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Abstract. We find some relations between module biprojectivity and module biflatness of
Banach algebras A and B and their projective tensor productA⊗̂B. For some semigroups S,
we study module biprojectivity and module biflatness of semigroup algebras l1(S).
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1. Introduction

Let A and A be Banach algebras such that A is a Banach A-bimodule with com-

patible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α), a, b ∈ A, α ∈ A.

LetX be a BanachA-bimodule and a BanachA-bimodule with compatible actions,

that is

(1.1) α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a)

for all a ∈ A, α ∈ A, x ∈ X , and similarly for the right and two-sided actions. Then,

we say that X is a Banach A-A-bimodule. If moreover α · x = x · α for x ∈ X and

α ∈ A, then X is a commutative A-A-bimodule. A bounded map D : A → X is a

module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b+ a ·D(b), a, b ∈ A
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and

D(α · a) = α ·D(a), D(a · α) = D(a) · α, a ∈ A, α ∈ A.

Note that D is not necessarily linear, but its boundedness (defined as the existence

of M > 0 such that ‖D(a)‖ 6 M‖a‖ for all a ∈ A) still implies its continuity, as it

preserves subtraction. When X is a commutative A-A-module, each x ∈ X defines

a module derivation

Dx(a) = a · x− x · a, a ∈ A.

These are inner module derivations. A Banach algebra A is module amenable (as an

A-module) if for any commutative Banach A-A-module X , each module derivation

D : A → X∗ is inner.

The concept of module amenability for a class of Banach algebras which is in fact

a generalization of the classical amenability has been developed by Amini in [1]. In-

deed, he defined the module amenability of a Banach algebra A in the case that there

is an extra A-module structure on A and showed that for every inverse semigroup S

with subsemigroup E of idempotents, the l1(E)-module amenability of l1(S) is equiv-

alent to the amenability of S (module version of Johnson’s theorem, see [14]). Also,

module amenability of the projective tensor product l1(S) ⊗̂ l1(S) is investigated

by the third author in [3]. Other notions of module amenability such as module su-

per amenability, module approximate amenability and module character amenability

were introduced by other authors (cf. [4], [7], [17] and [19]).

Let A be a Banach A-bimodule with compatible actions. We write IA for the

closed ideal of the projective tensor product of A ⊗̂ A generated by all elements of

the form a · α⊗ b− a⊗ α · b, α ∈ A, and a, b ∈ A. We also denote by JA the closed

ideal of A generated by the elements of the form (a · α)b − a(α · b) for α ∈ A, and

a, b ∈ A, see [22]. If there is no risk of confusion, we may write I and J instead

of IA and JA, respectively. Then both of the quotients (A ⊗̂ A)/I and A/J are A-

bimodules and A-bimodules. Also, A/J is a Banach A-A-module whenever A acts

on A/J canonically. Let π : (A ⊗̂ A) → A be the bounded linear map defined by

π(a ⊗ b) = ab, and let π̃ : (A ⊗̂ A)/I → A/J be its induced product map, that is,

π̃(a⊗ b+ I) = ab+ J .

The notions of module biprojectivity and module biflatness were introduced by

Bodaghi and Amini in [5]. These are the module versions of the concepts biprojec-

tivity and biflatness for Banach algebras introduced by Helemskii in [15]. A Banach

algebra A is module biprojective (as an A-module) if π̃ has a bounded right inverse

which is an A/J-A-module homomorphism. We say that A is module biflat (as an

A-module) if π̃∗ has a bounded left inverse which is an A/J -A-module homomor-

phism. Module biflatness for the second dual of a Banach algebra is also studied

in [8].
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In this paper, motivated by [5], we investigate some more facts and ideas concern-

ing module biprojectivity and module biflatness of Banach algebras.

In Section 2, among other things, we show that under certain conditions module

biprojectivity (biflatness) of Banach algebras A and B implies module biprojectiv-

ity (biflatness) of A ⊗̂ B (Theorems 2.3 and 2.4), and we also study the converse

(Theorem 2.6). We discuss the relation between module amenability of A ⊗̂ B and

amenability of (A/JA) ⊗̂ (B/JB) (Proposition 2.2).

Section 3 is devoted to module biprojectivity and module biflatness of semigroup

algebras l1(S) for some specified semigroups such as zero semigroups and rectangu-

lar band semigroups (Proposition 3.4), and inverse semigroups (Theorem 3.8). As

a result, we show that l1(S) ⊗̂ l1(S) is module biflat whenever S is either the bi-

cyclic inverse semigroup or the semigroup of positive integers N equipped with the

maximum operation (Example 3.2).

