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Abstract. We prove the short-time existence of the hyperbolic inverse (mean) curvature
flow (with or without the specified forcing term) under the assumption that the initial
compact smooth hypersurface of Rn+1 (n > 2) is mean convex and star-shaped. Several
interesting examples and some hyperbolic evolution equations for geometric quantities of
the evolving hypersurfaces are shown. Besides, under different assumptions for the initial
velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean
curvature flow in the plane R2, whose evolving curves move normally.
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1. Introduction

The study of curvature flows has been a hot topic in the research of differential

geometry in the past several decades. It is well known that Perelman used the Ricci

flow, an intrinsic curvature flow, to successfully solve the 3-dimensional Poincaré

conjecture. Among extrinsic curvature flows, an important one is the mean curva-

ture flow (MCF for short), which means a submanifold of a prescribed ambient space

moves with a velocity equal to its mean curvature vector. A classical result in the

study of MCF due to Huisken (see [11]) says that for a strictly convex, compact

hypersurface immersed in Rn+1 (n > 2), if it evolves along the MCF, then the evolv-

ing hypersurfaces contract to a single point at some finite time, and moreover, after

area-preserving rescaling, the rescaled evolving hypersurfaces converge to a round

sphere in the C∞-topology as time tends to infinity. Many improvements have been
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obtained after this classical result. Besides, the theory of MCF also has some interest-

ing applications. For instance, Topping in [21] used curve shortening flow on surfaces,

which is the lower dimensional version of MCF, to get isoperimetric inequalities on

surfaces. The theory of curve shortening flow can also be used to do the image pro-

cessing (see, e.g. [4]). The MCF is called the inward flow, and conversely, the inverse

mean curvature flow (IMCF for short), which means a submanifold of a prescribed

ambient space moves in direction of the outward unit normal vector of the submani-

fold with a speed equal to 1/H (H 6= 0 denotes the mean curvature), is called the

outward flow. The IMCF is also a very important extrinsic flow, which has many in-

teresting and important applications. For instance, the evolution of non-star-shaped

initial surfaces under the IMCF may have singularities in finite time, but, through

defining a notion of weak solution to IMCF equation, Huisken-Ilmanen in [12] proved

the Riemannian Penrose inequality by using the method of IMCF (the Riemannian

Penrose inequality can also be proved by applying the positive mass theorem, see [1]

for details). Using the method of IMCF, Brendle, Hung and Wang in [2] proved

a sharp Minkowski inequality for mean convex and star-shaped hypersurfaces in the

n-dimensional (n > 3) anti-de Sitter-Schwarzschild manifold, which generalized the

related conclusions in the Euclidean space Rn.

The corresponding author Mao has been working on IMCF for several years and

has also obtained some interesting results with his collaborators. For instance, Chen

and Mao in [5] considered the evolution of a smooth, star-shaped and F -admissible

(i.e., F is a 1-homogeneous function of principal curvatures satisfying some suit-

able conditions) embedded closed hypersurface in the n-dimensional (n > 3) anti-de

Sitter-Schwarzschild manifold along its outward normal direction with a speed equal

to 1/F (clearly, this evolution process is a natural generalization of IMCF, and we

call it the inverse curvature flow, we write ICF for short). They proved that this

ICF exists for all the time and, after rescaling, the evolving hypersurfaces converge

to a sphere as time tends to infinity. For warped products I ×λ(r) N
n, where I is an

unbounded connected interval of R (i.e., the set of real numbers) andNn is a Rieman-

nian manifold of nonnegative Ricci curvature, under suitable growth assumptions on

the warping function λ(r), Chen, Mao, Xiang and Xu [6] successfully proved that if

an n-dimensional (n > 2) compact C2,α-hypersurface with boundary, which meets

a given cone in I ×λ(r) N
n perpendicularly and is star-shaped with respect to the

center of the cone, evolves along the IMCF, then the flow exists for all the time

and, after rescaling, the evolving hypersurfaces converge to a piece of the geodesic

sphere as time tends to infinity, which generalized the main conclusion in [15]. In

fact, except these interesting improvements for IMCF or more general ICF obtained

by Mao and his collaborators, recently there are several interesting conclusions also

on this topic, which we would like to mention. The IMCF has been investigated
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deeply in warped cylinders of nonpositive radial curvature by Scheuer (see [19]) and

in warped products (with suitable growth assumptions on the warping function) by

Zhou (see [23]). The IMCF in complex hyperbolic spaces or quaternionic hyperbolic

spaces, whose geometry is richer than that of warped products, has been initially

studied by Pipoli (see [16], [17]), and some interesting results have been shown.

We know that the MCF and the IMCF describe the motion of a prescribed sub-

manifold, that is, the velocity d/dt equals some scalar multiple of the unit normal

vector of the submanifold. If the velocity d/dt is replaced by the acceleration d2/dt2,

what happens? Yau in [22] suggested the curvature flow

(1.1)
d2X

dt2
= H~n,

where, as before, H denotes the mean curvature and ~n is the unit inner normal vector

of the initial hypersurface X(·, 0), and pointed out very little about the global time
behavior of the evolving hypersurfaces. The curvature flow (1.1) can be seen as the

hyperbolic version of MCF, and that is the reason why it is called the hyperbolic mean

curvature flow (HMCF for short). In fact, ifM is an n-dimensional (n > 2) smooth

compact Riemannnian manifold and X(·, t) is a one-parameter family of smooth
hypersurface immersions in R

n+1 satisfying (1.1), where X(·, 0) is the hypersurface
immersion ofM into Rn+1, then it is not hard to show that (1.1) is a second-order

hyperbolic PDE, which is used to get the short time existence of the flow (see [9],

Section 2 for details). Mao in [14] considered a hyperbolic curvature flow whose form

is given by (1.1) plus a forcing term in the direction of the position vector, that is,

∂2X

∂t2
= H~n+ c(t)X

with c(t) a bounded continuous function w.r.t. the time variable t only, and success-

fully improved most conclusions in [9] under suitable assumptions.

Based on our research experience on the ICF and the HMCF, it is natural to

consider the hyperbolic version of the IMCF.

Let M0 be a compact, mean convex, star-shaped smooth hypersurface of the

(n+ 1)-dimensional Euclidean space R
n+1 (n > 2), which is given as an embed-

ding

X0 : S
n → R

n+1,

where Sn ⊂ R
n+1 denotes the unit sphere in R

n+1. Define a one-parameter family

of smooth hypersurfaces embedded in R
n+1 given by

X(·, t) : S
n → R

n+1
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with X(·, 0) = X0(·). We say that it is a solution of the hyperbolic inverse mean
curvature flow (HIMCF for short) if X(·, t) satisfies

(1.2)
d2

dt2
X(x, t) = H−1(x, t)~ν(x, t), ∀x ∈ S

n, t > 0,

where H(x, t) is the mean curvature of X(x, t), ~ν(x, t) is the unit outward normal

vector on X(x, t). If X(·, 0) = X0, dX/dt(·, 0) = X1(x) with X1(x) a smooth

vector-valued function on S
n, then one can get the existence of the one-parameter

family of smooth hypersurfaces X(·, t) embedded in Rn+1 on the time interval [0, T )

with T < ∞ (see Theorem 2.1 for the precise statement). Besides, under different

assumptions for the initial velocity, we separately discuss the expansion and the

convergence of a HIMCF in the plane R2, whose evolving curves move normally, in

the last section (see Theorem 5.9 for the precise statement).

Remark 1.1. As mentioned before, some interesting conclusions about IMCF

or ICF can be generalized from the setting that the ambient space is the Euclidean

space to the setting of warped products (see, e.g. [5], [6]). Hence, one might ask the

following question:

⊲ If we consider the HIMCF or the HICF (see Remark 2.2 (2) below for this notion)

in the warped product I ×λ(r) N
n with I an unbounded connected interval of R

and Nn a Riemannian manifold of nonnegative Ricci curvature, could we get

results similar to this paper under some suitable assumptions on λ(r)?

2. Local existence and uniqueness

Denote by Mt the evolving hypersurface under the flow (1.2). Since M0 is star-

shaped, Mt should also be star-shaped on [0, ε) for some sufficiently small ε > 0 by

continuity. Let the surfaceMt be represented as a graph over S
n, i.e., the embedding

vector x = (xα) now has the components

xn+1 = u(x, t), xi = xi(t),

with (xi) local coordinates of Sn. Furthermore, let ξ = (ξi) be a local coordinate

system of Mt, which implies the graphic function u can be written as u = u(x(ξ), t).

Clearly, the outward unit normal vector in (x, u) has the form

~ν = υ−1(−Diu, 1),
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where

Diu =
∂u

∂xi
:= ui,

υ = (1 + u−2|Du|2)1/2 = (1 + u−2σijDiuDju)
1/2,

and where (σij) being the metric of S
n in the coordinates (xi) and naturally (σij)

being its inverse. Therefore, now, the Euclidean metric can be written as

ds2 = dr2 + r2σij dx
i dxj .

Then the evolution equation (1.2) now yields

(2.1)
d2u

dt2
=

1

Hυ
,

d2xi

dt2
= −Diu · u−2

Hυ
.

On the other hand, by the chain rule, we have

du

dt
=

∂u

∂xi

dxi

dt
+

∂u

∂t
,

and
d2u

dt2
=

( ∂2u

∂xi∂xj

dxj

dt
+

∂2u

∂xi∂t

)dxi

dt
+

∂u

∂xi

d2xi

dt2
+

∂2u

∂xi∂t

dxi

dt
+

∂2u

∂t2
.

