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Abstract. In previous papers, various notions of pre-Hausdorff, Hausdorff and regular
objects at a point p in a topological category were introduced and compared. The main ob-
jective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and
regular objects locally in the category of proximity spaces. Furthermore, the relationships
that arise among the various PreT2, Ti, i = 0, 1, 2, 3, structures at a point p are investigated.
Finally, we examine the relationships between the generalized separation properties and the
separation properties at a point p in this category.
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1. Introduction

Proximity spaces were discovered by Efremovich during the first part of 1930s

and later axiomatized (see [15], [16]). He characterized the proximity relation “A is

near B” for subsets A and B of any set X . This theory was improved by Smirnov

(see [26]). He showed which topological spaces admit a proximity relation compatible

with the given topology, and he was also the first to discover the relationship between

proximities and uniformities. The most extensive work on the theory of proximity

spaces was done by Naimpally and Warrack (see [23]). All our preliminary informa-

tion on proximity spaces can be found in this source.

In 1991, Baran in [2] introduced separation properties for an arbitrary topological

category over sets. He in [2] defined these generalizations first at a point p, i.e. locally

(see [4], [20]), then he generalized this to point free definitions by using the generic

element, the method of topos theory (see [19], page 39). Using local separation

properties, Baran in [2], [3] introduced the notion of strong closedness in set-based
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topological categories which forms closure operators in sense of Dikranjan and Giuli

(see [14]) in some well-known topological categories. He used the (strong) closed

objects to generalize each of the notions of connectedness (see [12]), Hausdorffness

(see [2], [11]), compactness and perfectness (see [6]) to arbitrary set-based topological

categories.

The main goal of this paper is to give the characterization of each various notions

of local pre-Hausdorff, local Hausdorff and local regular proximity spaces as well as

to investigate how these notions are related, and compare the generalized separation

properties and the local separation properties in the category of proximity spaces.

2. Preliminaries

The following are some basic definitions and notations which we will use through-

out the paper.

Let E and B be any categories. The functor U : E → B is said to be topological

or E is said to be a topological category over B, if U is concrete (i.e. faithful and

amnestic), has small fibers, and every U-source has an initial lift or, equivalently,

each U-sink has a final lift (see [1]).

Recall in [1] or [24] that an object X ∈ E (where X ∈ E stands for X ∈ Ob(E)),

a topological category, is discrete if and only if every map U(X) → U(Y ) lifts to a

map X → Y for each object Y ∈ E .

Definition 2.1 ([23]). An Efremovich proximity (EF-proximity) space is a pair

(X, δ), where X is a set and δ is a binary relation on the power set of X such that

(P1) A δ B if and only if B δ A;

(P2) A δ (B ∪ C) if and only if A δ B or A δ C;

(P3) A δ B implies A,B 6= ∅;

(P4) A ∩B 6= ∅ implies A δ B;

(P5) A δ B implies there is an E ⊆ X such that A δ E and (X − E) δ B,

where A δ B means that it is not true that A δ B.

A function f : (X, δ) → (Y, δ′) between two proximity spaces is called a proximity

mapping (or a p-map) if and only if f(A) δ′ f(B) whenever A δ B. It can easily be

shown that f is a p-map if and only if for subsets C and D of Y , f−1(C) δ f−1(D)

whenever C δ
′

D.

In a proximity space (X, δ), we write A ≪ B if and only if A δ (X − B). The

relation ≪ is called p-neighborhood relation or the strong inclusion. When A ≪ B,

we say that B is a p-neighborhood of A or A is strongly contained in B, see [17]

or [23].
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We denote the category of proximity spaces and proximity mappings by Prox.

Hunsaker and Sharma in [18] showed that the forgetful functor U : Prox → Set is

topological.

Definition 2.2. LetB be a proximity-base on a set X and let a binary relation δ

on P (X) be defined as follows: (A,B) ∈ δ if, given any finite covers {Ai : 1 6 i 6 n}

and {Bj : 1 6 j 6 m} of A and B, respectively, then there exists a pair (i, j) such

that (Ai, Bj) ∈ B; δ is a proximity on X finer than the relation B, see [18] or [25].

Definition 2.3. Let X be a nonempty set, (Xi, δi), i ∈ I be a family of proximity

spaces and fi : X → Xi be a source in Set. Define a binary relation B on P (X) as

follows: for A,B ∈ P (X), AB B if and only if fi(A) δi fi(B) for all i ∈ I. B is a

proximity-base on X (see [25], Theorem 3.8). The initial proximity structure δ on X

generated by the proximity base B is given for A,B ∈ P (X) as follows: A δ B if

and only if for any finite covers {Ai : 1 6 i 6 n} and {Bj : 1 6 j 6 m} of A and B,

respectively, there exists a pair (i, j) such that (Ai, Bj) ∈ B, see [25].

