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1

Kappa-Slender Modules

Radoslav Dimitric

Abstract. For an arbitrary infinite cardinal κ, we define classes of κ-cslender
and κ-tslender modules as well as related classes of κ-hmodules and initiate
a study of these classes.

1 Preliminaries
The notion of a slender Abelian group was introduced by Jerzy  Loś and it was
initially explored by the Polish school (cf. Fuchs [4]). This notion has deep and
wide ramifications in algebra as well as set theory and has evolved considerably
since its inception. The expansive treatment of this and related theories is to be
found in Dimitric [2], [3].

In this note, we generalize the notion by expanding the cardinality of the gen-
erator set of the image, thus grading the category we work within, by way of
cardinality.1

We will work within a category of (left) R-modules RMod and our functions
will be morphisms in that category; in particular, R is seen as an object in this
category, not in the category of rings. To simplify the discussion, we may assume,
if need be, that rings R are domains with unities and that all modules are unitary.
We will identify cardinals κ with the initial ordinals of the same cardinality, and
consequently may assume that (in the presence of the Axiom of Choice), κ is
well-ordered. ω denotes the smallest infinite ordinal. For a cardinal κ, we denote
by κ+ the smallest cardinal in the interval (κ,→). For an ordinal κ, cf(κ) ≤ κ
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1This is a slightly revised TEX-ed version of a handwritten note dating back to the early
1980s when we begun the program of general slenderness. At that time, we completely charac-
terized κ-slenderness in Abelian categories for κ = ω (see Dimitric [1], [2]). Characterization of
κ-slenderness, for arbitrary κ, remains open.
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denotes the smallest ordinal cofinal with κ; for example, cf(ωω) = ω = cf(ωω). If
cf(κ) = κ, then κ is called regular, otherwise it is singular. A set I is said to be
non-measurable if there is no non-trivial 2-valued measure on I, i.e. no σ-additive
function µ : P(I) → {0, 1} with µ(I) = 1, and µ({i}) = 0, for every i ∈ I, and for
every countable family {In : n ∈ N} of pairwise disjoint subsets of I,

µ
(⋃̇

In

)
=
∑

µ(In) .

Otherwise, I is said to be measurable. We may assume that cardinalities of our
index sets are less than some large cardinal m, such as a measurable cardinal, or
an inaccessible cardinal. For set theoretic notions the reader may consult some of
the classical treatises on set theory, such as Hrbacek & Jech [5].

For x = (xi)i∈I ∈
∏
i∈I Ai denote the zero set

zero(x) = {i ∈ I : xi = 0}

and the complement non-zero set

supp(x) = {i ∈ I : xi 6= 0} .

Given a filter F on a non-empty index set I, the F subproduct is

Π(F) =
∏
i∈I

F
Mi =

{
x ∈

∏
Mi : zero(x) ∈ F

}
.

If F is the co-κ-filter, then the corresponding subproduct will be denoted by∏κ
i∈IMi; namely it consists of all the vectors x = (xi)i∈I with support of car-

dinality < κ.
The coordinate vectors ei : I → R are defined by{

ei(j) = 0 , if i 6= j,

ei(i) = 1 ∈ R

If J ⊆ I, denote by πJ :
∏
i∈I Ai →

∏
i∈J Ai and pJ :

∏
i∈J Ai →

∏
i∈I Ai the

coordinate projection and injection respectively. Note that πJ and pJ are isomor-
phisms ∏

i∈I
Ai ∼=

∏
j∈J

Aj ,

if Ai = 0 for all i ∈ I \ J .

2 Coordinate slenderness
Definition 1. Given an arbitrary (infinite) cardinal κ, define a (left) R-module M
to be κ-slender, if, for every index set I of cardinality κ, every family of R-modules
Ai, i ∈ I, and every morphism

f :
∏
i∈I

Ai →M,
∣∣{i ∈ I : f |Ai 6= 0}

∣∣ < κ .
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In this way, the well-known notion of slender module is a special case, namely of
an ω-slender module (see Dimitric [2], for a thorough study of classes of slender ob-
jects). Another, more appropriate name we will use is κ-coordinatewise slenderness
or κ-cslenderness.

The purpose of this note is to look into κ-slenderness for uncountable κ.