Substituting (2.1) into the above equation yields

∂2u

∂t2
=

d2u

dt2
− ∂u

∂xi

d2xi

dt2
−
( ∂2u

∂xi∂xj

dxj

dt

dxi

dt
+ 2

∂2u

∂xi∂t

dxi

dt

)

=
1

Hυ
+Diu · D

iu · u−2

Hυ
−
( ∂2u

∂xi∂xj

dxj

dt

dxi

dt
+ 2

∂2u

∂xi∂t

dxi

dt

)

=
υ

H
−
( ∂2u

∂xi∂xj

dxj

dt

dxi

dt
+ 2

∂2u

∂xi∂t

dxi

dt

)
.

Let ϕ = log u. For a graph Mt over S
n, the metric has the components

gij = uiuj + u2σij = u2(σij + ϕiϕj),

and their inverses are

gij = u−2
(
σij − ϕiϕj

υ2

)
.

Besides, υ can be expressed as

υ = (1 + u−2σijDiuDju)
1/2 = (1 + σijDiϕDjϕ)

1/2 = (1 + |Dϕ|2)1/2,
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and the second fundamental form can be given as

hij = − 1

υ

(
uij − uσij −

2

u
uiuj

)
=

u

υ

(
σij −

uij

u
+

2

u2
uiuj

)

=
u

υ

(
σij −

uuij − uiuj

u2
+

uiuj

u2

)
=

u

υ

(
σij − ϕij + ϕiϕj

)
.

Therefore, the mean curvature is

H = gijhij = u−2
(
σij −

ϕiϕj

υ2

)
· u
υ

(
σij − ϕij + ϕiϕj

)

=
1

uυ

(
n− σijϕij + σijϕiϕj −

σijϕ
iϕj

υ2
+

ϕiϕj

υ2
ϕij −

ϕiϕjϕiϕj

υ2

)

=
1

uυ

(
n+

(
−σij +

ϕiϕj

υ2

)
ϕij

)
.

So, together with (2.1), we can obtain the equation

(2.2)
∂2u

∂t2
=

uυ2

n+ (−σij + ϕiϕj/υ2)ϕij
−
( ∂2u

∂xi∂xj

dxi

dt

dxj

dt
+ 2

∂2u

∂xi∂t

dxi

dt

)
.

Note that
∂ϕ

∂t
=

1

u

∂u

∂t
,

then together with (2.2), we have

(2.3)
∂2ϕ

∂t2
=

1

u

∂2u

∂t2
− 1

u2

(∂u
∂t

)2

=
υ2

n+ (−σij + ϕiϕj/υ2)ϕij

− 1

u

( ∂2u

∂xi∂xj

dxi

dt

dxj

dt
+ 2

∂2u

∂xi∂t

dxi

dt

)
−
(∂ϕ
∂t

)2

=
υ2

n+ (−σij + ϕiϕj/υ2)ϕij

−
[
(ϕij + ϕiϕj)

dxi

dt

dxj

dt
+ 2(ϕit + ϕiϕt)

dxi

dt

]
−
(∂ϕ
∂t

)2

.

Let

φ(x, ϕij , ϕit, ϕi, ϕt, ϕ) :=
υ2

n+ (−σij + ϕiϕj/υ2)ϕij

−
[
(ϕij + ϕiϕj)

dxi

dt

dxj

dt
+ 2(ϕit + ϕiϕt)

dxi

dt

]
−
(∂ϕ
∂t

)2

.

Consider the matrix

( ∂φ

∂ϕij

∣∣∣
t=0

)
=




1

H2
0

g11 − dx1

dt

dx1

dt
. . .

1

H2
0

g1n − dx1

dt

dxn

dt
...

...
1

H2
0

gn1 − dxn

dt

dx1

dt
. . .

1

H2
0

gnn − dxn

dt

dxn

dt




,
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which, by a suitable linear transformation, becomes




1

H2
0

g11 . . .
1

H2
0

g1n

...
...

1

H2
0

gn1 . . .
1

H2
0

gnn




,

where H0 is the mean curvature of the initial hypersurface M0. Clearly, this ma-

trix is positive definite since M0 is mean convex, which implies that the evolution

equation (2.3) is a second-order uniformly hyperbolic PDE on some small time inter-

val [0, l). By applying the standard theory of second-order linear hyperbolic PDEs

(see, e.g. [7], Chapter 7 or [10]), together with the inverse function theorem, we have

the following short-time existence.

Theorem 2.1 (Local existence and uniqueness). If the initial hypersurfaceM0 is

a compact, mean convex, star-shaped smooth hypersurface of Rn+1 (n > 2), which

is given as an embedding

X0 : S
n → R

n+1,

then there exists a constant Tmax > 0 such that the initial value problem (IVP for

short)

(2.4)





d2

dt2
X(x, t) = H−1(x, t)~ν(x, t), ∀x ∈ S

n, t > 0,

dX

dt
(x, 0) = X1(x),

X(x, 0) = X0(x),

has a unique smooth solution X(x, t) on S
n × [0, Tmax), where X1(x) is a smooth

vector-valued function on S
n.

Remark 2.2. (1) If the IVP (2.4) is replaced by

(2.5)





d2

dt2
X(x, t) = H−1(x, t)~ν(x, t) + c(t)X(x, t), ∀x ∈ S

n, t > 0,

dX

dt
(x, 0) = X1(x),

X(x, 0) = X0(x),

with c(t) a bounded continuous function w.r.t. to t, and other assumptions are the

same as those in Theorem 2.1, then one can also get the local existence and uniqueness

of the forced HIMCF (2.5) since the first evolution equation in (2.5) is a second-order
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hyperbolic PDE by nearly the same argument in this section. Although we only add

a forcing term c(t)X(x, t) in the direction of the position vector, the convergent

situation of (2.5) will be much different from (2.4), which can be seen from examples

shown in Section 3 and Remark 3.3.

(2) Let F be a symmetric, positive, 1-homogeneous function defined on an open

cone Γ of Rn with vertex at the origin, which contains the positive diagonal, i.e., all

n-tuples of the form (λ, . . . , λ), λ > 0. Assume that F ∈ C0(Γ)∩C2(Γ) is monotone,

concave, i.e.,
∂F

∂λi
> 0, i = 1, 2, . . . , n, in Γ,

∂2F

∂λi∂λj
6 0,

and that

F = 0 on ∂Γ.

We also use the normalization convention F (1, . . . , 1) = n+ 1. Based on Gerhardt’s

work (see [8]) on the ICF in R
n+1, we can consider the IVP

(2.6)





d2

dt2
X(x, t) = F−1(x, t)~ν(x, t), ∀x ∈ S

n, t > 0,

dX

dt
(x, 0) = X1(x),

X(x, 0) = X0(x),

where F defined on Γ is a function of principal curvatures described as above, and

other assumptions are the same as those in Theorem 2.1. Clearly, the IVP (2.4) is

a special case of the IVP (2.6), and the first evolution equation in (2.6) is a hyperbolic

version of the ICF, which leads to the fact that we call it the hyperbolic inverse

curvature flow (HICF for short). We claim that the hyperbolic flow (2.6) also has

a unique smooth solution X(x, t) on S
n × [0, T2) with some T2 > 0. Using the

argument in Section 2, together with the first evolution equation of (2.6), one can

obtain the evolution equation

(2.7)
∂2ϕ

∂t2
=

υ

uF
−
[
(ϕij + ϕiϕj)

dxi

dt

dxj

dt
+ 2(ϕit + ϕiϕt)

dxi

dt

]
−
(∂ϕ
∂t

)2

.

Denote byM(Γ) the class of all real (n×n)-matrices whose eigenvalues belong to Γ.

Then one can define a function F onM(Γ) as

F(aij) = F (λi),
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where (λi) are the eigenvalues of the matrix (aij). It has been proven in [3] that the

monotonicity and concavity of F now take the form

(2.8) Fij =
∂F
∂aij

is positive definite,

and

(2.9) Fij,rs =
∂2F

∂aij∂ars
is negative semidefinite.

Consider the tensor

hi
j = gikhkj =

1

uυ

[
δij +

(
−σik +

ϕiϕk

υ2

)
ϕkj

]
.

Define the symmetric tensor

ĥij =
1

2
(σ̃ikh

k
j + σ̃jkh

k
i ),

where

σ̃ij = σij + ϕiϕj .

Set

h̃ij :=
u

υ
ĥij = υ−2(σij − ϕij + ϕiϕj),

then, together with (2.7), we have

∂2ϕ

∂t2
=

1

F(h̃ij)
−
[
(ϕij + ϕiϕj)

dxi

dt

dxj

dt
+ 2(ϕit + ϕiϕt)

dxi

dt

]
−

(∂ϕ
∂t

)2

,

where the nonlinearity F depends only on Dϕ and D2ϕ.

Now, we do the linearization process. Setting

Q(ϕ,Dϕ,D2ϕ) :=
1

F(h̃ij)
−
[
(ϕij + ϕiϕj)

dxi

dt

dxj

dt
+ 2(ϕit + ϕiϕt)

dxi

dt

]
−
(∂ϕ
∂t

)2

,

one can obtain

Qij =
∂Q

∂ϕij
= − 1

F2(h̃ij)

∂F
∂h̃ij

∂h̃ij

∂ϕij
− dxi

dt

dxj

dt
=

1

υ2F2

∂F

∂h̃ij

− dxi

dt

dxj

dt
.