Definition 2.4. Let (X, δ) be a proximity space, Y a nonempty set and f be

a function from a proximity space (X, δ) onto a set Y . The strong inclusion ≪∗

induced by the finest proximity δ∗ (the quotient proximity) on Y making f proximally

continuous is given for every A,B ⊂ Y as follows: A ≪∗ B if and only if for each

binary rational s in [0, 1] there is a Cs ⊂ Y such that C0 = A, C1 = B and s < t

implies f−1(Cs) ≪δ f−1(Ct) (see [17] or [27], page 276), where ≪δ represents the

strong inclusion induced by the proximity δ on X . In addition, if f : (X, δ) → (X, δ∗)

is a one-to-one p-quotient map, then A δ∗ B if and only if f−1(A) δ f−1(B), see [17],

page 591.

Definition 2.5. Let X be set and p ∈ X . Let X∨pX be the wedge at p (see [2]),

i.e. two disjoint copies of X identified at p, i.e. the pushout of p : 1 → X along itself

(where 1 is the terminal object in Set). An epi sink {i1, i2 : (X, δ) → (X ∨p X, δ′)}

(p-maps), where i1, i2 are the canonical injections, in Prox is a final lift if and only

if the following statement holds. For each pair A, B in the different component

of X ∨p X , A δ′ B if and only if there exist sets C, D in X such that C δ {p}

and {p} δ D with i−1

k (A) = C and i−1

j (B) = D for k, j = 1, 2 and k 6= j. If A

and B are in the same component of the wedge, then A δ′ B if and only if there

exist sets C, D in X such that C δ D and i−1

k (A) = C and i−1

k (B) = D for some

k = 1, 2. Specially, if ik(C) = A and ik(D) = B, then (ik(C), ik(D)) ∈ δ′ if and only

if (i−1

k (ik(C)), i−1

k (ik(D))) = (C,D) ∈ δ.

Definition 2.6 ([23], page 9). Let X be a nonempty set. The discrete proximity

structure δ on X is defined as follows for A,B ⊂ X : A δ B if and only if A∩B 6= ∅.
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3. PreT2 and T2 proximity spaces at a point

In this section, we give the characterization of PreT 2, PreT
′

2, T 2 and T
′

2 proximity

spaces at a point p.

Let B be set and p ∈ B. Let B ∨p B be the wedge at p. A point x in B ∨p B will

be denoted by x1(x2) if x is in the first (second) component of B ∨p B. Note that

p1 = p2.

The principal p-axis map Ap : B ∨p B → B2 is defined by Ap(x1) = (x, p) and

Ap(x2) = (p, x). The skewed p-axis map Sp : B ∨p B → B2 is defined by Sp(x1) =

(x, x) and Sp(x2) = (p, x). The fold map at p, ▽p : B ∨p B → B is given by

▽p(xi) = x for i = 1, 2 (see [2], [3]).

Note that the maps Ap, Sp and ▽p are the unique maps arising from the above

pushout diagram for which Api1 = (id, f), Spi1 = (id, id) : B → B2, Api2 = Spi2 =

(f, id) : B → B2, and ▽pij = id, j = 1, 2, respectively, where id : B → B is the

identity map and f : B → B is the constant map at p (see [8]).

R em a r k 3.1. We define p1, p2 by 1 + f , f + 1: B ∨p B → B, respectively,

where 1: B → B is the identity map, f : B → B is a constant map at p (i.e. having

value p). Note that π1Ap = p1 = π1Sp, π2Ap = p2, π2Sp = ▽p, where πi : B2 → B is

the ith projection, i = 1, 2. When showing that Ap and Sp are initial, it is sufficient

to show that (p1 and p2) and (p1 and ▽p) are initial lifts, respectively, see [2], [3].

Definition 3.1 (cf. [2], [3]). Let U : E → Set be a topological functor, X an

object in E , p a point in U(X) = B.

(1) X is T 0 at p if and only if the initial lift of the U-source {Ap : B ∨p B →

U(X2) = B2 and ▽p : B ∨p B → UD(B) = B} is discrete, where D is the

discrete functor which is a left adjoint to U .

