{n} \cap H_{m}$, then $S_{n} \cap H_{m}$ is a G_{δ}-set containing x that intersects at most finitely many of sets $S_{i} \cap H_{j}$. Consequently,

$$
\left\{S_{i} \cap H_{j}: i \in \mathbb{N}, j=1, \ldots, i+1\right\}
$$

refines $\left\{H_{n}: n \in \mathbb{N}\right\}$ such that its elements are G_{δ}-sets, and for every point in X we can find a G_{δ}-set containing the point that intersects only finitely many elements of that refinement.

Remark 3. [13], [14] A space X has the c-insertion property for (usc, lsc) if and only if X is normal and countably paracompact.

Corollary 3. X has the B-.5-insertion property for (cusB-.5, clsB-.5) if and only if every two disjoint F_{σ}-sets of X can be separated by G_{δ}-sets, and in addition, every countable covering of G_{δ}-sets has a refinement that consists of G_{δ}-sets such that, for every point of X we can find a G_{δ}-set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_{1} and F_{2} are disjoint F_{σ}-sets. Since $F_{1} \cap F_{2}=\emptyset$, it follows that $F_{2} \subseteq F_{1}^{c}$. We set $f(x)=2$ for $x \in F_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin F_{1}^{c}$, and $g=\chi_{F_{2}}$.

Since F_{2} is a F_{σ}-set, and F_{1}^{c} is a G_{δ}-set, therefore g is cusB-. $5, f$ is clsB-. 5 and furthermore $g<f$. Hence by hypothesis there exists a Baire-. 5 function h such that, $g<h<f$. Now by setting

$$
G_{1}=\{x \in X: h(x)<1\}
$$

and

$$
G_{2}=\{x \in X: h(x)>1\} .
$$

We can say that G_{1} and G_{2} are disjoint G_{δ}-sets that contain F_{1} and F_{2}, respectively. Now suppose that $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. Set $F_{0}=X$ and define for every $x \in F_{n} \backslash F_{n+1}$,

$$
f(x)=\frac{1}{n+1} .
$$

Since

$$
\bigcap_{n=0}^{\infty} F_{n}=\emptyset
$$

and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_{n} \backslash F_{n+1}, f$ is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$
\{x \in X: f(x)>r\}=X
$$

is a G_{δ}-set and if $r>0$ then by Archimedean property of \mathbb{R}, we can find $i \in \mathbb{N}$ such that

$$
\frac{1}{i+1} \leq r
$$

Now suppose that k is the least natural number such that $\frac{1}{k+1} \leq r$. Hence $\frac{1}{k}>r$ and consequently,

$$
\{x \in X: f(x)>r\}=X \backslash F_{k}
$$

is a G_{δ}-set. Therefore, f is clsB-.5. By setting $g=0$, we have g is cusB-. 5 and $g<f$. Hence by hypothesis there exists a Baire-. 5 function h on X such that, $g<h<f$.

By setting

$$
G_{n}=\left\{x \in X: h(x)<\frac{1}{n+1}\right\}
$$

we have G_{n} is a G_{δ}-set. But for every $x \in F_{n}$, we have

$$
f(x) \leq \frac{1}{n+1}
$$

and since $g<h<f$ therefore

$$
0<h(x)<\frac{1}{n+1}
$$

i.e., $x \in G_{n}$ therefore $F_{n} \subseteq G_{n}$ and since $h>0$ it follows that

$$
\bigcap_{n=1}^{\infty} G_{n}=\emptyset
$$

Hence by Lemma 4, the conditions holds.
On the other hand, since every two disjoint F_{σ}-sets can be separated by G_{δ}-sets, therefore by Corollary 1, X has the weak B-. 5 -insertion property for
(cusB-.5, clsB-.5). Now suppose that f and g are real-valued functions on X with $g<f$, such that, g is cusB-. 5 and f is clsB-.5. For every $n \in \mathbb{N}$, set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\}
$$

Since g is cusB-.5, and f is clsB-.5, therefore $f-g$ is clsB-.5. Hence $A\left(f-g, 3^{-n+1}\right)$ is a F_{σ}-set of X. Consequently, $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of F_{σ}-sets and furthermore since $0<f-g$, it follows that

$$
\bigcap_{n=1}^{\infty} A\left(f-g, 3^{-n+1}\right)=\emptyset .
$$

Now by Lemma 4, there exists a decreasing sequence $\left\{D_{n}\right\}$ of G_{δ}-sets such that

$$
A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}
$$

and

$$
\bigcap_{n=1}^{\infty} D_{n}=\emptyset .
$$

But by Lemma 3, $A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ of F_{σ}-sets can be completely separated by Baire- .5 functions. Hence by Theorem 2, there exists a Baire-. 5 function h defined on X such that, $g<h<f$, i.e., X has the B-. 5 -insertion property for (cusB-.5, clsB-.5).