2. Module biprojectivity and module biflatness of Banach algebras

Throughout, A and A are Banach algebras for which A is a Banach A-bimodule

with compatible actions. We say A acts trivially on A from left (right) if there is a

continuous linear functional f on A such that α · a = f(α)a (a ·α = f(α)a), for each

α ∈ A and a ∈ A (see [1]).

The following lemma is proved in [6], Lemma 3.13.

Lemma 2.1. If A acts on A trivially from the left or right and A/J has a right

bounded approximate identity, then for each α ∈ A and a ∈ A we have f(α)a −

a · α ∈ J .

The following result is the main key to achieve our purpose of this section.

Proposition 2.2. Let A and B be Banach A-modules with trivial left action. If

A ⊗̂B is module amenable and A/JA, B/JB have identity, then (A/JA) ⊗̂ (B/JB) is

amenable. The converse is true if A has a bounded approximate identity for A.

P r o o f. Let X be a unital (A/JA) ⊗̂ (B/JB)-bimodule and

D : (A/JA) ⊗̂ (B/JB) → X∗

a bounded derivation. Then X is an A ⊗̂ B-bimodule with module actions given by

(a⊗ b) · x := ((a+ JA)⊗ (b+ JB)) · x, and x · (a⊗ b) := x · ((a+ JA)⊗ (b+ JB))
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for x ∈ X , a ∈ A, and b ∈ B. In addition, X is an A-bimodule with trivial actions.

In the light of Lemma 2.1 and by assumptions, the actions of A and A ⊗̂ B on X

are compatible, so that X is a commutative Banach A ⊗̂ B-A-module. Define T :

(A ⊗̂ B)/JA⊗B → (A/JA) ⊗̂ (B/JB) via

T (a⊗ b) + JA⊗B = (a+ JA)⊗ (b+ JB).

For a, c ∈ A, b, d ∈ B and α ∈ A, we have

[(a⊗ b) · α](c⊗ d)− (a⊗ b)[α · (c⊗ d)] = (ac⊗ (b · α)d)− (f(α)ac⊗ bd)

= ac⊗ [(b · α)d − f(α)bd]

showing that T is well-defined. Clearly, T is A-bimodule morphism. Putting D :=

D ◦T ◦π : (A⊗̂B) → X∗, where π : (A⊗̂B) → (A⊗̂B)/JA⊗B is the projection map,

we observe that D is a module derivation. Since (A/JA) ⊗̂ (B/JB) is an A-bimodule,

D((a ⊗ b) · α) = D(a ⊗ b) · α for all α ∈ A. On the other hand, D(α · (a ⊗ b)) =

D(f(α)(a ⊗ b)) = α · D(a ⊗ b), because the left A-module actions on A and X are

trivial. Therefore there exists x∗ ∈ X∗ such that D(a⊗ b) = (a⊗ b) ·x∗−x∗ · (a⊗ b),

hence D((a+ JA)⊗ (b+ JB)) = ((a+ JA)⊗ (b+ JB))x
∗ − x∗ · ((a+ JA)⊗ (b+ JB)),

and so D is inner.

Now, suppose that X is a commutative Banach A ⊗̂ B-A- module. We consider

the following module actions of (A/JA) ⊗̂ (B/JB) on X :

((a+ JA)⊗ (b+ JB)) · x := (a⊗ b) · x, and x · ((a+ JA)⊗ (b+ JB)) := x · (a⊗ b)

for all x ∈ X , a ∈ A, and b ∈ B. A simple calculation shows that

[((a ·α)b−a(α ·b))⊗ ((c ·β)d−c(β ·d))] ·x = 0, a, b ∈ A, c, d ∈ B, x ∈ X, α, β ∈ A.

We also see that (a⊗b) ·x = 0 and x · (a⊗b) = 0, if a ∈ JA or b ∈ JB. Therefore X

is a Banach (A/JA)⊗̂(B/JB)-bimodule. Suppose that D : (A⊗̂B) → X∗ is a module

derivation, and consider D̃((a + JA) ⊗ (b + JB)) := D(a ⊗ b) for all a ∈ A, b ∈ B.

Then we have D(a⊗ ((c · α)d− c(α · d))) = 0, and

D(a⊗ cd) = D((a+ JA)⊗ (cd+ JB)) = D((aeA + JA)⊗ (cd+ JB)) = D(aeA ⊗ cd),

hence D is well-defined. Suppose that A has a bounded approximate identity (ξi)

for A. Since f is bounded, without loss of generality, we may assume that f(ξi) → 1,

as i→ ∞. Then for each λ ∈ C we have

eA · (λξi)− f(ξi)eA = (λeA) · ξi − f(ξi)eA → λeA − eA.
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Since JA is a closed ideal of A, λeA − eA ∈ JA. Next, for each λ ∈ C, and a ∈ A,

b ∈ B, we have

D((λa+ JA)⊗ (b + JB)) = λD((a+ JA)⊗ (b+ JB))

so that D is C-linear. Therefore D is an inner module derivation. �

Theorem 2.3. Let A and B be Banach A-modules with trivial left action. Let

A, B be module biflat and let A/JA, B/JB be commutative Banach A-module. If

A, B have bounded approximate identity and A has a bounded approximate identity

for A and B, then A ⊗̂ B is module biflat.