(2) X is T ′

0 at p if and only if the initial lift of the U-source {id : B ∨p B →

U(X∨pX) = B∨pB and▽p : B∨pB → UD(B) = B} is discrete, where X∨pX

is the wedge in E , i.e. the final lift of the U-sink {i1, i2 : U(X) = B → B ∨p B},

where i1, i2 denote the canonical injections.

(3) X is T1 at p if and only if the initial lift of the U-source {Sp : B ∨p B →

U(X2) = B2 and ▽p : B ∨p B → UD(B) = B} is discrete.

(4) X is PreT 2 at p if and only if the initial lift of the U-source Sp : B ∨p B →

U(X2) = B2 and the initial lift of the U-source Ap : B ∨p B → U(X2) = B2

agree.

(5) X is PreT ′

2 at p if and only if the initial structure on B ∨p B induced from

U-source Sp : B∨pB → U(X2) = B2 and the final structure on B∨pB induced

from U-sink {i1, i2 : U(X) = B → B ∨p B} coincide.

(6) X is T 2 at p if and only if X is T 0 at p and PreT 2 at p.

180



(7) X is T ′

2 at p if and only if X is T
′

0 at p and PreT ′

2 at p.

R em a r k 3.2. Note that for the category Top of topological spaces we have:

(1) A topological space X is PreT 2 at p if and only if X is PreT
′

2 at p if and only

if for each point x distinct from p with x, p ∈ X , if the subspace of X is not

indiscrete, then there exist disjoint neighborhoods of x and p, see [2], [5].

(2) A topological space X is T 2 at p if and only if X is T
′

2 at p if and only if for each

point x distinct from p there exist disjoint neighborhoods of x and p, see [2], [5].

The following result is given in [21].

Theorem 3.1. Let (X, δ) be an Efremovich proximity space and p ∈ X .

(1) (X, δ) is T1 at p or T 0 at p if and only if for each x 6= p, ({x}, {p}) /∈ δ.

(2) (X, δ) is T ′

0 at p for every p ∈ X .

Theorem 3.2. An Efremovich proximity space is PreT 2 at p for every p ∈ X .

P r o o f. Let (X, δ) be any Efremovich proximity space. By Definitions 2.3, 3.1

and Remark 3.1, we will show that (X, δ) is PreT 2 at p, i.e. for any pair U and V in

the wedge, π1Ap(U)δ π1Ap(V ), π2Ap(U)δ π2Ap(V ) if and only if π1Sp(U)δ π1Sp(V ),

π2Sp(U) δ π2Sp(V ), respectively.

We consider various possibilities for U and V ; namely {x1} ⊆ U , {x2} ⊆ U

or {x1, x2} ⊆ U and {x1} ⊆ V , {x2} ⊆ V or {x1, x2} ⊆ V . By condition (P2) of

Definition 2.1 it is sufficient to take “equality” instead of “subset” for the possibilities

above.

Consider the case U = {x1} and V = {x1}: if π1Ap({x1})δπ1Ap({x1}) = {x}δ{x}

and π2Ap({x1}) δ π2Ap({x1}) = {p} δ {p}, then π1Sp({x1}) δ π1Sp({x1}) = {x} δ

{x} = π2Sp({x1}) δ π2Sp({x1}). Conversely, if π1Sp({x1}) δ π1Sp({x1}) = {x} δ

{x} = π2Sp({x1}) δ π2Sp({x1}), then π1Ap({x1}) δ π1Ap({x1}) = {x} δ {x} and

π2Ap({x1}) δ π2Ap({x1}) = {p} δ {p}.

Consider the case U = {x1} and V = {x2}: if π1Ap({x1})δπ1Ap({x2}) = {x}δ{p}

and π2Ap({x1}) δ π2Ap({x2}) = {p} δ {x}, then π1Sp({x1}) δ π1Sp({x2}) = {x} δ

{p} and π2Sp({x1}) δ π2Sp({x2}) = {x} δ {x} by condition (P4) of Definition 2.1.

Conversely, if π1Sp({x1}) δ π1Sp({x2}) = {x} δ {p} and π2Sp({x1}) δ π2Sp({x2}) =

{x}δ {x}, then π1Ap({x1})δ π1Ap({x2}) = {x}δ {p} and π2Ap({x1})δ π2Ap({x2}) =

{p} δ {x} by condition (P1) of Definition 2.1.