Remark 1. If M is not κ-slender, then, every morphism f :
∏
I Ai →M , such that

for J = {i ∈ I : f |Ai 6= 0}, |J | ≥ κ will be called a non-slender morphism. Given
a non-κ-slender module M , such a non-slender morphism always exists and, by
taking the appropriate restriction to

∏
J Ai we may then assume that, for a non-

κ-slender module M , there is a morphism f :
∏
I Ai → M with |I| = κ, such that

f |Ai 6= 0, for every i ∈ I.

We note immediately that, in the definition, we may take any index set of
cardinality > κ as well as that we may replace all Ai by cyclic modules or by the
identical objects, namely the ground ring R as detailed in the following:

Theorem 1. Given an infinite cardinal κ and an M ∈ RMod, the following are
equivalent:

(1) M is κ-slender.

(2) ∀I, |I| ≥ κ, ∀Ai ∈ RMod, i ∈ I, for every morphism f :
∏
i∈I Ai →M ,∣∣{i ∈ I : f |Ai 6= 0}

∣∣ < κ .

(3) ∀I, |I| ≥ κ, for every morphism f :
∏
i∈I Ri →M , ∀i, Ri = R,∣∣{i ∈ I : f(ei) 6= 0}

∣∣ < κ .

(4) ∀I, |I| = κ, for every morphism f :
∏
i∈I Ri →M , ∀i, Ri = R,∣∣{i ∈ I : f(ei) 6= 0}

∣∣ < κ .

(5) ∀I, |I| ≥ κ, for every morphism f :
∏
i∈I Rai →M ,∣∣{i ∈ I : f(ai) 6= 0}

∣∣ < κ .

(6) ∀I, |I| = κ, for every morphism f :
∏
i∈I Rai →M ,∣∣{i ∈ I : f(ai) 6= 0}

∣∣ < κ .

In case of regular κ, we also have the following equivalent statements:

(7) ∀I, |I| = κ, ∀Ai ∈ RMod, i ∈ I, for every morphism f :
∏
i∈I Ai → M ,

∃i0 < κ such that ∀i > i0, f |Ai = 0.

(8) ∀I, |I| = κ, for every morphism f :
∏
i∈I Rai → M , ∃i0 < κ such that

∀i > i0, f(ai) = 0.
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(9) ∀I, |I| = κ, for every morphism f :
∏
i∈I Ri →M , ∀i, Ri = R, ∃i0 < κ such

that ∀i > i0, f(ei) = 0.

(10) ∀I, cf |I| ≥ κ, ∀Ai ∈ RMod, i ∈ I, for every morphism f :
∏
i∈I Ai → M ,

∃i0 < κ such that ∀i > i0, f |Ai = 0.

(11) ∀I, cf |I| ≥ κ, for every morphism f :
∏
i∈I Rai → M , ∃i0 < κ such that

∀i > i0, f(ai) = 0.

(12) ∀I, cf |I| ≥ κ, for every morphism f :
∏
i∈I Ri → M , ∀i, Ri = R, ∃i0 < κ

such that ∀i > i0, f(ei) = 0.

Proof. (1)⇒(2): Let |I| > κ and f :
∏
i∈I Ai → M . If, on the contrary, ∃J ⊆ I,

|J | = κ, such that ∀j ∈ J , f |Aj 6= 0, then we can take the restriction f ′ =
f |
∏
j∈J Aj with the same coordinate property. This would then contradict (1).

(2)⇒(3), (3)⇒(4), (5)⇒(6) hold because, respectively, (2) is nominally more
general than (3) and (3) is nominally more general than (4) just as (5) is nominally
more general than (6).

(4)⇒(5): Let, on the contrary, ∃J ⊆ I, |J | = κ, such that ∀j ∈ J , f(aj) 6= 0.
We have the quotient maps

qj : R→ R /Ann(aj) ∼= Raj

and the product map

q =
∏

qj :
∏
j∈J

Rj →
∏
j∈J

Raj .