P r o o f. By [5], Theorem 2.1, A, B are module amenable, and so A/JA, B/JB

are amenable (see also [2], Proposition 3.3). It follows from [9], Corollary 2.9.62 that

(A/JA)⊗̂(B/JB) is amenable. Applying Proposition 2.2, we see that A⊗̂B is module

amenable. Again, by [5], Theorem 2.1 we conclude that A ⊗̂ B is module biflat. �

The following is the module biprojective version of Theorem 2.3.

Theorem 2.4. Let A and B be Banach A-modules with trivial left action. If A

and B are module biprojective, then so is A ⊗̂ B.

P r o o f. By the assumption, there exist an A/JA-A-module morphism ˜̺A :

A/JA → (A ⊗̂ A)/IA with π̃A ◦ ˜̺A = idA/JA
and a B/JB-A-module morphism

˜̺B : B/JB → (B ⊗̂ B)/IB with π̃B ◦ ˜̺B = idB/JB
. Define T : (A ⊗̂ B)/JA⊗̂B →

(A/JA) ⊗̂ (B/JB) via (a⊗ b) + JA⊗̂B 7→ (a+ JA)⊗ (b + JB).

Let θ̃ : [(A⊗̂A)/IA] ⊗̂ [(B ⊗̂B)/IB] → ((A⊗̂B) ⊗̂ (A⊗̂B))/IA⊗̂B be the isometric

isomorphism given by

((a1⊗a2)+IA)⊗((b1⊗b2)+IB) 7→ (a1⊗b1)⊗(a2⊗b2)+IA⊗̂B, a1, a2 ∈ A, b1, b2 ∈ B.

Setting

˜̺= θ̃ ◦ (˜̺A ⊗ ˜̺B) ◦ T : (A ⊗̂ B)/JA⊗̂B → ((A ⊗̂ B)⊗̂(A ⊗̂ B))/IA⊗̂B

we easily see that ˜̺ is an (A ⊗̂ B)/JA⊗B-A-module morphism. Since π̃A⊗̂B = T−1 ◦

(π̃A ⊗ π̃B) ◦ θ̃
−1, we have π̃A⊗̂B ◦ ˜̺ = id(A⊗̂B)/J

A⊗̂B

. Therefore, A ⊗̂ B is module

biprojective. �

The next result is the module version of [12], Proposition 3.3.

Proposition 2.5. Assume that A acts trivially on A, B from the left and assume

that I = cl((A/JA)I + I(A/JA)). If A is module biflat then B is module biflat.
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P r o o f. Let ˜̺: ((A⊗̂A)/IA)
∗ → (A/JA)

∗ be a weak splitting of the multiplica-

tion on A. Define υB : (B/JB) ⊗̂ (B/JB) → (B ⊗̂B)/IB via υB((a+JB)⊗ (b+JB)) =

(a⊗ b) + JB. It was shown in the proof of Propostion 2.9 from [13] that υB is well-

defined. We define the map ωA : (A ⊗̂ A)/IA → (A/JA) ⊗̂ (A/JA) by the formula

ωA(a⊗ b+ IA) = (a+ JA)⊗ (b+ JA). For a, b, c, d ∈ A and α ∈ A, we have

((a · α)⊗ c− a⊗ (α · c))(b ⊗ d) = ((a · α)b ⊗ cd)− (ab⊗ (α · c)d)

= ((a · α)b ⊗ cd)− (ab⊗ f(α)cd)

= ((a · α)b ⊗ cd)− (a(α · b)⊗ cd)

= ((a · α)b − a(α · b))⊗ cd.