Consider the case U = {x1} and V = {x1, x2}: if π1Ap({x1}) δ π1Ap({x1, x2}) =

{x} δ {x, p} and π2Ap({x1}) δ π2Ap({x1, x2}) = {p} δ {p, x}, then π1Sp({x1}) δ

π1Sp({x1, x2}) = {x} δ {x, p} and π2Sp({x1}) δ π2Sp({x1, x2}) = {x} δ {x} by condi-

tion (P4) of Definition 2.1. Conversely, if π1Sp({x1}) δ π1Sp({x1, x2}) = {x} δ {x, p}
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and π2Sp({x1}) δ π2Sp({x1, x2}) = {x} δ {x}, then π1Ap({x1}) δ π1Ap({x1, x2}) =

{x} δ {x, p} and π2Ap({x1}) δ π2Ap({x1, x2}) = {p} δ {p, x} by condition (P4) of

Definition 2.1.

Similarly, if {x2} ⊆ U or {x1, x2} ⊆ U , and {x1} ⊆ V , {x2} ⊆ V or {x1, x2} ⊆ V ,

then we have π1Ap(U)δπ1Ap(V ), π2Ap(U)δπ2Ap(V ) if and only if π1Sp(U)δπ1Sp(V ),

π2Sp(U) δ π2Sp(V ), respectively.

Hence (X, δ) is PreT 2 at p. �

Theorem 3.3. Let (X, δ) be an Efremovich proximity space and p ∈ X . (X, δ)

is PreT ′

2 at p if and only if for each x 6= p, ({x}, {p}) /∈ δ.

P r o o f. Suppose (X, δ) is PreT ′

2 at p, i.e. by Definitions 2.3, 2.5, 3.1 and Re-

mark 3.1, for any sets U , V on the wedge, (a) p1U δ p1V and ▽pU δ ▽pV if and

only if (b) there exists a pair x, y ∈ X such that {x} δ {y} and ik{x} = xk ∈ U and

ik{y} = yk ∈ V for some k = 1 or 2.

For each pair U , V in the different component of X ∨pX , U δ′ V (δ′ is a proximity

structure on X ∨p X) if and only if there exist sets C, D in X such that C δ {p}

and {p} δ D with i−1

k (U) = C and i−1

j (V ) = D for k, j = 1, 2 and k 6= j. If U

and V are in the same component of the wedge, then U δ′ V if and only if there

exist sets U , V in X such that C δ D and i−1

k (U) = C and i−1

k (V ) = D for some

k = 1, 2. Specially, if ik(C) = U and ik(D) = V , then (ik(C), ik(D)) ∈ δ′ if and only

if (i−1

k (ik(C)), i−1

k (ik(D))) = (C,D) ∈ δ. We shall show that the condition holds.

Suppose for some x, p ∈ X , ({x}, {p}) ∈ δ with x 6= p. Then, by Definition 2.3 and

Remark 3.1, for (U, V ) ∈ δ′ (δ′ is a proximity structure on the wedge) with U ⊇ {x1}

and V ⊇ {x2}, p1U δ p1V ⊇ p1({x1}) δ p1({x2}) = π1Sp({x1}) δ π1Sp({x2}) =

π1({(x, x)}) δ π1({(p, x)}) = {x} δ {p}, i.e. ({x}, {p}) ∈ δ, ▽pU δ▽pV ⊇ ▽p({x1}) δ

▽p({x2}) = π2Sp({x1}) δ π2Sp({x2}) = π2({(x, x)}) δ π2({(p, x)}) = {x} δ {x},

i.e. ({x}, {x}) ∈ δ, where πi : X2 → X , i = 1, 2 are the projection maps.

There exist sets A, B in X such that A δ {p} and {p} δ B with i−1

k (U) = A

and i−1

j (V ) = B for k, j = 1, 2 and k 6= j. Further ik(i
−1

k (U)) = ik(A) ⊆ U and

ij(i
−1

j (V )) = ij(B) ⊆ V .

If ik(A) ⊆ U is a subset of the first component of X ∨p X and ik(B) ⊆ V is a

subset of the second component of X ∨p X , then {x1} ⊆ ik(A) and {x2} ⊆ ik(B).

But, if (ik(A), ik(B)) ⊇ ({x1}, {x2}) ∈ δ′ for some (A,B) ∈ δ and k = 1 (k = 2),

then ({x1}, {x2}) ⊆ (i1(A), i1(B)) which shows that x2 (x1) must be in the first

(second) component of X ∨p X , a contradiction since x 6= p.

If ik(A) is a subset of the second component of X ∨p X and ik(B) is a subset of

the first component of X ∨pX , then, similarly as above, we get a contradiction since

x 6= p.
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Hence ik(A) and ik(B) cannot be in a different component of X ∨p X . So if

({x}, {p}) ∈ δ, then x = p.