Remark 4. [15] A space X has the c-insertion property for (lsc, usc) iff X is extremally disconnected and if for any decreasing sequence $\left\{G_{n}\right\}$ of open subsets of X with empty intersection there exists a decreasing sequence $\left\{F_{n}\right\}$ of closed subsets of X with empty intersection such that $G_{n} \subseteq F_{n}$ for each n.

Corollary 4. For every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set and in addition for every decreasing sequence $\left\{G_{n}\right\}$ of G_{δ}-sets with empty intersection, there exists a decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection such that for every $n \in \mathbb{N}$, $G_{n} \subseteq F_{n}$ if and only if X has the B-. 5 -insertion property for (clsB-. 5, cusB-.5).

Proof. Since for every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set, therefore by Corollary 2, X has the weak B-. 5 -insertion property for (clsB-.5, cusB-.5). Now suppose that f and g are real-valued functions defined on X with $g<f, g$ is clsB-. 5 , and f is cusB-.5. Set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x)<3^{-n+1}\right\}
$$

Then since $f-g$ is cusB-. 5 , hence $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of G_{δ}-sets with empty intersection. By hypothesis, there exists a decreasing sequence $\left\{D_{n}\right\}$ of F_{σ}-sets with empty intersection such that, for every $n \in \mathbb{N}$, $A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$. Hence $X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are two disjoint G_{δ}-sets and therefore by Lemma 1 , we have

$$
F_{\sigma}\left(A\left(f-g, 3^{-n+1}\right)\right) \cap F_{\sigma}\left(\left(X \backslash D_{n}\right)\right)=\emptyset
$$

and therefore by Lemma $3, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separable by Baire-. 5 functions. Therefore by Theorem 2, there exists a Baire-. 5 function h on X such that, $g<h<f$, i.e., X has the B-. 5 -insertion property for (clsB-. 5 , cusB-. 5).

On the other hand, suppose that G_{1} and G_{2} be two disjoint G_{δ}-sets. Since $G_{1} \cap G_{2}=\emptyset$. We have $G_{2} \subseteq G_{1}^{c}$. We set $f(x)=2$ for $x \in G_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin G_{1}^{c}$ and $g=\chi_{G_{2}}$.

Then since G_{2} is a G_{δ}-set and G_{1}^{c} is a F_{σ}-set, we conclude that g is clsB-. 5 and f is cusB-. 5 and furthermore $g<f$. By hypothesis, there exists a Baire-. 5 function h on X such that, $g<h<f$. Now we set

$$
F_{1}=\left\{x \in X: h(x) \leq \frac{3}{4}\right\}
$$

and

$$
F_{2}=\{x \in X: h(x) \geq 1\} .
$$

Then F_{1} and F_{2} are two disjoint F_{σ}-sets contain G_{1} and G_{2}, respectively. Hence $F_{\sigma}\left(G_{1}\right) \subseteq F_{1}$ and $F_{\sigma}\left(G_{2}\right) \subseteq F_{2}$ and consequently $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$. By Lemma 1 , for every G of G_{δ}-set, the set $F_{\sigma}(G)$ is a G_{δ}-set.

Now suppose that $\left\{G_{n}\right\}$ is a decreasing sequence of $G_{\boldsymbol{\delta}}$-sets with empty intersection.