Consider f ′ = fq :
∏
j∈J Rj → M . We have f ′(ej) = f(aj) 6= 0, ∀j ∈ J , which

would contradict (4).
(6)⇒(1): Let |I| = κ and f :

∏
i∈I Ai → M be such that, on the contrary,

∃J ⊆ I, |J | = κ, with ∀j ∈ J , f |Aj 6= 0; in other words ∃aj ∈ Aj with f |Raj 6= 0.
Consider the restriction of f , namely f ′ :

∏
j∈J Raj → M . But then f ′|Raj on a

set J of cardinality κ which would contradict (6).
The equivalences (7)–(12) are proved in a like manner as (1)–(6). We only need

to connect the two batches:
(7)⇒(1) follows, once we note that ∀i0 < κ, |(←, i0)| < κ.
As for (1)⇒(7), given a morphism f :

∏
i∈I Ai →M , the cardinality

|Si| =
∣∣{i < κ : f |Ai 6= 0}

∣∣ < κ .

This implies that supSi = i0 < κ, since κ was assumed to be regular. �

Remark 2. We note that regularity of κ is not needed for implications from the sec-
ond batch of statements to the first. Furthermore, without assumption of regularity
of κ, statements (7)–(12) are equivalent to the following statement:

(13) ∀J , |J | = cf(κ), ∀Aj ∈ RMod, j ∈ J , for every morphism f :
∏
j∈J Aj →M ,

∃j0 < cf(κ) such that ∀j > j0, f |Aj = 0.
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Indeed, if we assume (7), |I| = κ and cf(κ) = J ⊆ I, given a morphism

f :
∏
j∈J

Aj →M ,

Ai = 0 for i ∈ I \ J , we have a morphism

f = fπJ :
∏
i∈I

Ai →M

whereas there is an i0 < κ such that ∀i > i0, f |Ai = 0. By cofinality, there exists
a j0 ∈ J , j0 > i0 with f |Aj = 0 for j > j0 and the claim follows once we note that
f |Aj = f |Aj for j ∈ J .

The implication (13)⇒(7) is a consequence of the fact that cf(κ) < κ.

It appears that κ-slenderness is a characteristic of the lattice of submodules as
may be seen from the following:

Proposition 1. (1) The trivial module 0 is κ-slender, for every κ.

(2) M is κ-slender, iff ∀N ≤M , N is κ-slender.

(3) For every infinite cardinal κ, every slender R-module is κ-slender.

(4) Let λ ≤ κ; then every λ-slender module is also κ-slender.

(5) Rκ is not κ-slender.

(6) For all cardinals λ < cf(κ), and Bj ∈ RMod, j ∈ J, |J | < λ,
∏
j∈J Bj is

κ-slender, if and only if every Bj is κ-slender. In particular, Rλ is κ-slender
if and only if R is κ-slender. Furthermore,

⊕
j∈J Bj is κ-slender if and only

if every Bj is κ-slender.

(7) If R is slender, then Rκ is κ+-slender.

Proof. (1) The definition verifies trivially.
(2) If f : Rκ → N ↪→M , then use Theorem 1 (4) to conclude that

{i ∈ I : f(ei) 6= 0} | < κ ,

which establishes κ-slenderness of N . The other direction is a tautology.
(3) By a known result (see e.g. Dimitric [2], Theorem 3.10), an object M is

slender iff for every index set I and every morphism f :
∏
i∈I Ai →M ,

{i ∈ I : f |Ai 6= 0}

is finite (hence < κ).
(4) Let M be λ-slender and let f :

∏
i∈I Rai →M , (|I| = κ). By Theorem 1 (5)∣∣{i ∈ I : f(ai) 6= 0}

∣∣ < λ < κ ,
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which establishes κ-slenderness of M .
(5) The identity map id : Rκ →

∏
j<κRj is such that∣∣{i ∈ I : id(ei) 6= 0}

∣∣ = κ ,

which shows, by Theorem 1, that Rκ is not κ-slender.
(6) If

∏
j∈J Bj is κ-slender, then, by (2), every submodule is κ-slender, hence

that applies to each Bj as well. Now assume that every Bj is κ-slender. If

f :
∏
i<κ

Rai →
∏
j∈J

Bj ,

we know that then

f =

(
fj :

∏
i<κ

Rai → Bj

)
j∈J

,

|J | = λ. We know that ∀j ∈ J , for

Sj = {i ∈ I : fj(ai) 6= 0} ,

|Sj | < κ, since every Bj is κ-slender. We have

{i ∈ I : f(ai) 6= 0} =
⋃
j∈J

Sj .