Conversely, suppose that for each x 6= p, ({x}, {p}) /∈ δ. We need to show that

(X, δ) is PreT ′

2 at p, i.e. by Definitions 2.3, 2.5, 3.1 and Remark 3.1, (a) and (b)

above are equivalent. We first show that (a) implies (b). Let U δ′V (δ′ is a proximity

structure on the wedge), i.e. πiSp(U) δ πiSp(V ), i = 1, 2.

If ik(A) ⊆ U is a subset of the first component of X ∨p X and ik(B) ⊆ V is a

subset of the second component of X∨pX , then {x1} ⊆ ik(A) and {x2} ⊆ ik(B). By

condition (P2) of Definition 2.1 it is sufficient to take “equality” instead of “subset”.

It follows that π1Sp({x1}) δ π1Sp({x2}) = π1({(x, x)}) δ π1({(p, x)}) = {x} δ {p},

i.e. ({x}, {p}) ∈ δ. Since ({x}, {p}) /∈ δ (by assumption), ({x1}, {x2}) /∈ δ′ by

condition (P2) of Definition 2.1.

The case when ik(A) ⊆ U is a subset of the second component of X ∨p X and

ik(B) ⊆ V is a subset of the first component of X ∨p X can be handled similarly.

Hence, ik(A) and ik(B) cannot be in a different component of X ∨p X .

If ik(A) ⊆ U and ik(B) ⊆ V are in both components of X∨pX , then U ⊇ ik(A) ⊇

{x1, x2} and V ⊇ ik(B) ⊇ {x1, x2}.

If ik(A) ⊆ U is a subset of the first component ofX∨pX and ik(B) ⊆ V is a subset

of both components of X ∨p X , then U ⊇ ik(A) ⊇ {x1} and V ⊇ ik(B) ⊇ {x1, x2}.

If ik(A) ⊆ U is a subset of both components ofX∨pX and ik(B) ⊆ V is a subset of

the second component of X∨pX , then U ⊇ ik(A) ⊇ {x1, x2} and V ⊇ ik(B) ⊇ {x2}.

If ik(A) ⊆ U and ik(B) ⊆ V are in the first component of X ∨p X , then U ⊇

ik(A) ⊇ {x1} and V ⊇ ik(B) ⊇ {x1}. Similarly, if ik(A) ⊆ U and ik(B) ⊆ V are in

the second component of X ∨p X , then U ⊇ ik(A) ⊇ {x2} and V ⊇ ik(B) ⊇ {x2}.

If ({xi}, {xi}) ∈ δ′, then π1Sp({x1}) δ π1Sp({x1}) = {x} δ {x}, i.e. ({x}, {x}) ∈ δ,

π2Sp({x1})δπ2Sp({x1})={x}δ{x}, i.e. ({x}, {x}) ∈ δ and π1Sp({x2})δπ1Sp({x2}) =

{p}δ {p}, i.e. ({p}, {p}) ∈ δ, π2Sp({x2})δ π2Sp({x2}) = {x}δ {x}, i.e. ({x}, {x}) ∈ δ.

It follows that (ik(A), ik(B)) ⊇ ({xi}, {xi}), i = 1, 2, i.e. ik(A) ⊆ U and ik(B) ⊆ V

are in the first or in the second component or in both components of X∨pX . So there

exists a pair x, y ∈ X such that {x} δ {y} and ik{x} = xk ∈ U and ik{y} = yk ∈ V

for some k = 1 or 2. This shows that (a) implies (b).

We now show that (b) implies (a). Suppose (b) holds. We need to show that

for any sets U , V on the wedge p1U δ p1V and ▽pU δ ▽pV , i.e. πiSp(U) δ πiSp(V ),

i = 1, 2, there exists a pair x, y ∈ X such that {x} δ {y} and ik{x} = xk ∈ U and

ik{y} = yk ∈ V for some k = 1 or 2. By using similar argument as above, we must

have (ik{x}, ik{y}) ⊇ ({xi}, {xi}), i = 1, 2. For i = 1 if ({x1}, {x1}) ∈ δ′, then

π1Sp({x1}) δ π1Sp({x1}) = {x} δ {x}, i.e. ({x}, {x}) ∈ δ, π2Sp({x1}) δ π2Sp({x1}) =

{x} δ {x}, i.e. ({x}, {x}) ∈ δ. For i = 2 if ({x2}, {x2}) ∈ δ′, then π1Sp({x2}) δ

183



π1Sp({x2}) = {p} δ {p}, i.e. ({p}, {p}) ∈ δ, π2Sp({x2}) δ π2Sp({x2}) = {x} δ {x},

i.e. ({x}, {x}) ∈ δ. Hence πiSp(U)δπiSp(V ), i = 1, 2. This shows that (b) implies (a).