The above relations show that ωA is well-defined. Defining θ : ((A ⊗̂ A)/IA) →

((B ⊗̂ B)/IB) by θ((a1 ⊗ a2) + IA) = υB ◦ (q ⊗ q) ◦ ωA((a1 ⊗ a2) + IA), we wish to

complete the diagram

((B ⊗̂ B)/IB)
∗ θ∗

//

τ

��

((A ⊗̂ A)/IA)
∗

˜̺

��

(B/JB)
∗ q∗

// (A/JA)
∗

so that τ ◦ π∗
B = 1(B/JB)∗ . Let ϕ ∈ ((B ⊗̂ B)/IB)

∗ and ψ = ϕ ◦ θ. In order to

define τ(ϕ) we must show that ˜̺(ψ)(I) = 0. Let i = (α′ +JA)i
′+ i′′(α′′ +JA) where

i′, i′′ ∈ I and α′, α′′ ∈ A. Then

˜̺(ψ)(i) = ˜̺(ψ)((α′ + JA)i
′ + i′′(α′′ + JA))

= ˜̺(i′ · ψ)(α′ + JA) + ˜̺(ψ · i′′)(α′′ + JA).

But i′ ·ψ((a′, a′′) + IA) = ψ((a′, a′′i′) + IA) = ϕ ◦ υB ◦ (q⊗ q) ◦ωA((a
′, a′′i′) + IA) =

ϕ◦υB ◦(q⊗q)(a
′+JA, a

′′i′+JA) = ϕ◦υB(q(a
′+JA), q(a

′′i′+JA)) = 0, a′, a′′ ∈ A so

i′·ψ = 0. Similarly ψ·i′′ = 0. Since I = cl((A/JA)I+I(A/JA)), we get ˜̺(ψ)(I) = {0}

as desired. Hence there is a map τ : ((B ⊗̂ B)/IB)
∗ → (B/JB)

∗ making the diagram

commutative. By injectivity of the maps q∗, θ∗ and the closed graph theorem τ is a

bounded B/JB-A-bimodule homomorphism. Finally

q∗ ◦ τ ◦ π∗
B = ˜̺◦ θ∗ ◦ π∗

B = ˜̺◦ π∗
A ◦ q∗ = q∗

and then we get τ ◦ π∗
B = 1(B/JB)∗ , since q

∗ is injective. �
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In the next result which is a module version of [20], Proposition 2.6, we bring the

converse of Theorems 2.3 and 2.4 under some mild conditions.

Proposition 2.6. Let A be unital, let B contain a nonzero idempotent b0, and

let A act trivially onA and B from the left. Suppose thatA⊗̂B is module biprojective

(biflat). Then A is module biprojective (biflat).

P r o o f. Suppose that A ⊗̂ B is module biprojective. Then there exists an

(A⊗̂B)/JA⊗̂B-A-module morphism ˜̺: (A⊗̂B)/JA⊗̂B → ((A⊗̂B) ⊗̂ (A⊗̂B))/IA⊗̂B

with π̃A⊗̂B ◦ ˜̺ = id(A⊗̂B)/J
A⊗̂B

. We regard (A ⊗̂ B)/JA⊗B as an A/JA-A-module

with the actions

(a1 + JA) · ((a2 ⊗ b) + JA⊗̂B) = (a1a2 ⊗ b) + JA⊗̂B,

((a2 ⊗ b) + JA⊗̂B) · (a1 + JA) = (a2a1 ⊗ b) + JA⊗̂B,

α · ((a⊗ b) + JA⊗̂B) = (α · a⊗ b) + JA⊗̂B,

((a⊗ b) + JA⊗̂B) · α = (a · α⊗ b) + JA⊗̂B,

where α ∈ A, a1, a2, a ∈ A, b ∈ B. Then for a1, a2 ∈ A we have

˜̺((a1 + JA) · ((a2 ⊗ b0) + JA⊗̂B))

= ˜̺((a1a2 ⊗ b0) + JA⊗̂B)

= ˜̺(((a1 ⊗ b0) + JA⊗̂B)((a2 ⊗ b0) + JA⊗̂B))

= ((a1 ⊗ b0) + JA⊗̂B) · ˜̺((a2 ⊗ b0) + JA⊗̂B)

= ((a1 + JA) · ((e ⊗ b0) + JA⊗̂B)) · ˜̺((a2 ⊗ b0) + JA⊗̂B)

= (a1 + JA) · ˜̺((a2 ⊗ b0) + JA⊗̂B).

Similarly, we can obtain a right-module version of this equation. Hence

˜̺((a1 + JA) · ((a2 ⊗ b0) + JA⊗̂B)) = (a1 + JA) · ˜̺((a2 ⊗ b0) + JA⊗̂B)(2.1)

= ˜̺((a2 ⊗ b0) + JA⊗̂B) · (a1 + JA)

for all a1, a2 ∈ A. Take ϕ ∈ ((B/JB)
∗)[1] with 〈b0 + JB, ϕ〉 = 1 and define

θ̃ : ((A ⊗̂ B) ⊗̂ (A ⊗̂ B))/IA⊗̂B → (A ⊗̂ A)/IA

((a1 ⊗ b1)⊗ (a2 ⊗ b2)) + IA⊗̂B 7→ (ϕ(b1b2)a1 ⊗ a2) + IA.