Assume first that κ is a regular cardinal. Then∣∣∣⋃
j∈J

Sj

∣∣∣ ≤∑
j∈J
|Sj | < λκ = κ

(the latter strict inequality holds because κ is regular). Thus, indeed
∏
j∈J Bj

is κ-slender. Hence, this statement is true for regular cardinal κ = λ+, namely∏
j∈J Bj is λ+-slender. By (4),

∏
j∈J Bj is κ-slender, for every κ ≥ λ+ > λ. The

remaining claims are a special case and the fact that the direct sum is submodule
of the direct product, hence by (2) has to be slender.

(7) Replace κ by κ+ and λ by κ in (6) and use (3). �

Modification of Theorem 3.40 in Dimitric [2] would establish the fact that⊕
j∈J Bj is κ-slender iff each Bj is k-slender, regardless of the cardinality of the

index set J (see Dimitric [3]).
Given an infinite cardinal κ, then a submodule N ≤ M ∈ RMod is said to be

κ-pure in M , if every system of (|I| < κ) equations of the form∑
j∈J

rijxj = ni ∈ N, i ∈ I, rij ∈ R,

with < κ unknowns xj , j ∈ J , |J | < κ that has a solution in MJ , also has a
solution in NJ . Notation for this is N ≤κ∗ M . Thus purity is then same as
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ℵ0-purity. The derivative notion of a κ-pure exact sequence is straightforward. As
κ is increased, the classes (sets) of κ-pure exact sequences get smaller, in general.
A module is κ-pure injective if it has injective property with respect to all κ-pure
exact sequences. A module M is equationally (algebraically) κ-compact, if every
system of ≤ κ linear equations:∑

j∈J
rijxj = mi ∈M, i ∈ I, rij ∈ R

with the property that every finite subsystem has a solution, then has a global
solution. A module is algebraically compact iff it is κ-compact, for every cardinal κ.
Given κ < |R| one can construct examples of κ-compact modules that are not
algebraically compact. However, if M ∈ RMod is κ-algebraically compact, for
some κ ≥ |R|, then M is algebraically compact.

We have mimicked  Loś [6] to produce the following result, needed in the sequel:

Theorem 2. Let A be an index set, F a κ-complete filter on A and Mα ∈ RMod,
α ∈ A; then

∏F
α∈AMα is κ-pure in

∏
α∈AMα. Specially, for F = F0, the coproduct⊕

Mα is pure in
∏
Mα.

Proof. Assume that the system of linear equations∑
j∈J

rijxj = ni ∈
∏
α∈A

F
Mα, i ∈ I, (rij)I×J row finite, |I|, |J | < κ

has a solution mj ∈
∏
α∈AMα, j ∈ J ; this then translates into the componentwise

equalities: ∑
j∈J

rijmjα = niα α ∈ A . (∗)

By definition zero(ni) ∈ F , for all i ∈ I, and since |I| < κ, we get, by κ-completeness
of F , that

Z =
⋂
i∈I

zero(ni) ∈ F .

Now define yj ∈
∏
α∈AMα componentwise: yjα = mjα, if α /∈ Z and yjα = 0, if

α ∈ Z. Every
zero(yj) ⊇ Z ∈ F ,

thus all yj ∈
∏F

Mα; but the yj also provide a solution of the original system of
equations, by the way we defined them, by (∗) and by the fact that for α ∈ Z we
have niα = 0, for all i. �

Denote by Sκ the class of κ-slender modules, where S denotes, for brevity, the
class of slender modules.

Proposition 2. (1) We have an ascending chain of non-empty classes:

S ⊂ · · · ⊂ Sκ ⊂ Sκ+ ⊂ · · · ⊂ Sλ ⊂ · · · ⊂ RMod, κ < λ .

The chain is strictly ascending, if R is slender.
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(2) The union of this chain is 6= RMod, since non-zero algebraically compact
modules are not κ-slender (hence cannot be contained in a κ-slender module),
for any κ.2

Proof. (1) is a consequence of Proposition 1.
For (2), given a cardinal κ, assume that M ∈ RMod is algebraically compact

and let 0 6= a ∈M . By Theorem 2, we have a pure exact sequence

0 −→
⊕
I

Ri −→
∏
I

Ri −→
∏
I

Ri

/⊕
I

Ri −→ 0 , Ri = R

Define f0 :
⊕
Ri →M coordinatewise: ∀i ∈ I, f0(ei) = a. Since M is algebraically

compact, we can extend f0 to the morphism f :
∏
I Ri → M , for which we have

∀i, f(ei) = a 6= 0, which shows that M is not κ-slender, for any κ. �

Consequently, if R is algebraically compact (pure injective), then, by Proposi-
tion 2 (2), R is not λ-slender, for any λ and then the product Rκ, being algebraically
compact, is not λ-slender, for any λ, κ.