Hence (X, δ) is PreT ′

2 at p. �

Theorem 3.4. Let (X, δ) be an Efremovich proximity space and p ∈ X . (X, δ)

is T 2 at p if and only if for each x 6= p, ({x}, {p}) /∈ δ.

P r o o f. It follows from Definition 3.1 and Theorems 3.1, 3.2. �

Theorem 3.5. Let (X, δ) be an Efremovich proximity space and p ∈ X . (X, δ)

is T ′

2 at p if and only if for each x 6= p, ({x}, {p}) /∈ δ.

P r o o f. It follows from Definition 3.1 and Theorems 3.1, 3.3. �

4. Regular objects at a point

In this section, the characterizations of each of the various notions of the sepa-

ration property T3 at a point p are given in the topological category of proximity

spaces Prox.

Let B be set and p ∈ B. The infinite wedge product
∞
∨

p

B is formed by taking

countably many disjoint copies of B and identifying them at the point p. Let B∞ =

B × B × ... be the countable cartesian product of B. Define A∞

p :
∞
∨

p

B → B∞ by

A∞

p (xi) = (p, p, . . . , p, x, p, . . .), where xi is in the ith component of the infinite wedge

and x is in the ith place in (p, p, . . . , p, x, p, . . .) (infinite principal p-axis map), and

▽∞

p :
∞
∨

p

B → B by ▽∞

p (xi) = x for all i ∈ I (infinite fold map), see [2], [3].

Note also that A∞

p is the unique map arising from the multiple pushout of p :

1 → B for which A∞

p ij = (p, p, . . . , p, id, p, . . .) : B → B∞, where the identity map

id is in the jth place (see [9]).

Definition 4.1 (cf. [2], [3]). Let U : E → Set be a topological functor, X an

object in E with U(X) = B. Let F be a nonempty subset of B. We denote by X/F

the final lift of the epi U-sink q : U(X) = B → B/F = (B \ F ) ∪ {∗}, where q is the

epi map that is the identity on B \ F identifying F with a point {∗}.

Let p be a point in B.

(1) p is closed if and only if the initial lift of the U-source

{

A∞

p :

∞
∨

p

B → U(X∞) = B∞ and ▽∞

p :

∞
∨

p

B → UD(B) = B

}

is discrete.
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(2) F ⊂ X is closed if and only if {∗}, the image of F , is closed in X/F or F = ∅.

(3) F ⊂ X is strongly closed if and only if X/F is T1 at {∗} or F = ∅.

(4) If B = F = ∅, then we define F to be both closed and strongly closed.

(5) X is T 3 at p if and only if X is T1 at p and X/F is PreT 2 at p for all closed

F 6= ∅ in U(X) missing p.

(6) X is T ′

3 at p if and only if X is T1 at p and X/F is PreT ′

2 at p for all closed

F 6= ∅ in U(X) missing p.

(7) X is ST 3 at p if and only if X is T1 at p and X/F is PreT 2 at p for all strongly

closed F 6= ∅ in U(X) missing p.

(8) X is ST ′

3 at p if and only if X is T1 at p and X/F is PreT ′

2 at p for all strongly

closed F 6= ∅ in U(X) missing p.

R em a r k 4.1. Note that for the category Top of topological spaces we have:

(1) The notion of closedness coincides with the usual closedness, see [2], and F ⊂ X

is strongly closed if and only if F is closed and for each x ∈ X with x /∈ F there

exists a neighborhood of F missing x, see [2]. If a topological spaceX is T1, then

the notions of closedness and strong closedness coincide, see [2]. The notion of

(strong) closedness forms closure operators in the sense of Dikranjan and Giuli

(see [14]) in some well-known topological categories (see [8], [10], [13]).

(2) A topological space X is T 3 (T
′

3) at p ∈ X if and only if for each x ∈ X with

x 6= p there exists a neighborhood of x missing p and a neighborhood of p

missing x, and for any nonempty closed set F missing p there exist disjoint

open sets containing F and p, see [2].

(3) A topological space X is ST 3 (ST
′

3) at p if and only if for each x ∈ X with x 6= p

there exists a neighborhood of x missing p and a neighborhood of p missing x,

and for any nonempty closed set F missing p for which each point x not in F

there exists a neighborhood of F missing x (i.e. F is a strongly closed set), there

exist disjoint open sets containing F and p, see [2].