Then, θ̃ is an A/JA-A-module morphism. We now define ¯̺: A/JA → (A ⊗̂ A)/IA

via

¯̺(a+ JA) = θ̃ ◦ ˜̺◦ T ((a⊗ b0) + JA⊗̂B)
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where T : (A/JA ⊗̂ B/JB) → (A ⊗̂ B)/JA⊗̂B is defined by T ((a+ JA)⊗ (b+ JB)) =

a ⊗ b + JA⊗B. By (2.1), ¯̺ is an A/JA-A-module homomorphism. The identity

πA/JA
◦ θ̃ = (idA/JA

⊗ϕ) ◦ π(A⊗̂B)/I
A⊗̂B

implies that πA/JA
◦ ¯̺ = πA/JA

◦ θ̃ ◦ ˜̺◦ T =

(idA/JA
⊗ϕ)◦π(A⊗̂B)/I

A⊗̂B

◦ ˜̺◦T . Therefore, A is module biprojective. For the biflat
case, we notice that for the given ˜̺: (A⊗̂B)/JA⊗̂B → (((A⊗̂B) ⊗̂(A⊗̂B))/IA⊗̂B)

∗∗

with π∗∗
A⊗̂B

◦ ˜̺= id(A⊗̂B)/J
A⊗̂B

, one may define ¯̺: A/JA → ((A⊗̂A)/IA)
∗∗ through

¯̺(a+ JA) = θ̃∗∗ ◦ ˜̺◦ T ((a⊗ b0) + JA⊗B), a ∈ A.

Then it is easily checked that ¯̺ has the required properties. �

For a Banach algebra A and a nonempty set Λ, we denote by MΛ(A), the Banach

algebra of Λ×Λ matrices (aij) with entries in A such that ‖(aij)‖ =
∑

i,j∈Λ

‖aij‖ <∞.

Corollary 2.7. Suppose that A acts trivially on a unital Banach algebra A from

the left and that it is a nonempty set. Then MΛ(A) is module biflat (module bipro-

jective) if and only if A is module biflat (module biprojective).

P r o o f. Using Proposition 2.6, the proof is similar to that of [20], Proposi-

tion 2.7. �

3. Applications to semigroup algebras

Let S be a semigroup. An element p ∈ S is an idempotent if p2 = p. We write

E(S) for the set of all idempotents of S. We say S is a band semigroup if S = E(S)

or briefly E, and it is a semilattice if S is a commutative band semigroup. We

also say S is an inverse semigroup if for each s ∈ S there exists a unique element

s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. Let S be an inverse semigroup with the set of

idempotents E, where the order of E is defined by

e 6 d⇔ ed = e, e, d ∈ E.

It is standard that the semigroup algebra l1(S) is a Banach algebra and a Banach

l1(E)-module with compatible actions (see [1]). Here, for a technical reason we let

l1(E) act on l1(S) by multiplication from right and trivially from left, that is,

δe · δs = δs, δs · δe = δse = δs ∗ δe, s ∈ S, e ∈ E.

In this case, the ideal J (see Section 2) is the closed linear span of {δset−δst : s, t ∈ S,

e ∈ E}. We consider an equivalence relation on S as follows:

s ≈ t⇔ δs − δt ∈ J, s, t ∈ S.
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For an inverse semigroup S, the quotient GS
∼= S/≈ is a discrete group (see [2]

and [17]). Indeed, GS is homomorphic to the maximal group homomorphic image

of S (see [18]). In particular, S is amenable if and only if GS is amenable (see [10]).

As in [21], Theorem 3.3, we may observe that ℓ1(S)/J ∼= ℓ1(GS). With the notation

of Section 2, ℓ1(S)/J is a commutative ℓ1(E)-bimodule with the following actions:

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J, s ∈ S, e ∈ E.

Let k ∈ N. Recall that E satisfies condition Dk (see [10]) if given f1, f2, . . . ,

fk+1 ∈ E there exist e ∈ E and i, j such that

1 6 i < j 6 k + 1, fie = fi, fje = fj .

Duncan and Namioka in [10], Theorem 16 proved that for any inverse semigroup S,

l1(S) has a bounded approximate identity if and only if E satisfies condition Dk for

some k.

Theorem 3.1. Let S be an inverse semigroup with the nonempty set of idempo-

tents E. If E satisfies condition Dk for some k, then l
1(S) ⊗̂ l1(S) is module biflat

as an l1(E)-module (with trivial left action) if and only if S is amenable.