Therefore, we have

∂2ϕ

∂t2
= Qijϕij − 2

dxi

dt
ϕit + I(x, ϕi, ϕt, ϕ),
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where the last term I(x, ϕi, ϕt, ϕ) depends only on x, ϕi, ϕt, ϕ. The coefficient

matrix of the terms involving second-order derivatives of ϕ in the above evolution

equation is




−1 −dx1

dt
. . . −dxn

dt

−dx1

dt

1

υ2F2

∂F
∂h̃11

− dx1

dt

dx1

dt
. . .

1

υ2F2

∂F
∂h̃1n

− dx1

dt

dxn

dt
...

...
...

−dxn

dt

1

υ2F2

∂F
∂h̃n1

− dxn

dt

dx1

dt
. . .

1

υ2F2

∂F
∂h̃nn

− dxn

dt

dxn

dt




which, by a suitable linear transformation, becomes

(2.10)




−1 0 . . . 0

0
1

υ2F2

∂F
∂h̃11

. . .
1

υ2F2

∂F
∂h̃1n

...
...

...

0
1

υ2F2

∂F
∂h̃n1

. . .
1

υ2F2

∂F
∂h̃nn




,

which, by (2.8) and (2.9), implies that the matrix (2.10) is negative definite. So,

the equation is a second-order uniformly hyperbolic PDE. Our claim follows by the

standard theory of second-order linear hyperbolic PDEs.

(3) Although we can also get the short-time existence of the IVP (2.6), in this

paper we mainly discuss the IVP (2.4) since if the initial hypersurface M0 is more

special (e.g., sphere, cylinder), the evolution equation of the flow, which in general

is a second-order hyperbolic PDE, degenerates into a second-order ordinary differ-

ential equation (ODE for short) and then the convergent situation of the evolving

hypersurfaces can be easily known by directly checking the explicit solution to the

ODE (for details, see examples shown in Section 3).

3. Examples

In order to possibly understand the convergence of HIMCF (2.4) well, we would

like to consider the following interesting examples in this section.

Example 3.1. Consider a family of spheres (or circles) in R
n+1 (n > 1)

X(x, t) = r(t)(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, . . . ,

sin θ1 sin θ2 sin θ3 . . . sin θn−1 cos θn, sin θ1 sin θ2 sin θ3 . . . sin θn−1 sin θn),

42



where θ1 ∈ [− 1
2π, 1

2π], θβ ∈ [0, 2π] for β = 2, 3, . . . , n. The mean curvature H of the

evolving sphere (or the curvature k of the evolving curve) is

H =
n

r
, n > 2 (or k =

1

r
, n = 1).

In this setting, the HIMCF (2.4) becomes

(3.1)





rtt =
r

n
,

r(0) = r0 > 0, rt(0) = r1,

for some constant r1. Solving (3.1) directly yields

r(t) =
1

2
(r0 +

√
nr1)e

t
√
n/n +

1

2
(r0 −

√
nr1)e

−t
√
n/n

on [0, Tmax) for some 0 < Tmax 6 ∞, and then we have:
⊲ If r0+

√
nr1 > 0, then Tmax = ∞ (i.e., the flow exists for all the time). Moreover, if

furthermore, r0−
√
nr1 6 0, the evolving spheres (or circles) expand exponentially

to the infinity, and if furthermore, r0 − √
nr1 > 0, then the evolving spheres

(or circles) converge first for a while and then expand exponentially to the infinity.

⊲ If r0 +
√
nr1 = 0, then r(t) =

√
nr0e

−t
√
n/n, which implies Tmax = ∞ and the

evolving spheres (or circles) converge to a single point as time tends to infinity.

⊲ If r0+
√
nr1 < 0, then Tmax =

√
n/n ln((

√
nr1 − r0)/(

√
nr1 + r0)) and the evolving

spheres (or circles) converge to a single point as t → Tmax.

From the above argument, at least we can get an impression that the convergent

situation of the HIMCF (2.4) is much complicated and has close relation with the

initial data.

Example 3.2. Now, we would like to consider the cylinder solution for the

HIMCF (2.4) in R
3 which has the form

X(x, t) = (r(t) cosα, r(t) sinα, ̺),

where α ∈ [0, 2π], ̺ ∈ [0, ̺0] for some ̺0 > 0. The mean curvature is

H =
1

r
.

Besides, the outward unit normal vector of each X(·, t) is ~v = (cosα, sinα, 0). There-

fore, in this setting, the HIMCF (2.4) becomes

(3.2)

{
rtt = r,

r(0) = r0 > 0, rt(0) = r1,
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with X1(x) = (r1 cosα, r1 sinα, ̺) for some constant r1. Solving (3.2) directly yields

r(t) =
1

2
(r0 + r1)e

t +
1

2
(r0 − r1)e

−t

on [0, Tmax) for some 0 < Tmax 6 ∞. It is not difficult to know that:
⊲ If r0 + r1 > 0, then Tmax = ∞ (i.e., the flow exists for all the time). Moreover,

if furthermore, r0 − r1 6 0, the evolving cylinders expand exponentially to the

infinity, and if furthermore, r0 − r1 > 0, then the evolving cylinders converge first

for a while and then expand exponentially to the infinity.

⊲ If r0 + r1 = 0, then r(t) = r0e
−t, which implies Tmax = ∞ and the evolving

cylinders converge to a straight line as time tends to infinity.

⊲ If r0 + r1 < 0, then Tmax = ln((r1 − r0)/(r0 + r1)) and the evolving cylinders

converge to a straight line as t → Tmax.

Of course, as shown in Example 3.1, one can also consider the high-dimensional

case of Example 3.2, i.e., the generalized cylinder solutions to the HIMCF (2.4). How-

ever, through a simple calculation, one can easily find that, similarly to the sphere

case, there is no obvious difference between Example 3.2 and its high-dimensional

version.

Remark 3.3. If the HIMCF (2.4) is replaced by the forced HIMCF (2.5) in

examples shown above, then the convergent situation will be more complicated. For

instance, if the replacement has been made in Example 3.1 with n = 2, then (3.1)

will become {
rtt =

1
2r + c(t)r,

r(0) = r0 > 0, rt(0) = r1.

Denote the solution to the above IVP by r(t). Since c(t) is bounded continuous,

there exist c−, c+ such that c− 6 c(t) 6 c+. Consider the IVPs

{
rtt =

1
2r + c−r,

r(0) = r0 > 0, rt(0) = r1,

and {
rtt =

1
2r + c+r,

r(0) = r0 > 0, rt(0) = r1,

whose solutions are denoted by r−(t) and r+(t), respectively. Clearly, r−(t) 6 r(t) 6

r+(t). So, the convergent situation of r(t) deeply depends on that of r−(t), r+(t)

which is not simple. This is because one has to discuss the sign of (c−+ 1
2 ), (c

+ + 1
2 ),

which leads to the fact that the convergent situation of r(t) here will be more com-

plicated than that described in Example 3.1.
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4. Evolution equations of some geometric quantities

From the evolution equation for the HIMCF (2.4) we can derive evolution equa-

tions for some geometric quantities of the hypersurface X(·, t), and these equations
will play an important role in the future study of the HIMCF.

Lemma 4.1. Under the HIMCF (2.4), we have

∂2gij
∂t2

= 2H−1hij + 2
〈∂Xi

∂t
,
∂Xj

∂t

〉
,

where in this section 〈, 〉 denotes the inner product corresponding to the metric
ds2 = dr2 + r2σijdx

idxj in R
n+1.

P r o o f. By direct computation we have

∂2

∂t2
gij =

∂2

∂t2

〈∂X
∂xi

,
∂X

∂xj

〉
=

∂

∂t

(〈 ∂2X

∂xi∂t
,
∂X

∂xj

〉
+
〈∂X
∂xi

,
∂2X

∂xj∂t

〉)

=
〈 ∂3X

∂t2∂xi
,
∂X

∂xj

〉
+
〈 ∂3X

∂t2∂xj
,
∂X

∂xi

〉
+ 2

〈 ∂2X

∂t∂xi
,
∂2X

∂t∂xj

〉

= 2
〈 ∂

∂xi
(H−1~ν),

∂X

∂xj

〉
+ 2

〈 ∂2X

∂t∂xi
,
∂2X

∂t∂xj

〉

= 2H−1
〈
hikg

kl ∂X

∂xl
,
∂X

∂xj

〉
+ 2

〈 ∂2X

∂t∂xi
,
∂2X

∂t∂xj

〉

= 2H−1hij + 2
〈∂Xi

∂t
,
∂Xj

∂t

〉
,

which completes the proof of Lemma 4.1. �

Lemma 4.2. Under the HIMCF (2.4), we have

∂2~ν

∂t2
= H−2gijXj

∂H

∂xi
− gij

〈
~ν,

∂Xi

∂t

〉∂Xj

∂t

+ gijgkl
〈
~ν,

∂Xi

∂t

〉(〈∂Xj

∂t
,Xl

〉
+ 2

〈
Xj ,

∂Xl

∂t

〉)
Xk.