The following result is given in [21].

Theorem 4.1. Let (X, δ) be an Efremovich proximity space and p ∈ X .

(1) {p} is closed in X if and only if for any B ⊂ X , if {p} δ B, then p ∈ B.

(2) ∅ 6= F ⊂ X is closed or strongly closed if and only if x ∈ F whenever {x} δ F

for all x ∈ X .

Theorem 4.2. Let (X, δ) be an Efremovich proximity space and p ∈ X . (X, δ)

is PreT ′

2 at p, then (X/F, δ∗) is PreT ′

2 at p.
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P r o o f. Suppose (X, δ) is PreT ′

2 at p. Let a and p be any distinct pair of points

in X/F . By Theorem 3.3, we only need to show that ({a}, {p}) /∈ δ∗, where δ∗ is the

structure on X/F induced by q.

Let p = ∗. Suppose that a 6= ∗. By definition of q map, there exist a ∈ X and

F ⊂ X such that q(a) = a and q(c) = ∗ for any c ∈ F . Since a 6= c for any c ∈ F

(a /∈ F ) and (X, δ) is PreT ′

2 at p, then {a} δ {c}. By condition (P2) of Definition 2.1

we obtain {a} δ F . Then we have {a} δ F = q−1({a}) δ q−1({∗}). It follows that

by p-neighborhood relation definition and Definition 2.4, for each binary rational s

in [0, 1] there is some Cs ⊂ X/F such that C0 = {a}, C1 = {∗}c and s < t implies

q−1(Cs) ≪δ q−1(Ct) = q−1({a}) ≪δ (q−1({∗}))c = q−1({a}) ≪δ q−1({∗}c) if and

only if {a} ≪∗ {∗}c. Hence {a} δ
∗

{∗}, i.e. ({a}, {∗}) /∈ δ∗.

Let a 6= p 6= ∗. By definition of q map, there exists a pair a, p ∈ X such that

q(a) = a and q(p) = p. In this case q map can be considered as one-to-one map.

Suppose that {a}δ∗{p}. By definition of q map and Definition 2.4, we have {a}δ∗{p}

if and only if q−1({a}) δ q−1({p}) = {a} δ {p}. But {a} δ {p} since (X, δ) is PreT ′

2

at p. Hence {a} δ
∗

{p} i.e. ({a}, {p}) /∈ δ∗.

Consequently, for each of the distinct points a and p inX/F we have ({a}, {p}) /∈δ∗.

Hence by Theorem 3.3, (X/F, δ∗) is PreT ′

2 at p. �

Corollary 4.1. Let (X, δ) be an Efremovich proximity space and p ∈ X . Then

the following statements are equivalent:

(1) (X, δ) is T 3 at p.

(2) (X, δ) is T ′

3 at p.

(3) (X, δ) is ST 3 at p.

(4) (X, δ) is ST ′

3 at p.

(5) For each x ∈ X with x 6= p, ({x}, {p}) /∈ δ.

P r o o f. It follows from Theorems 3.1 (1) and 4.2. �

5. Generalized separation properties and relationships

Let B be a nonempty set, B2 = B × B be cartesian product of B with itself

and B2 ∨∆ B2 be two distinct copies of B2 identified along the diagonal, i.e. the

result of pushing out ∆ along itself. A point (x, y) in B2 ∨∆ B2 will be denoted by

(x, y)1 (or (x, y)2) if (x, y) is in the first (or second) component of B
2∨∆B2. Clearly

(x, y)1 = (x, y)2 if and only if x = y, see [2].

The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x) and

A(x, y)2 = (x, x, y). The skewed axis map S : B2∨∆B2 → B3 is given by S(x, y)1 =
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(x, y, y) and S(x, y)2 = (x, x, y) and the fold map ▽ : B2 ∨∆ B2 → B2 is given by

▽(x, y)i = (x, y) for i = 1, 2. Note that π1S = π11 = π1A, π2S = π21 = π2A,

π3A = π12 and π3S = π22, where πk : B3 → B is the kth projection, k = 1, 2, 3, and

πij = πi + πj : B2 ∨∆ B2 → B for i, j ∈ {1, 2}, see [2].

Definition 5.1 (cf. [2], [7], [9]). Let U : E → Set be a topological functor, X an

object in E with U(X) = B.

(1) X is T 0 if and only if the initial lift of the U-source {A : B2 ∨∆ B2 →

U(X3) = B3 and ▽ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where D is

the discrete functor which is a left adjoint to U .