P r o o f. We first note that l1(S)/J ∼= ℓ1(GC) has an identity. If S is amenable,

then l1(S) is module biflat by [5], Theorem 3.2, and so l1(S) ⊗̂ l1(S) is module biflat

by Theorem 2.3. The converse holds by Proposition 2.6 and [5], Theorem 3.2. �

E x am p l e 3.2. Let C be the bicyclic inverse semigroup generated by p and q,

that is,

C = {paqb : a, b > 0}, (paqb)∗ = pbqa.

The multiplication operation is defined by

(paqb)(pcqd) = pa−b+max{b,c}qd−c+max{b,c}.

The set of idempotents of C is EC = {paqa : a = 0, 1, . . .}, which is also totally

ordered with the order

paqa 6 pbqb ⇔ a 6 b.

Therefore, E satisfies condition D1. It is shown in [5] that l
1(C) is module biflat.

Furthermore, consider (N,∨) with maximum operation m ∨ n = max(m,n), then

each element of N is an idempotent. It is also shown in [5] that l1(N) is module

biflat. Now, if l1(S) is either the Banach algebra l1(C) or l1(N), then l1(S) ⊗̂ l1(S)

is module biflat by Theorem 2.3.
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In analogue to [5], Proposition 2.1, we have the next result. Since the proof is

similar, it is omitted.

Proposition 3.3. Assume that A acts trivially onA from the left (right) andA/J

has at least a left (right) identity. If A is biprojective, then A is module biprojective.

We recall that a semigroup S is a right (left) zero semigroup if st = t (st = s)

for each s, t ∈ S. Also, an idempotent semigroup S is a rectangular band semigroup

if xyx = x for each x, y ∈ S. In the case that S is right or left zero semigroup, we

have E = S. In particular, l1(E) = l1(S) and so Jl1(S) = {0}. Once more, for every

element s in right (left) S, δs can be viewed as a left (right) identity for l
1(S). Now,

we generalize Proposition 3.1 and Proposition 3.2 of [11] by using Proposition 3.3 as

the upcoming result.

Proposition 3.4. Let S be either a right (left) zero semigroup or a rectangular

band semigroup. Then, l1(S) is module biprojective.

Let l1(S) be module biflat (as an l1(E)-module with trivial left action). Then there

exists an l1(S)/J-l1(E)-bimodule morphism ˜̺ : l1(S)/J → ((l1(S)⊗̂ l1(S))/I)∗∗ with

π̃∗∗◦ ˜̺= il1(S)/J . Fix u ∈ S. Suppose that ru = vw for some element r, v, w ∈ S, and

set θ = ru = vw. We can find nets (zα + I) and (wα + I) in ((l1(S) ⊗̂ l1(S))/I)[‖˜̺‖]
indexed by the same directed set such that limα zα+I = ˜̺(δu+J) and limα wα+I =

˜̺(δv + J) in the weak∗-topology. Set λθ = χ{θ} ∈ l∞(S) = l1(S)∗, and define

Λθ : l
1(S)/J → C by

Λθ(δs + J) := 〈δs, λθ〉 =

{
1, δ = s,

0, δ 6= s.

Then we have

1 = 〈π̃∗(Λθ), ˜̺(δθ + J)〉 = lim
α
〈π̃∗(Λθ), (δr + J) · (zα + I)〉

= lim
α
〈Λθ, π̃((δr + J) · (zα + I))〉.

Since limα((δr + J) · (zα + I) − (wα + I) · (δw + J)) = I in the weak topology on

(l1(S) ⊗̂ l1(S))/I, we may by Mazur’s theorem suppose that

lim
α

‖(δr + J) · (zα + I)− (wα + I) · (δw + J)‖π = I.

Similarly to the proof of [20], Lemma 3.1, we may see that

lim
α

∑

(y,t)∈Z(r,w,θ)

zαy,t = 1,
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where

Z(r, w, θ) = {(y, t) ∈ S × S : t ∈ Sw, ryt = θ}.

The two next propositions are module versions of Theorem 3.2 and Proposition 3.4

of [20], respectively. Since their proofs are mainly verbatim of the classical case, we

omit them.

Proposition 3.5. Let S be a semigroup. Suppose that the Banach algebra l1(S) is

module biflat (as an l1(E)-module with trivial left actions). Then there is a constant

C > 0 such that the following property holds for each u ∈ S, N ∈ N, and elements

(r1, v1, w1), . . . , (rn, vn, wn) ∈ S × S × S such that

(i) riu = viwi, i = 1, . . . , N ; and,

(ii) the sets Sw1 ∩ [r−1
1 (r1u)], . . . , SwN ∩ [r−1

N (rNu)] are pairwise disjoint.

Then necessarily N 6 C.

Let (P ,6) be a partially ordered set. Then P is called uniformly locally finite if

for some C > 1, sup{|(x]| : x ∈ P} 6 C.