P r o o f. First, we have

∂~ν

∂t
=

〈∂~ν
∂t

,
∂X

∂xi

〉
gij

∂X

∂xj
= −

〈
~ν,

∂2X

∂t∂xi

〉
gij

∂X

∂xj
.
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Then, by direct computation, it follows that

∂2~ν

∂t2
= −

〈∂~ν
∂t

,
∂2X

∂t∂xi

〉
gij

∂X

∂xj
−
〈
~ν,

∂3X

∂t2∂xi

〉
gij

∂X

∂xj
−
〈
~ν,

∂2X

∂t∂xi

〉∂gij
∂t

∂X

∂xj

−
〈
~ν,

∂2X

∂t∂xi

〉
gij

∂2X

∂t∂xj

= gijgkl
〈
~ν,

∂2X

∂t∂xk

〉〈∂X
∂xl

,
∂2X

∂t∂xi

〉 ∂X

∂xj
−
〈
~ν,

∂

∂xi
(H−1~ν)

〉
gij

∂X

∂xj

+
〈
~ν,

∂2X

∂t∂xi

〉
gikgjl

∂gkl
∂t

∂X

∂xj
−
〈
~ν,

∂2X

∂t∂xi

〉
gij

∂2X

∂t∂xj

= H−2gij
∂H

∂xi

∂X

∂xj
− gij

〈
~ν,

∂2X

∂t∂xi

〉 ∂2X

∂t∂xj
+ gijgkl

〈
~ν,

∂2X

∂t∂xi

〉

×
(〈 ∂2X

∂t∂xj
,
∂X

∂xl

〉
+ 2

〈 ∂X

∂xj
,
∂2X

∂t∂xl

〉) ∂X

∂xk

= H−2gij
∂H

∂xi

∂X

∂xj
− gij

〈
~ν,

∂Xi

∂t

〉∂Xj

∂t
+ gijgkl

〈
~ν,

∂Xi

∂t

〉

×
(〈∂Xj

∂t
,Xl

〉
+ 2

〈
Xj ,

∂Xl

∂t

〉)
Xk,

which completes the proof of Lemma 4.2. �

Before we derive the evolution equation for the second fundamental form hij , we

need to recall the following facts:

Xij = −hij~ν, Gauss formula,(4.1)

~νi = hijg
jkXk, Weingarten formula,(4.2)

Rijkl = hikhjl − hilhjk, Gauss equation,(4.3)

hij,k = hik,j , Codazzi equation,(4.4)

where Rijkl denote the components of the Riemannian curvature tensor on Mt,

a comma means the start of covariant differentiation except specifications. Here,

clearly, Xij = Xi,j, and we write Xij just for convenience. This convenient writing

for Xi,j will be used in the sequel of this section also. These formulae can be found

in Zhu [24]. Using the Gauss equation (4.3) and the Codazzi equation (4.4), together

with the Ricci identity, one can obtain the following relation

(4.5) hrs,ij = hir,sj = hir,js +Rkrsjg
klhli +Rkisjg

klhlr

= hij,rs + (hkshrj − hkjhrs)h
k
i + (hkshij − hkjhis)h

k
r .

Using the relation (4.5), the following fact can be obtained directly.
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Lemma 4.3. For any hypersurface X(·, t) in R
n+1, the following identities hold:

∆hij = Hij +Hhilg
lmhmj − |A|2hij ,

∆|A|2 = 2gikgjlhklHij + 2|∇A|2 + 2H tr(A3)− 2|A|4,

where ∆, ∇ are the Laplace and the gradient operators on the hypersurface, respec-
tively,

|A|2 = gijgklhikhjl, tr(A3) = gijgklgmnhikhlmhnj .

The proof of Lemma 4.3 can also be found in [24], Lemma 2.3.

Lemma 4.4. Under the HIMCF (2.4), we have

∂2hij

∂t2
= H−2∆hij +H−2|A|2hij − 2H−3HjHi + gklhij

〈
~ν,

∂Xk

∂t

〉
·
〈
~ν,

∂Xl

∂t

〉
.

P r o o f. By (4.1), we have

−∂2hij

∂t2
=

∂

∂t

(〈
Xij ,

∂~ν

∂t

〉
+
〈∂Xij

∂t
, ~ν
〉)

= 2
〈∂Xij

∂t
,
∂~ν

∂t

〉
+
〈
Xij ,

∂2~ν

∂t2

〉
+
〈(∂2X

∂t2

)
ij
, ~ν
〉

= 2
〈∂Xij

∂t
,
∂~ν

∂t

〉
+
〈
Xij ,

∂2~ν

∂t2

〉
+ 〈(H−1~ν)ij , ~ν〉

= 2
∂

∂t

〈
Xij ,

∂~ν

∂t

〉
−
〈
Xij ,

∂2~ν

∂t2

〉
+ (H−1)ij +H−1〈(~ν)ij , ~ν〉.

Applying Lemma 4.2 and substituting the fact

(4.6)
∂~ν

∂t
=

〈∂~ν
∂t

,
∂X

∂xi

〉
gij

∂X

∂xj
= −

〈
~ν,

∂2X

∂t∂xi

〉
gij

∂X

∂xj
= −

〈
~ν,

∂Xi

∂t

〉
gijXj

and the Gauss formula (4.1) into the above equality result in

(4.7)
∂2hij

∂t2
=

〈
Xij , H

−2gklXk
∂H

∂xl

〉
− gkl

〈
~ν,

∂Xk

∂t

〉〈∂Xl

∂t
,Xij

〉

+ grsgkl
〈
~ν,

∂Xr

∂t

〉(〈∂Xs

∂t
,Xl

〉
+ 2

〈
Xs,

∂Xl

∂t

〉)〈
Xk, Xij

〉

+−2H−3HjHi +H−2Hij −H−1〈(~ν)ij , ~ν〉.

From the Weingarten formula (4.2), one has

~νij = hil,jg
lkXk + hilg

lkXk,j = hil,jg
lkXk − hilg

lkhkj~ν.

Substituting this fact into (4.7) yields

∂2hij

∂t2
= H−2Hij − 2H−3HjHi +H−1hilg

lkhkj + gklhij

〈
~ν,

∂Xk

∂t

〉
·
〈
~ν,

∂Xl

∂t

〉
,

which, together with Lemma 4.3, implies the conclusion of Lemma 4.4. �
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Lemma 4.5. Under the HIMCF (2.4), we have

∂2H

∂t2
= H−2∆H − 2H−3|∇H |2 −H−1|A|2 +Hgkl

〈
~ν,

∂Xk

∂t

〉
·
〈
~ν,

∂Xl

∂t

〉

− 2gikgjlhij

〈∂Xk

∂t
,
∂Xl

∂t

〉
+ 2gikgjpglqhij

∂gpq
∂t

∂gkl
∂t

− 2gikgjl
∂gkl
∂t

∂hij

∂t
.

P r o o f. First, we have

(4.8)
∂2H

∂t2
=

∂

∂t

(∂gij
∂t

hij + gij
∂hij

∂t

)
= 2

∂gij

∂t

∂hij

∂t
+

∂2gij

∂t2
hij + gij

∂2hij

∂t2
.

On the other hand, by direct calculation, one has

∂gij

∂t
= −gikgjl

∂gkl
∂t

and
∂2gij

∂t2
= 2gikgjpglq

∂gpq
∂t

∂gkl
∂t

− gikgjl
∂2gkl
∂t2

.

Substituting the above two equalities into (4.8) and applying Lemmas 4.1 and 4.4,

one can obtain

∂2H

∂t2
= − 2gikgjl

∂gkl
∂t

∂hij

∂t

+ hij

[
2gikgjpglq

∂gpq
∂t

∂gkl
∂t

− gikgjl
(
2H−1hkl + 2

〈∂Xk

∂t
,
∂Xl

∂t

〉)]

+ gij
(
H−2∆hij +H−2|A|2hij − 2H−3HjHi + gklhij

〈
~ν,

∂Xk

∂t

〉
·
〈
~ν,

∂Xl

∂t

〉)

= H−2∆H − 2H−3|∇H |2 −H−1|A|2 +Hgkl
〈
~ν,

∂Xk

∂t

〉〈
~ν,

∂Xl

∂t

〉

− 2gikgjlhij

〈∂Xk

∂t
,
∂Xl

∂t

〉
+ 2gikgjpglqhij

∂gpq
∂t

∂gkl
∂t

− 2gikgjl
∂gkl
∂t

∂hij

∂t
,

which completes the proof of Lemma 4.5. �

Finally, the evolution equation for the norm of the second fundamental form can

be derived as follows:

Lemma 4.6. Under the HIMCF (2.4), we have

∂2

∂t2
|A|2 = H−2∆|A|2 − 2H−2|∇A|2

− 4H−1 tr(A3) + 2H−2|A|4 − 4H−3gijgklhjlHkHi

+ 2gim
∂gpq
∂t

∂gmn

∂t
hikhjl(2g

jpgnqgkl + gjngkpglq) + 2gijgkl
∂hik

∂t

∂hjl

∂t

− 8gimgjngklhjl
∂gmn

∂t

∂hik

∂t
+ 2|A|2gmn

〈
~ν,

∂Xm

∂t

〉
·
〈
~ν,

∂Xn

∂t

〉

− 4gimgjngklhikhjl

〈∂Xm

∂t
,
∂Xn

∂t

〉
.
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P r o o f. By direct computation we have

(4.9)
∂2

∂t2
|A|2 =

∂2

∂t2
(gijgklhikhjl)

= 2
∂2gij

∂t2
gklhikhjl + 2

∂gij

∂t

∂gkl

∂t
hikhjl + 8

∂gij

∂t
gkl

∂hik

∂t
hjl

+ 2gijgkl
∂2hik

∂t2
hjl + 2gijgkl

∂hik

∂t

∂hjl

∂t

= 2
(
2gimgjpgnq

∂gpq
∂t

∂gmn

∂t
− gimgjn

∂2gmn

∂t2

)
gklhikhjl

+ 2gijgkl
∂hik

∂t

∂hjl

∂t
+ 2gimgjngkpglqhikhjl

∂gmn

∂t

∂gpq
∂t

− 8gimgjngklhjl
∂gmn

∂t

∂hik

∂t
+ 2gijgkl

∂2hik

∂t2
hjl.