(2) X is T ′

0 if and only if the initial lift of the U-source {id : B2 ∨∆ B2 →

U(B2∨∆B2)′ = B2∨∆B2 and▽ : B2∨∆B2 → UD(B2) = B2} is discrete, where

(B2 ∨∆ B2)′ is the final lift of the U-sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2}, i1
and i2 are the canonical injections and D(B2) is the discrete structure on B2.

(3) X is T1 if and only if the initial lift of the U-source {S : B2∨∆B2 → U(X3) = B3

and ▽ : B2 ∨∆ B2 → UD(B2) = B2} is discrete.

(4) X is PreT 2 if and only if the initial lift of the U-sources A : B2 ∨∆ B2 →

U(X3) = B3 and S : B2 ∨∆ B2 → U(X3) = B3 agree.

(5) X is PreT ′

2 if and only if the initial structure on B
2∨∆B2 induced from U-source

S : B2∨∆B2 → U(X3) = B3 and the final structure on B2∨∆B2 induced from

U-sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2} coincide.

(6) X is T 2 if and only if X is T 0 and PreT 2.

(7) X is T ′

2 if and only if X is T
′

0 and PreT ′

2.

The following result is given in [22].

Theorem 5.1.

(1) All Efremovich proximity spaces are T ′

0 and PreT 2.

(2) An Efremovich proximity space (X, δ) is T 0 (or T1, PreT
′

2, T
′

2, T 2) if and only

if for each distinct pair x and y in X , ({x}, {y}) /∈ δ.

Definition 5.2 ([23]). An Efremovich proximity space (X, δ) is said to be a

T2-space (Hausdorff ) if x δ y for x, y ∈ X implies that x = y.

We can infer the following results.

R em a r k 5.1.

(1) For an arbitrary topological category,

(i) by Theorem 2.7 (1) of [11], T 0 implies T
′

0 but the converse implication is

generally not true,
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(ii) by Theorem 2.7 of [7], if X is PreT ′

2 (or T
′

2, T
′

3, ST
′

3), then X is PreT 2

(or T 2, T 3, ST 3) but the converse implication is generally not true.

(2) By Theorem 2.8 of [7], if U : E → Set is normalized, then T i (or ST i, i=2,3)

implies T i (or ST i, i=2,3) at p.

(3) By Theorem 1.5 and Remark 1.8 of [5], for the category Top of topological

spaces T 0 at p and T
′

0 at p (or PreT 2 at p and PreT
′

2 at p) are equivalent. In gen-

eral, by Parts (1) and (2), T 0 at p (or PreT
′

2 at p ) implies T
′

0 at p (or PreT 2 at p).

But the converse implication is in general not true. For example, let X = {a, b}

and δ = {(X,X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a},X), (X, {b}), ({b},X),

({a}, {b}), ({b}, {a})}. Then, by Theorems 3.1–3.3, an Efremovich proximity

space (X, δ) is T ′

0 at a and PreT 2 at a but it is neither T 0 at a nor PreT
′

2 at a

since ({a}, {b}) ∈ δ with a 6= b.

(4) By Theorems 3.1, 3.3–3.5 and Corollary 4.1, the following statements are equiv-

alent:

(a) (X, δ) is T 0 at p ∈ X .

(b) (X, δ) is T1 at p.

(c) (X, δ) is PreT ′

2 at p.

(d) (X, δ) is T 2 at p.

(e) (X, δ) is T ′

2 at p.

(f) (X, δ) is T 3 at p.

(g) (X, δ) is T ′

3 at p.

(h) (X, δ) is ST ′

3 at p.

(i) For each point x ∈ X with x 6= p, ({x}, {p}) /∈ δ.

(5) By Theorem 5.1 and Definition 5.2, the following statements are equivalent:

(a) (X, δ) is T 0.

(b) (X, δ) is T1.

(c) (X, δ) is PreT ′

2.

(d) (X, δ) is T 2.

(e) (X, δ) is T ′

2.

(f) (X, δ) is T 3.

(g) (X, δ) is T ′

3.

(h) (X, δ) is ST ′

3.

(i) (X, δ) is T2.

(j) For each distinct pair of points x and y in X , ({x}, {y}) /∈ δ.

(6) By Theorems 3.3–3.5 and Theorem 5.1, (X, δ) is PreT ′

2 (or T 2, T
′

2) at p for all

p ∈ X if and only if (X, δ) is PreT ′

2 (or T 2, T
′

2).

A c k n ow l e d g em e n t. We would like to thank the referee for his valuable and

kind suggestions which radically improved the paper.
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