Proposition 3.6. Let S be a semigroup such that l1(S) is module biflat (as an

l1(E)-module with trivial left action). Then E is uniformly locally finite.

The module case of [11], Theorem 3.6 can be formulated as follows. The proof is

similar but we include its proof for the sake of completeness.

Proposition 3.7. Let S =
⋃
α∈τ

Sα be a band semigroup which is a strong semi-

lattice of rectangular band semigroups Sα on a semilattice τ and let l
1(S) be module

biflat (as an l1(E)-module with trivial left action). Then τ is a uniformly locally

finite semilattice.

P r o o f. Let A = l1(S), Aα = l1(Sα) and ϕα : Aα/Jα → C be the augmentation

character on Aα/Jα, that is, ϕα

( ∑
s∈Sα

βsδs + Jα

)
=

∑
s∈Sα

βs for each α ∈ τ . We

claim that kerϕα = kerϕα(Aα/Jα) + (Aα/Jα) kerϕα for each α ∈ Y. To see this, let

sα, tα ∈ Sα. Since Sα is a rectangular band semigroup we have

(δsα − δtα) + Jα = ((δsα + δtα)(δtαsα − δtα)− (δtαsα − δsαtα)) + Jα

= ((δsα + δtα) + Jα)((δtαsα − δtα) + Jα)− ((δtαsα − δsαtα) + Jα),

and

(δtαsα − δsαtα) + Jα = ((δtαsα − δsα) + Jα)((δsα + δtα) + Jα)− ((δtα − δtα) + Jα).
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By the above relations we have

(δsα − δtα) + Jα = 1
2 ((δsα + δtα) + Jα)((δtαsα − δtα) + Jα)

− 1
2 ((δtαsα − δsα) + Jα)((δsα + δtα) + Jα).

Since ((δtαsα−δtα)+Jα), ((δtαsα−δsα)+Jα) ∈ kerϕα, it follows that (δsα−δtα)+Jα ∈

kerϕα(Aα/Jα) + (Aα/Jα) kerϕα. Since kerϕα is generated by {(δsα − δtα) + Jα :

sα, tα ∈ Sα}, the claim is proved. Define ϕ : {
⊕
ϕα : A/J → l1(τ)/J} by

ϕ(f + J) = ϕ

(∑

α∈τ

(fα + Jα)

)
=

∑

α∈τ

ϕα((fα + Jα)δα)

for each f =
∑
α∈τ

fα ∈ A. It is easy to check that ϕ is an epimorphism and kerϕ =

kerϕ(A/J) + (A/J) kerϕ. Thus the short sequence

0 → kerϕ
i
→ A/J

ϕ
→ l1(τ)/J → 0

is exact. Now Proposition 2.5 yields that l1(τ) is module biflat, and hence τ is a

uniformly locally finite semilattice, by Proposition 3.6. �

For an inverse semigroup S, there is a relationD on S defined by sDt if there exists

x ∈ S such that s∗s = xx∗ and t∗t = x∗x (see [11]). Next, for a collection of Banach

algebras {Aα : α ∈ I}, we notice that
1⊕

α∈I

Aα, the l
1-direct sum of Aα’s, is module

biflat (module biprojective) if and only if Aα is module biflat (module biprojective)

for each α ∈ I. The idea of the following is taken from [11], Theorem 3.9.

Theorem 3.8. Suppose that S is an inverse semigroup and consider l1(S) as an

l1(E)-module with trivial left action. Suppose that {Dλ : λ ∈ Λ} is the collection

of all D-classes of S where Λ is finite and that every D-class has finitely many

idempotents. Then the following are equivalent:

(i) l1(S)∗∗ is module biflat.

(ii) l1(S) is module biprojective.

(iii) l1(S)∗∗ is module biprojective.

P r o o f. We first take an idempotent pλ ∈ Dλ and let Gpλ
be the maximal

subgroup of S at pλ, for each λ ∈ Λ.

(i) ⇒ (ii): Suppose that l1(S)∗∗ is module biflat. By [8], Theorem 3.2 we con-

clude that l1(S) is module biflat, and so S is uniformly locally finite by virtue of

Proposition 3.5. On the other hand, by [20], Theorem 2.18, we have

l1(S) ∼=

1⊕

λ∈Λ

ME(Dλ)l
1(Gpλ

)
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as Banach algebras, where ME(Dλ)l
1(Gpλ

) denotes the l1-Munn algebra on l1(Gpλ
).

Since Λ is finite and every D-class has finitely many idempotents we have

l1(S)∗∗ ∼=

1⊕

λ∈Λ

ME(Dλ)(l
1(Gpλ

))∗∗ ∼=

1⊕

λ∈Λ

ME(Dλ)(l
1(Gpλ

)∗∗).