Applying Lemmas 4.1, 4.3, and 4.4 directly to (4.9) yields

∂2

∂t2
|A|2 = 4gimgjpgnqgkl

∂gpq
∂t

∂gmn

∂t
hikhjl + 2gijgkl

∂hik

∂t

∂hjl

∂t

+ 2gimgjngkpglqhikhjl
∂gmn

∂t

∂gpq
∂t

− 8gimgjngklhjl
∂gmn

∂t

∂hik

∂t

− 2gimgjn
(
2H−1hmn + 2

〈∂Xm

∂t
,
∂Xn

∂t

〉)
gklhikhjl + 2gijgklhjl

×
(
H−2Hik − 2H−3HkHi +H−1hing

mnhmk

+ gmnhik

〈
~ν,

∂Xm

∂t

〉
·
〈
~ν,

∂Xn

∂t

〉)

= 2gim
∂gpq
∂t

∂gmn

∂t
hikhjl(2g

jpgnqgkl + gjngkpglq) + 2gijgkl
∂hik

∂t

∂hjl

∂t

− 8gimgjngklhjl
∂gmn

∂t

∂hik

∂t
+ 2|A|2gmn

〈
~ν,

∂Xm

∂t

〉
·
〈
~ν,

∂Xn

∂t

〉

− 2H−1 tr(A3)− 4gimgjngklhikhjl

〈∂Xm

∂t
,
∂Xn

∂t

〉

+ 2H−2gijgklhjlHik − 4H−3gijgklhjlHkHi

= 2gim
∂gpq
∂t

∂gmn

∂t
hikhjl(2g

jpgnqgkl + gjngkpglq) + 2gijgkl
∂hik

∂t

∂hjl

∂t

− 8gimgjngklhjl
∂gmn

∂t

∂hik

∂t
+ 2|A|2gmn

〈
~ν,

∂Xm

∂t

〉
·
〈
~ν,

∂Xn

∂t

〉

− 2H−1 tr(A3)− 4gimgjngklhikhjl

〈∂Xm

∂t
,
∂Xn

∂t

〉

− 4H−3gijgklhjlHkHi +H−2(∆|A|2 − 2|∇A|2 − 2H tr(A3) + 2|A|4)
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= H−2∆|A|2 − 2H−2|∇A|2 − 4H−1 tr(A3) + 2H−2|A|4

− 4H−3gijgklhjlHkHi + 2gim
∂gpq
∂t

∂gmn

∂t
hikhjl(2g

jpgnqgkl + gjngkpglq)

+ 2gijgkl
∂hik

∂t

∂hjl

∂t
− 8gimgjngklhjl

∂gmn

∂t

∂hik

∂t
+ 2|A|2gmn

〈
~ν,

∂Xm

∂t

〉

×
〈
~ν,

∂Xn

∂t

〉
− 4gimgjngklhikhjl

〈∂Xm

∂t
,
∂Xn

∂t

〉
,

which completes the proof of Lemma 4.6. �

As we can see from complicated evolution equations in this section, it is difficult to

get gradient estimates and higher-order estimates for the mean curvature and the sec-

ond fundamental forms, which leads to the result that so far we cannot say anything

about the convergence of the HIMCF (2.4) and also the hyperbolic flows (2.5), (2.6).

However, for the lower dimensional case (i.e., the HIMCF in the plane R2), we can

get the expanding and convergent conclusions, which will be shown clearly in the

following section.

5. HIMCF in the plane R
2

5.1. The short-time existence. Consider a family of closed convex plane curves

F : S
1 × [0, T ) → R

2 which satisfy IVP

(5.1)





∂2

∂t2
F (u, t) = k−1(u, t)~ν(u, t)−∇̺(u, t), ∀u ∈ S

1, t ∈ [0, T ),

∂F

∂t
(·, 0) = f(u)~ν0,

F (·, 0) = F0,

where k(u, t) and ~ν are the curvature and the unit outward normal vector of the plane

curve F (u, t), respectively, f(u) ∈ C∞(S1) is the initial normal velocity, and ~ν0 is

the unit outward normal vector of the smooth strictly convex plane curve F0(u).

Besides, ∇̺ is defined by

∇̺ :=
〈 ∂2F

∂s∂t
,
∂F

∂t

〉
~T (u, t),

where, by abuse of a notation, 〈, 〉 denotes the standard Euclidean metric in R
2,

and ~T , s are the unit tangent vector of F (u, t) and the arc-length parameter, respec-

tively.

Now, we would like to show that the HIMCF (5.1) is a normal flow. However,

before that, we need the following definition which was mentioned in [13], [14].
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Definition 5.1. A curve F : S
1 × [0, T ) → R

2 evolves normally if and only if its

tangential velocity vanishes.

Lemma 5.2. The hyperbolic curvature flow (5.1) is a normal flow.

P r o o f. By direct computation, we have

d

dt

〈∂F
∂t

,
∂F

∂u

〉
=

〈∂2F

∂t2
,
∂F

∂u

〉
+
〈∂F
∂t

,
∂2F

∂t∂u

〉
=

〈
−∇̺,

∂F

∂u

〉
+
〈∂F
∂t

,
∂2F

∂t∂u

〉

= −
〈 ∂2F

∂s∂t
,
∂F

∂t

〉
·
〈∂F
∂s

,
∂F

∂u

〉
+
〈∂F
∂t

,
∂2F

∂t∂u

〉
= 0,

which, together with the fact that the initial velocity of the IVP (5.1) is normal,

implies the conclusion of Lemma 5.2. �

By the IVP (5.1) and Lemma 5.2, it is easy to get

(5.2)





∂F

∂t
(u, t) = σ(u, t)~ν,

F (u, 0) = F0(u),

where σ(u, t) = f(u) +
∫ t

0 k
−1(u, ξ) dξ. So, we have

∂σ

∂t
= k−1(u, t), σ

∂σ

∂s
=

〈 ∂2F

∂s∂t
,
∂F

∂t

〉
,

where s = s(·, t) is the arc-length parameter of the curve F (·, t) : S
1 → R

2. By the

arc-length formula, we have

∂

∂s
=

1√
(∂x/∂u)2 + (∂y/∂u)2

∂

∂u
=

1

|∂F/∂u|
∂

∂u
:=

1

υ

∂

∂u
,

where (x, y) are the Cartesian coordinates, and

υ =

√(∂x
∂u

)2

+
(∂y
∂u

)2

=
∣∣∣∂F
∂u

∣∣∣.

For the orthogonal field {~ν, ~T} of R2, by the Frenet formula, we have

(5.3)
∂ ~T

∂s
= −k~ν,

∂~ν

∂s
= k~T .

Denote by θ the unit inner normal angle for a convex closed curve F : S
1 → R

2.

Then we have

~ν = (cos θ, sin θ), ~T = (− sin θ, cos θ).
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Together with (5.3), we have

∂ ~T

∂s
=

∂ ~T

∂θ

∂θ

∂s
= −~ν

∂θ

∂s
= −k~ν,

which implies ∂θ/∂s = k. Moreover,

(5.4)
∂~ν

∂t
=

∂~ν

∂θ

∂θ

∂t
=

∂θ

∂t
~T ,

∂ ~T

∂t
=

∂ ~T

∂θ

∂θ

∂t
= −∂θ

∂t
~ν.

Lemma 5.3. The derivative of υ with respect to t is ∂υ/∂t = kσυ.

P r o o f. By direct computation, we have

∂

∂t
(υ2) =

∂

∂t

〈∂F
∂u

,
∂F

∂u

〉
= 2

〈∂F
∂u

,
∂2F

∂t∂u

〉
= 2

〈∣∣∣∂F
∂u

∣∣∣~T , ∂

∂u
(σ~ν)

〉

= 2
〈
υ ~T , σ

∂~ν

∂u

〉
= 2

〈
υ ~T , σ

∂~ν

∂s

∂s

∂u

〉
= 2

〈
υ ~T , σk~Tυ

〉
= 2υ2kσ,

which implies the conclusion of Lemma 5.3. �

By Lemma 5.3, we can obtain

∂2

∂t∂s
=

∂

∂t

( 1

υ

∂

∂u

)
= − 1

υ2

∂υ

∂t

∂

∂u
+

1

υ

∂

∂u

∂

∂t
= −kσ

∂

∂s
+

∂2

∂s∂t
.

Therefore, together with (5.2), we have

∂ ~T

∂t
=

∂2F

∂t∂s
= −kσ

∂F

∂s
+

∂2F

∂s∂t
= −kσ~T +

∂

∂s
(σ~ν) =

∂σ

∂s
~ν,

which, combined with (5.4), yields

∂σ

∂s
= −∂θ

∂t
,

∂~ν

∂t
= −∂σ

∂s
~T .

Assume F : S
1 × [0, T ) → R

2 is a family of convex curves satisfying the flow (5.1).

We can use the normal angle to parameterize the evolving curve F (·, t), which will
give the notion of the support function used to get the short-time existence of the

flow. Set

F̃ (θ, τ) = F (u(θ, τ), t(θ, τ)),

where t(θ, τ) = τ . By the chain rule, we have

0 =
∂θ

∂τ
=

∂θ

∂u

∂u

∂τ
+

∂θ

∂t
,
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and then
∂θ

∂t
= − ∂θ

∂u

∂u

∂τ
= −∂θ

∂s

∂s

∂u

∂u

∂τ
= −kυ

∂u

∂τ
.