We set $G_{0}=X$ and $f(x)=\frac{1}{n+1}$ for $x \in G_{n} \backslash G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_{n} \backslash G_{n+1}, f$ is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$
\{x \in X: f(x)<r\}=\emptyset
$$

is a G_{δ}-set and if $r>0$ then by Archimedean property of \mathbb{R}, there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k}>r$. Now if $\frac{1}{k+1}<r$ then

$$
\{x \in X: f(x)<r\}=G_{k}
$$

is a G_{δ}-set and if $\frac{1}{k+1}=r$ then

$$
\{x \in X: f(x)<r\}=G_{k+1}
$$

is a G_{δ}-set. Hence f is a cusB-. 5 on X. By setting $g=0$, we have conclude that g is clsB- .5 on X and in addition $g<f$. By hypothesis there exists a Baire-. 5 function h on X such that, $g<h<f$.

Set

$$
F_{n}=\left\{x \in X: h(x) \leq \frac{1}{n+1}\right\}
$$

This set is a F_{σ}-set. But for every $x \in G_{n}$, we have $f(x) \leq \frac{1}{n+1}$ and since $g<h<f$ thus $h(x)<\frac{1}{n+1}$, this means that $x \in F_{n}$ and consequently $G_{n} \subseteq F_{n}$.

By definition of $F_{n},\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets and since $h>0$, $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$. Thus the conditions holds.

References

[1] A. Al-Omari, M.S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math. 2 (2) (2009) 213-230.
[2] F. Brooks: Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971) 1007-1010.
[3] M. Caldas, S. Jafari: Some properties of contra- β-continuous functions. Mem. Fac. Sci. Kochi. Univ. 22 (2001) 19-28.
[4] J. Dontchev: The characterization of some peculiar topological space via α - and β-sets. Acta Math. Hungar. 69 (1-2) (1995) 67-71.
[5] J. Dontchev: Contra-continuous functions and strongly S-closed space. Internat. J. Math. Math. Sci. 19 (2) (1996) 303-310.
[6] J. Dontchev, H. Maki: On sg-closed sets and semi- λ-closed sets. Questions Answers Gen. Topology 15 (2) (1997) 259-266.
[7] E. Ekici: On contra-continuity. Annales Univ. Sci. Bodapest 47 (2004) 127-137.
[8] E. Ekici: New forms of contra-continuity. Carpathian J. Math. 24 (1) (2008) 37-45.
[9] A.I. El-Magbrabi: Some properties of contra-continuous mappings. Int. J. General Topol. 3 (1-2) (2010) 55-64.
[10] M. Ganster, I. Reilly: A decomposition of continuity. Acta Math. Hungar. 56 (3-4) (1990) 299-301.
[11] S. Jafari, T. Noiri: Contra-continuous function between topological spaces. Iranian Int. J. Sci. 2 (2001) 153-167.
[12] S. Jafari, T. Noiri: On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc. 25 (2002) 115-128.
[13] M. Katětov: On real-valued functions in topological spaces. Fund. Math. 38 (1951) 85-91.
[14] M. Katětov: Correction to "On real-valued functions in topological spaces". Fund. Math. 40 (1953) 203-205.
[15] E. Lane: Insertion of a continuous function. Pacific J. Math. 66 (1976) 181-190.
[16] S.N. Maheshwari, R. Prasad: On $R_{O s}$-spaces. Portugal. Math. 34 (1975) 213-217.
[17] H. Maki: Generalized Λ-sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986) 139-146.
[18] M. Mrsevic: On pairwise R and pairwise R_{1} bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (1986) 141-145.
[19] A.A. Nasef: Some properties of contra-continuous functions. Chaos Solitons Fractals 24 (2005) 471-477.
[20] M. Przemski: A decomposition of continuity and α-continuity. Acta Math. Hungar. 61 (1-2) (1993) 93-98.
[21] H. Rosen: Darboux Baire-. 5 functions. Proc. Amer. math. Soc. 110 (1) (1990) 285-286.
[22] M.H. Stone: Boundedness properties in function-lattices. Canad. J. Math 1 (1949) 176-189.

Received: 15 May 2018
Accepted for publication: 7 July 2019
Communicated by: Karl Dilcher

[^0]: 2010 MSC: 26A15, 54C30.
 Key words: Insertion, strong binary relation, Baire-. 5 function, kernel of sets, lower cut set. This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

    ```
    Affiliation:
    Majid Mirmiran - Department of Mathematics, University of Isfahan, Isfahan
        81746-73441, Iran
        E-mail: mirmir@sci.ui.ac.ir
    ```