For each λ ∈ Λ, ME(Dλ)(l
1(Gpλ

)∗∗) is module biflat. Using Proposition 2.6, we con-

clude that l1(Gpλ
)∗∗ is module biflat and by [5], Theorem 3.2, l1(Gpλ

)∗∗ is amenable,

and by [11], Theorem 3.5, Gpλ
is finite for each λ ∈ Λ. The result now follows

from [16], Corollary 3.5.

(ii)⇒ (iii): Let l1(S) be module biprojective. By [16], Corollary 3.5 every maximal

subgroup of S is finite. Thus l1(Gpλ
)∗∗ = l1(Gpλ

) is module biprojective for each

λ ∈ Λ. By using [20], Proposition 2.7, ME(Dλ)(l
1(Gpλ

)∗∗) is module biprojective for

each λ ∈ Λ. Now, it follows that l1(S)∗∗ is module biprojective.

The implication (iii) ⇒ (i) is clear. �

A c k n ow l e d g em e n t s. The authors wish to thank the anonymous reviewer

for his/her valuable suggestions improving the quality of the first draft.
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[13] H. İnceboz, B. Arslan, A. Bodaghi: Module symmetrically amenable Banach algebra.
Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33 (2017), 233–245.

[14] B.E. Johnson: Cohomology in Banach Algebras. Memoirs of the American Mathemati-
cal Society 127. AMS, Providence, 1972. zbl MR doi

[15] A.Ya.Khelemskij: Flat Banach modules and amenable algebras. Trudy Moskov. Mat.
Obshch. 47 (1984), 179–218. (In Russian.) zbl MR

[16] M.Lashkarizadeh Bami, M.Valaei, M.Amini: Super module amenability of inverse semi-
group algebras. Semigroup Forum 86 (2013), 279–288. zbl MR doi

[17] H.Pourmahmood-Aghababa: (Super) module amenability, module topological center and
semigroup algebras. Semigroup Forum 81 (2010), 344–356. zbl MR doi

[18] H.Pourmahmood-Aghababa: A note on two equivalence relations on inverse semigroups.
Semigroup Forum 84 (2012), 200–202. zbl MR doi

[19] H.Pourmahmood-Aghbaba, A. Bodaghi: Module approximate amenability of Banach al-
gebras. Bull. Iran. Math. Soc. 39 (2013), 1137–1158. zbl MR

[20] P.Ramsden: Biflatness of semigroup algebras. Semigroup Forum. 79 (2009), 515–530. zbl MR doi
[21] R.Rezavand, M.Amini, M.H. Sattari, D. Ebrahimi Bagha: Module Arens regularity for

semigroup algebras. Semigroup Forum 77 (2008), 300–305; Corrigendum 79 (2009),
214–215. zbl MR doi

[22] M.A.Rieffel: Induced Banach representations of Banach algebras and locally compact
groups. J. Func. Anal. 1 (1967), 443–491. zbl MR doi

Authors’ addresses: Elham Ilka, Amin Mahmoodi, Department of Mathematics, Central
Tehran Branch, Islamic Azad University, Pounak Square, Imam Hasan Street, 14696-99191
Tehran, Iran, e-mail: elh.ilka.sci@iauctb.ac.ir, a mahmoodi@iauctb.ac.ir; Abasalt
Bodaghi, Department of Mathematics, Garmsar Branch, Islamic Azad University, Daneshjoo
Street, 35816-31167 Garmsar, Iran, e-mail: abasalt.bodaghi@gmail.com.

140

https://zbmath.org/?q=an:0256.18014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0374934
http://dx.doi.org/10.1090/memo/0127
https://zbmath.org/?q=an:0569.46027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0774950
https://zbmath.org/?q=an:1277.46022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3034775
http://dx.doi.org/10.1007/s00233-012-9432-0
https://zbmath.org/?q=an:1207.46039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2678721
http://dx.doi.org/10.1007/s00233-010-9231-4
https://zbmath.org/?q=an:1242.20070
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2886007
http://dx.doi.org/10.1007/s00233-011-9365-z
https://zbmath.org/?q=an:1301.43002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3145209
https://zbmath.org/?q=an:1213.43002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2564061
http://dx.doi.org/10.1007/s00233-009-9169-6
https://zbmath.org/?q=an:1161.46026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2443440
http://dx.doi.org/10.1007/s00233-008-9075-3
https://zbmath.org/?q=an:0181.41303
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0223496
http://dx.doi.org/10.1016/0022-1236(67)90012-2

		webmaster@dml.cz
	2021-04-19T13:23:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