Therefore, direct calculation yields

∂ ~T

∂τ
=

∂ ~T

∂u

∂u

∂τ
+

∂ ~T

∂t
=

∂ ~T

∂s

∂s

∂u

∂u

∂τ
− ∂θ

∂t
~ν = −

(
kυ

∂u

∂τ
+

∂θ

∂t

)
~ν = 0

and
∂~ν

∂τ
=

∂~ν

∂u

∂u

∂τ
+

∂~ν

∂t
=

∂~ν

∂s

∂s

∂u

∂u

∂τ
+

∂θ

∂t
~T =

(
kυ

∂u

∂τ
+

∂θ

∂t

)
~T = 0,

which implies ~ν and ~T are independent of the parameter τ .

Define the support function of the evolving curve F̃ (θ, τ) = (x(θ, τ), y(θ, τ)) as

S(θ, τ) = 〈F̃ (θ, τ), ~ν〉 = x(θ, τ) cos θ + y(θ, τ) sin θ.

Then we have

Sθ(θ, τ) = −x(θ, τ) sin θ + y(θ, τ) cos θ = 〈F̃ (θ, τ), ~T 〉

and {
x(θ, τ) = S cos θ − Sθ sin θ,

y(θ, τ) = S sin θ + Sθ cos θ.

By direct computation, we have

Sθθ + S = 〈F̃θ(θ, τ), ~T 〉+ 〈F̃ (θ, τ),−~ν〉+ 〈F̃ (θ, τ), ~ν〉

= 〈F̃θ(θ, τ), ~T 〉 =
〈∂F
∂u

∂u

∂s

∂s

∂θ
, ~T

〉
=

1

k
.

The above expression makes sense, since the evolving curve is strictly convex.

On the other hand, since ~ν and ~T are independent of the parameter τ , together

with (5.2) and the definition of the support function S we can get

(5.5) Sτ =
〈∂F̃
∂τ

, ~ν
〉
=

〈∂F
∂u

∂u

∂τ
+

∂F

∂t
, ~ν
〉
=

〈∂F
∂t

, ~ν
〉
= σ̃(θ, τ)

and

Sττ =
〈∂2F̃

∂τ2
, ~ν

〉
=

〈∂F
∂u

∂2u

∂τ2
+

∂2F

∂u2

(∂u
∂τ

)2

+ 2
∂2F

∂u∂t

∂u

∂τ
+

∂2F

∂t2
, ~ν
〉

=
〈∂2F

∂u2

(∂u
∂τ

)2

+
∂2F

∂u∂t

∂u

∂τ
, ~ν

〉
+
〈 ∂2F

∂u∂t

∂u

∂τ
+

∂2F

∂t2
, ~ν
〉

=
∂u

∂τ

〈(∂F
∂u

)
τ
, ~ν
〉
+
〈 ∂2F

∂u∂t

∂u

∂τ
+

∂2F

∂t2
, ~ν
〉

=
〈 ∂2F

∂u∂t

∂u

∂τ
+

∂2F

∂t2
, ~ν
〉
=

〈 ∂2F

∂u∂t

∂u

∂τ
, ~ν
〉
+ k−1.
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Since F : S
1 × [0, T ) → R

2 is a normal flow (see Lemma 5.2), which implies

〈∂F
∂t

, ~T
〉
(u, t) = 0

for all t ∈ [0, T ), we have

Sτθ =
∂

∂τ

〈
F̃ , ~T

〉
=

〈∂F
∂u

∂u

∂τ
+

∂F

∂t
, ~T

〉
= υ

∂u

∂τ

and

Sθτ =
∂

∂θ

〈∂F
∂t

, ~ν
〉
=

〈 ∂2F

∂u∂t

∂u

∂θ
, ~ν
〉
=

〈 ∂2F

∂u∂t

∂u

∂s

∂s

∂θ
, ~ν
〉
=

1

kυ

〈 ∂2F

∂u∂t
, ~ν
〉

by straightforward computation. Hence, S(θ, τ) satisfies

Sττ =
〈 ∂2F

∂u∂t

∂u

∂τ
, ~ν
〉
+ k−1 = kυSθτ

∂u

∂τ
+ k−1 = kS2

θτ + k−1,

which is equivalent to

Sττ =
S2
θτ

Sθθ + S
+ (Sθθ + S) ∀ (θ, τ) ∈ S

1 × [0, T ).

Together with (5.1), we know that

(5.6)





SSττ + SττSθθ − S2
θτ − (Sθθ + S)2 = 0,

S(θ, 0) = h(θ),

Sτ (θ, 0) = f̃(θ),

where h(θ) and f̃(θ) are the support functions of the initial curve F0(u(θ)) and the

initial velocity of this initial curve, respectively.

Similarly to the high-dimensional case mentioned in Section 2, here we would like

to get the short-time existence of the IVP (5.6) by the linearization method and the

standard theory of second-order linear hyperbolic PDEs. Let

Q(Sθθ, Sθτ , S) :=
S2
θτ

Sθθ + S
+ (Sθθ + S),

then we have

(5.7) Sττ =
∂Q

∂Sθθ
Sθθ +

∂Q

∂Sθτ
Sθτ +

∂Q

∂S
S,
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where
∂Q

∂Sθθ
= 1− S2

θτ

(Sθθ + S)2
,

∂Q

∂Sθτ
=

2Sθτ

Sθθ + S
.

Considering the coefficient matrix of the terms in (5.7) involving the second-order

derivatives of S, we have




−1
Sθτ

Sθθ + S
Sθτ

Sθθ + S
1− S2

θτ

(Sθθ + S)2




which, by a suitable linear transformation, yields

(−1 0

0 1

)
.

So equation (5.7) is a second-order hyperbolic PDE. By the standard theory of

second-order linear hyperbolic PDEs (see, e.g., [7], Chapter 7 or [10]), we have the

following result.

Theorem 5.4 (Local existence and uniqueness). Assume that F0 is a smooth

strictly convex closed plane curve. Then there exist a positive Tmax > 0 and a family

of strictly convex closed curves F (u, t) satisfying the IVP (5.1) on S
1 × [0, Tmax),

provided f(u) is a smooth function on S
1.

5.2. Expansion and convergence. As in Section 3, we would like to understand

further and then try to get more evolution information about the hyperbolic flow (5.1)

through an interesting example. In fact, let F (u, t) be a family of round circles in R2

with the radius r(t) centered at the origin, i.e.,

F (u, t) = r(t)(cos θ, sin θ).

Then Example 3.1 (when n = 1) describes the convergence or expansion of the evolv-

ing curves F (u, t) under the flow (5.1). From this example, we know that although

the initial curve is so special (i.e., circles), the evolution of the flow (5.1) is compli-

cated, which deeply depends on the initial values of the flow. However, for a general

initial curve F (u, 0), it is very difficult to accurately describe the evolution of the

HIMCF (5.1) as time tends to the maximal existence time (i.e., as t → Tmax). For-

tunately, using the containment principle we will derive (see Proposition 5.6 below),

we can overcome this difficulty.
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In order to get the containment principle, we need to use the maximum principle

for a strip (see Lemma 5.5 below) which has been shown in [18]. However, in order

to state the conclusion of Lemma 5.5 clearly, we need to introduce some prelimi-

naries first, which has been mentioned in [13]. Consider the general second-order

operator L,

(5.8) L[ω] := aωθθ + 2bωθt + cωtt + dωθ + eωt

where a, b, c are twice continuously differentiable functions, d, e are continuously

differentiable functions of θ and t. If b2−ac > 0 at a point (θ, t), then the operator L is

said to be hyperbolic at this point. It is hyperbolic in a domainD if it is hyperbolic at

each point of D, and uniformly hyperbolic in a domain D if there exists a constant µ

such that b2 − ac > µ > 0 in D.

Assume that ω and the conormal derivative

∂ω

∂ν
, −b

∂ω

∂θ
− c

∂ω

∂t

are given at t = 0. The adjoint operator L∗ associated with L can be defined by

L∗[ω] , (aω)θθ + 2(bω)θt + (cω)tt − (dω)θ − (eω)t

= aωθθ + 2bωθt + cωtt + (2aθ + 2bt − d)ωθ + (2bθ + 2ct − e)ωt

+ (aθθ + 2bθt + ctt − dθ − et)ω.

Set

K+(θ, t) :=
(√

b2 − ac
)
θ
+

b

c

(√
b2 − ac

)
θ
+

1

c
(bθ + ct − e)

√
b2 − ac

+
[
− 1

2c
(b2 − ac)θ + aθ + bt − d− b

c
(bθ + ct − e)

]
,

and

K−(θ, t) :=
(√

b2 − ac
)
θ
+

b

c

(√
b2 − ac

)
θ
+

1

c
(bθ + ct − e)

√
b2 − ac

−
[
− 1

2c
(b2 − ac)θ + aθ + bt − d− b

c
(bθ + ct − e)

]
.

As shown in [13], pages 502–503, we know that for

(5.9) l(θ, t) := 1 + αt− βt2

with α, β sufficiently large such that

(5.10)





2
√
b2 − ac(α− 2βt) + (1 + αt− βt2)K+ > 0

2
√
b2 − ac(α− 2βt) + (1 + αt− βt2)K− > 0

−2cβ + (2bθ + 2ct − e)(α− 2βt)

+(aθθ + 2bθt + ctt − dθ − et + g)(1 + αt− βt2) > 0
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and l(θ, t) > 0 on a sufficiently small strip 0 6 t 6 t0, the hyperbolic operator defined

by (5.8) satisfies





2
√
b2 − ac

[
lt −

1

c

(√
b2 − ac− b

)
lθ
]
+ lK+ > 0

2
√
b2 − ac

[
lt +

1

c

(√
b2 − ac− b

)
lθ

]
+ lK− > 0

(L∗ + g)[ω] > 0

on the same strip 0 6 t 6 t0. It is easy to check that with l defined by (5.9), the

condition on the conormal derivative becomes

∂ω

∂ν
+ (bθ + ct − e+ cα)ω 6 0

at t = 0. Besides, if we select a constant M so large that

(5.11) M > −(bθ + ct − e+ cα) on Γ0,

then the following maximum principle for the strip adjacent to the θ-axis can be

obtained.

Lemma 5.5. Suppose that the coefficients of the operator L given by (5.8) are

bounded and have bounded first and second derivatives. Let D be an admissible

domain. If t0 and M are selected in accordance with (5.10) and (5.11), then any

function ω which satisfies





(L+ g)[ω] > 0 in D,

∂ω

∂ν
−Mω 6 0 on Γ0,

ω 6 0 on Γ0,

also satisfies ω 6 0 in the part ofD which lies in the strip 0 6 t 6 t0. The constants t0
and M depend only on lower bounds for −c and

√
b2 − ac and on bounds for the

coefficients of L and their derivatives.

Proposition 5.6 (Containment principle). Let F1 and F2 : S
1 × [0, T ) → R

2 be

two convex solutions of (5.1). Suppose that F2(u, 0) lies in the domain enclosed

by F1(u, 0), and f2(u) 6 f1(u). Then F2(u, t) is contained in the domain enclosed

by F1(u, t) for all t ∈ [0, T ).

P r o o f. Let S1(θ, t) and S2(θ, t) be the support functions of F1(u, t) and F2(u, t),

respectively. Then S1(θ, t) and S2(θ, t) satisfy the same equation (5.6) with S2(θ, 0) 6

S1(θ, 0) and S2t(θ, 0) 6 S1t(θ, 0).

57



Let

ω(θ, t) := S2(θ, t)− S1(θ, t).

Then we have

ωtt = S2tt − S1tt =
S2
2θt + k−2

2

S2 + S2θθ
− S2

1θt + k−2
1

S1 + S1θθ

= k1k2

( 1

k1k2
− S1θtS2θt

)
ωθθ + (k1S1θt + k2S2θt)ωθt + k1k2

( 1

k1k2
− S1θtS2θt

)
ω,

which implies that ω satisfies the system

(5.12)





ωtt = k1k2

( 1

k1k2
− S1θtS2θt

)
ωθθ + (k1S1θt + k2S2θt)ωθt

+k1k2

( 1

k1k2
− S1θtS2θt

)
ω,

ωt(θ, 0) = f2(θ) − f1(θ) = ω1(θ),

ω(θ, 0) = h2(θ) − h1(θ) = ω0(θ).

Define the operator L by

L[ω] := k1k2

( 1

k1k2
− S1θtS2θt

)
ωθθ + (k1S1θt + k2S2θt)ωθt − ωtt,

we know that

a = k1k2

( 1

k1k2
− S1θtS2θt

)
, b =

1

2
(k1S1θt + k2S2θt), c = −1

are twice continuously differentiable functions of θ and t. By direct computation, we

have

b2 − ac =
1

4
(k1S1θt + k2S2θt)

2 − k1k2

( 1

k1k2
− S1θtS2θt

)
· (−1)

=
1

4
(k1S1θt − k2S2θt)

2 + 1 > 0.

Hence, the operator L is uniformly hyperbolic in S
1 × [0, T ). By Lemma 5.5, we

deduce that S2(θ, t) 6 S1(θ, t) for all t ∈ [0, T ), which completes the proof. �

Proposition 5.7 (Preserving convexity). Let k0(θ) be the curvature function

of F0 and

δ = min
θ∈[0,2π]

k0(θ) > 0.

Then for a C4-solution S of (5.6) we have

k(θ, t) > δ

for all t ∈ [0, Tmax), where [0, Tmax) is the maximal time interval for the solu-

tion F (·, t) of (5.1).
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P r o o f. Since the initial curve is strictly convex, by Theorem 5.4 we know that

the solution of (5.6) remains strictly convex on some short time interval [0, T ) with

some T 6 Tmax and its support function satisfies

Stt = kS2
θt + k−1

for all (θ, t) ∈ S
1 × [0, T ). Taking derivative with respect to t, we have

kt =
( 1

S + Sθθ

)
t
= − 1

(S + Sθθ)2
(St + Sθθt) = −k2(St + Sθθt).

Together with the fact St = σ̃, it is easy to know kt = −k2(σ̃ + σ̃θθ). Therefore, we

can obtain

St + Sθθt = − (S + Sθθ)
2kt = − 1

k2
kt,

Sθt + Sθθθt =
(
− 1

k2
kt

)
θ
=

2

k3
ktkθ −

1

k2
kθt,

and

ktt =
(
− 1

(S + Sθθ)2
(St + Sθθt)

)
t

=
2

(S + Sθθ)3
(St + Sθθt)

2 − 1

(S + Sθθ)2
(Stt + Sθθtt)

= 2k3
(
− 1

k2
kt

)2

− k2[(Stt)θθ + Stt]

=
2

k
k2t − k2[(kS2

θt − k + k + k−1)θθ + (kS2
θt − k + k + k−1)]

=
2

k
k2t − k2[((S2

θt − 1)k)θθ + (S2
θt − 1)k + (k + k−1)θθ + (k + k−1)]

=
2

k
k2t − k2[((S2

θt − 1)θk + (S2
θt − 1)kθ)θ + (S2

θt − 1)k + (k + k−1)θθ + (k + k−1)]

=
2

k
k2t − k2[(S2

θt − 1)θθk + 2(S2
θt − 1)θkθ + (S2

θt − 1)kθθ + (S2
θt − 1)k]

− k2[(k + k−1)θθ + (k + k−1)]

=
2

k
k2t − k2(S2

θt − 1)(k + kθθ)− k2[(2SθtSθθt)θk + 4SθtSθθtkθ]

− k2
[
kθθ −

1

k2
kθθ +

2

k3
k2θ + (k + k−1)

]

=
2

k
k2t − k2(S2

θt − 1)(k + kθθ)− k2[2(S2
θθt + SθtSθθθt)k + 4kθSθt(Sθθ + S − S)t]

− k2
[(

1− 1

k2

)
kθθ +

2

k3
k2θ + (k + k−1)

]
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=
2

k
k2t − k2(S2

θt − 1)(k + kθθ)− k2

×
[
2((Sθθt + St)

2 − 2SθθtSt − S2
t + Sθt(Sθθ + S)θt − S2

θt)k + 4kθSθt

(1
k
− S

)
t

]

− k2
[(

1− 1

k2

)
kθθ +

2

k3
k2θ + (k + k−1)

]

=
2

k
k2t − k2(S2

θt − 1)(k + kθθ)− k2

×
[
2
(
(Sθθt + St)

2 − 2(Sθθt + St)St + S2
t + Sθt

(1
k

)
θt
− S2

θt

)
k − 4kθSθt

1

k2
kt

− 4kθSθtSt

]
− k2

[(
1− 1

k2

)
kθθ +

2

k3
k2θ + (k + k−1)

]

=
2

k
k2t − k2(S2

θt − 1)(k + kθθ)− 2k3

×
[(

− 1

k2
kt

)2

− 2
(
− 1

k2
kt

)
St + S2

t − S2
θt + Sθt

( 2

k3
ktkθ −

1

k2
kθt

)]

+ 4k2
(
kθSθt

1

k2
kt + kθSθtSt

)
− k2

[(
1− 1

k2

)
kθθ +

2

k3
k2θ + (k + k−1)

]

= k2(1− S2
θt)(k + kθθ)− 4kStkt − 2k3S2

t + 2k3S2
θt + 2kSθtkθt + 4k2SθtStkθ

− k2
[(

1− 1

k2

)
kθθ +

2

k3
k2θ + (k + k−1)

]

= k2
( 1

k2
− S2

θt

)
kθθ + 2kSθtkθt + 4k2SθtStkθ −

2

k
k2θ

− 4kStkt + k3(S2
θt − 2S2

t − k−2).

So, the curvature k satisfies the equation

ktt = k2
( 1

k2
−S2

θt

)
kθθ+2kSθtkθt+4k2SθtStkθ−

2

k3
k2θ−4kStkt+k3(S2

θt−2S2
t −k−2).

Define the operator L as

L[k] := k2
( 1

k2
− S2

θt

)
kθθ + 2kSθtkθt − ktt + 4k2SθtStkθ −

2

k3
k2θ − 4kStkt.

We know that

a = k2
( 1

k2
− S2

θt

)
, b = kSθt, c = −1

are twice continuously differentiable functions of θ and t. So we have

b2 − ac = (kSθt)
2 − k2

( 1

k2
− S2

θt

)
· (−1) = 1 > 0,

which implies that the operator L is hyperbolic in S
1 × [0, T ).
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Determining a function k(θ, t) which satisfies the system





(L+ h̃)[k] = 0 in S
1 × [0, T ),

k(θ, 0) = k0(θ) on Γ0,

0 6
∂k

∂ν
:= −bkθ − ckt := β(θ) on Γ0,

where the operator h̃ is defined as h̃[k] := k3(S2
θt − 2S2

t − k−2). It is easy to check

that the function k̃(θ, t) = min
θ∈[0,2π]

{k0(θ)} = δ satisfies





(L+ h̃)[k̃] = 0 in S
1 × [0, T ),

k̃(θ, 0) 6 k0(θ) on Γ0,

∂k̃

∂~ν
−Mk̃ 6 β(θ) −Mk0(θ) on Γ0,

where Γ0 is the initial domain, andM is the constant determined by (5.11). Applying

Lemma 5.5 to k̃ − k yields

k̃ 6 k(θ, t) in S
1 × [0, t0).

with t0 6 T . Hence, we know that the solution F (·, t) remains convex on [0, Tmax)

and its curvature function k(θ, t) has a uniformly positive lower bound δ = min
S1

k0(θ)

on S
1 × [0, Tmax), which completes the proof. �

We need the following evolution equations of the arc-length of evolving curves.

Lemma 5.8. The arc-length L(t) of the closed curve F (u, t) satisfies

dL(t)
dt

=

∫ 2π

0

σ̃(θ, t) dθ,

and
d2L(t)
dt2

=

∫ 2π

0

[
k
(∂σ̃
∂θ

)2

+ k−1
]
dθ.

P r o o f. Since

L(t) =
∫ 2π

0

υ(θ, t) dθ,

St(θ, t) = σ̃(θ, t) (i.e., the equality (5.5)) and ∂υ/∂t = kυσ̃, by direct calculation, we

have
dL(t)
dt

=

∫ 2π

0

∂υ

∂t
dθ =

∫ 2π

0

kυσ̃ dθ =

∫ 2π

0

σ̃(θ, t) dθ,
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and
d2L(t)
dt2

=

∫ 2π

0

∂

∂t
σ̃(θ, t) dθ =

∫ 2π

0

Stt dθ

=

∫ 2π

0

(kS2
θt + k−1) dθ =

∫ 2π

0

[
k
( ∂

∂θ
St

)2

+ k−1
]
dθ

=

∫ 2π

0

[
k
(∂σ̃
∂θ

)2

+ k−1
]
dθ,

which completes the proof of Lemma 5.8. �

From Example 3.1 (when n = 1), we know that the behavior of evolving plane

curves of HIMCF (5.1) is complicated. However, using Propositions 5.6 and 5.7,

Lemma 5.8, we can get the following conclusion about the asymptotic behavior of

the hyperbolic flow (5.1).

Theorem 5.9. Suppose that F0 is a smooth strictly convex closed plane curve

with the curvature function k0(θ) whose minimum and maximum are given by

δ = min
S1

k0(θ) > 0 and ζ := max
S1

k0(θ), respectively. Then there exists a family

of strictly convex closed plane curves F (·, t) satisfying the IVP (5.1) on the time

interval [0, Tmax) with 0 < Tmax 6 ∞. Moreover, we have:
(I) If ζ−1 + min

u∈S1
f(u) > 0, then Tmax = ∞, i.e., the flow exists for all the time.

(II) If δ−1 + max
u∈S1

f(u) < 0, then Tmax < ∞. Moreover, if furthermore δ−1Tmax +

max
u∈S1

f(u) < 0, then as t → Tmax, one of the following conclusions must be true:

⊲ the solution F (·, t) converges to a point as t → Tmax, i.e., the curvature of

the limit curve becomes unbounded as t → Tmax;

⊲ the curvature k of the evolving curve is discontinuous as t → Tmax, so the

solution F (·, t) converges to a piecewise smooth curve.

Remark 5.10. In Case (II) of Theorem 5.9 above, the condition δ−1Tmax +

max
u∈S1

f(u) < 0 is not easy to check, since for a general strictly convex closed plane

curve evolving under the hyperbolic flow (5.1), it is difficult to get the accurate value

of the maximal time Tmax. However, as shown in the proof below, by Example 3.1

and Proposition 5.6 (Containment principle) we have

Tmax 6 T ∗ =
1

2
ln

(−1 + δmaxu∈S1 f(u)

1 + δmaxu∈S1 f(u)

)
.

So, for the purpose of easier checking, one can use a weaker condition δ−1T ∗ +

max
u∈S1

f(u) < 0 to replace the assumption δ−1Tmax +max
u∈S1

f(u) < 0. However, here we

prefer to use the latter one, since it is sharper than the former.
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P r o o f. Let [0, Tmax) be the maximal time interval of the IVP (5.1) with F0 and f

as the initial curve and initial velocity of the initial curve, respectively.

By Proposition 5.7, we know that the solution F (·, t) remains strictly convex
on [0, Tmax) and the curvature of F (·, t) has a uniformly positive lower bound δ > 0

on S
1 × [0, Tmax).

Case I: When ζ−1 + min
u∈S1

f(u) > 0.

Since ζ = max
S1

k0(θ) > δ > 0, the initial curve F0 can enclose a circle C0 with
radius ζ−1. Let the normal initial velocity of C0 be equal to min

u∈S1
f(u). Evolve C0 by

the hyperbolic flow (5.1) to get a solution C(·, t). By Example 3.1, we know that if
ζ−1 + min

u∈S1
f(u) > 0, the evolving circle C(·, t) exists for all the time, and its radius

tends to infinity as t → ∞. By Proposition 5.6, we can get that C(·, t) always lies in
the domain D enclosed by the closed curve F (·, t) for all t > 0, and moreover,D tends
to be the whole plane as t → ∞. So, in this case, the IVP (5.1) has the long-time

existence, i.e., Tmax = ∞.
Case II: When δ−1 +max

u∈S1
f(u) < 0.

Since δ = min
S1

k0(θ) > 0, the initial curve F0 can be enclosed by a circle C1 with
radius δ−1. Let the normal initial velocity of C1 be equal to max

u∈S1
f(u). Evolve C1

by the hyperbolic flow (5.1) to get a solution C̃(·, t). By Example 3.1, we know that
if δ−1 + max

u∈S1
f(u) < 0, the solution exists at a finite time interval [0, T ∗) and the

evolving circle C̃(·, t) converges to a single point as t → T ∗. By Proposition 5.6,

we know that the evolving curve F (·, t) always lies in the domain D̃ (i.e., a disk)
enclosed by C̃(·, t) for all t ∈ [0, T ∗). Hence, we can get that F (·, t) must become
singular at some time Tmax 6 T ∗ < ∞.
Now, we need the following conclusion from convex geometry (see, e.g., [20]).

Blaschke Selection Theorem. Let Kj be a sequence of convex sets which are

contained in a bounded set. Then there exists a subsequenceKjk and a convex set K

such that Kjk converges to K in the Hausdorff metric.

In Case II, since C̃(·, t) shrinks as t increases and the evolving curve F (·, t) is
contained in the circle C̃(·, t) for each t ∈ [0, Tmax), this strictly convex closed plane

curve F (·, t) is contained in the circle C1 for all t ∈ [0, Tmax). By Blaschke Selection

Theorem, we know that in the sense of the Hausdorff metric, F (·, t) converges to
a weakly convex curve F (·, Tmax) which may be degenerate and non-smooth.

We claim that F (·, t) converges to either a single point or a limit curve which has
a discontinuous curvature under the further assumption δ−1Tmax +max

u∈S1
f(u) < 0.
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By Proposition 5.7 and Lemma 5.8, we have

d2L(t)
dt2

=

∫ 2π

0

[
k
(∂σ̃
∂θ

)2

+ k−1
]
dθ > 0 for all t ∈ [0, Tmax).

Besides, by Proposition 5.7, we have

σ̃(θ, t) = σ(u, t) = f(u) +

∫ t

0

k−1(u, ξ) dξ 6 δ−1t+max
u∈S1

f(u)

6 δ−1Tmax +max
u∈S1

f(u) < 0

for all t ∈ [0, Tmax), which implies

dL(t)
dt

=

∫ 2π

0

σ̃(θ, t) dθ < 0 for all t ∈ [0, Tmax).

So, for all t ∈ [0, Tmax), we have

dL(t)
dt

< 0,
d2L(t)
dt2

> 0,

which implies that there exists a finite time T0 such that L(T0) = 0. The following

two situations may occur:

⊲ T0 6 Tmax. On the one hand, by Theorem 5.4 there exists a unique classical

solution F (·, t) to the IVP (5.1) on [0, T0). On the other hand, since L(t) is
decreasing on [0, T0) and L(T0) = 0, we have L(T0) → 0 as t → T0. This implies

the curvature k tends to infinity as t → T0, and the solution will blow up at T0.

Therefore, by the definition of Tmax, we have T0 = Tmax. So, F (·, t) converges to
a point as t → Tmax.

⊲ T0 > Tmax. In this situation, L(Tmax) > 0, which implies that F (·, Tmax) must be

non-smooth. Then there are three possibilities:

(1) ‖F (u, Tmax)‖ = sup |F (u, Tmax)| = ∞. However, F (·, t) is always contained
in the circle C1, which implies that ‖F (u, Tmax)‖ must be bounded. This is
a contradiction. So, case (1) is impossible.

(2) ‖Fu(u, Tmax)‖ = ∞. However, the length of the limit curve L(Tmax) satisfies

L(Tmax) = lim
t→Tmax

∫

F (u,t)

ds = lim
t→Tmax

∫

F (u,t)

|Fu(u, t)| du

=

∫

F (u,t)

lim
t→Tmax

|Fu(u, t)| du = ∞

which contradicts L(Tmax) < L0 with L0 being the length of the initial

curve F0. So, case (2) is also impossible.
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(3) The curvature function k is discontinuous. We cannot exclude this possibility.

This phenomenon will occur if the above shocks are not possible.

Our claim is true. The proof of Theorem 5.9 is finished. �
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