3 Tailwise slenderness
Definition 2. Given a regular cardinal κ = |I|, an M ∈ RMod is said to be
κ-tailwise slender, or κ-tslender for short, if for every morphism

f :
∏
i<κ

Rai →M ,

there exists an i0 < κ, such that f(
∏
i≥i0 Rai) = 0. This is equivalent to the

requirement that, for every morphism

f :
∏
i<κ

Ri →M ,

Ri = R, there exists an i0 < κ such that f(
∏
i≥i0 Ri) = 0.

Without the regularity condition on κ, one can show, just as in Remark 2,
that κ-tslenderness would be equivalent to cf(κ)-tslenderness. In order to avoid
this ambiguity, the referee suggests defining tailwise slenderness for a (singular)
cardinal κ as follows: For every morphism f :

∏
i∈I Rai → M , there exists an

I0 ⊆ I, |I0| < κ, such that f(
∏
i∈I\I0 Rai) = 0.

We note a straightforward but important fact as follows:

Proposition 3. (1) If M is κ-tslender, then it is κ-cslender.

(2) If M is κ-tslender, then, for all cyclic modules Rai, i ∈ I, |I| = κ:

HomR

(∏
i∈I

Rai

/∏
i∈I

κ
Rai,M

)
= 0.

2The referee remarked that, moreover, RMod =
⋃
κ<λ Sκ ∪ AC (here we denote by AC the

class of algebraically compact modules).
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Proof. (1) Si = {i < κ : f |Ai 6= 0} ⊆ (←, i0) and |(←, i0)| < κ, since κ is a cardinal.
(2) If κ = |I| and f :

∏
i∈I Rai → M is a morphism, then, by κ-tslenderness

of M , ∃i0 < κ such that f(
∏
i≥i0 Rai) = 0. We note that∏
i<i0

Rai ⊆
∏
i∈I

κ
Rai

since κ is a cardinal and |(←, i0)| < κ. The claim will follow, once we note the
obvious splitting: ∏

i<κ

Rai =
∏
i<i0

Rai ⊕
∏
i≥i0

Rai . �

As for the converse of implication (1) in this proposition, it may not always
be true and it is related to intricate constructions of set-theoretical nature. It is
well-known that, for κ = ω, the equivalence holds, if and only the index sets of the
products involved are non-measurable cardinals (see Dimitric [2], Theorem 3.10).

Proposition 4. (1) The trivial module 0 is κ-tslender, for every κ.

(2) M is κ-tslender, iff ∀N ≤M , N is κ-tslender.

(3) For every infinite non-measurable cardinal κ, every slender R-module is
κ-tslender (cf. Proposition 1 (4)).

(4) Rκ is not κ-tslender.

(5) For all cardinals λ < cf(κ), and {Bj ∈ RMod : j < λ},
∏
j<λBj is κ-tslender,

if and only if every Bj is κ-tslender. In particular, Rλ is κ-tslender if and
only if R is κ-tslender. Furthermore,

⊕
j<λBj is κ-tslender if and only if

every Bj is κ-tslender.

(6) If 0 −→ A
α−→ B

β−→ C −→ 0 is an exact sequence and A,C are κ-tslender,
then B is likewise κ-tslender.

Proof. (1) and (2) follow directly from the definition.
(3) follows from Dimitric [2], Theorem 3.10 (5), which states, that if |I| = κ is

a non-measurable cardinal and M is slender, then, for every morphism

f :
∏
i∈I

Ai →M ,

there exists an i0 ∈ I, i0 < ω, such that f(
∏
i≥i0 Ai) = 0.

For (4), consider the non-κ-tslender identity morphism id : Rκ → Rκ.
(5) If

∏
j<λBj is κ-tslender, then, by (2), every submodule is κ-tslender, hence

that applies to each Bj as well. Now assume that every Bj is κ-tslender. If

f :
∏
i<κ

Rai →
∏
j<λ

Bj ,
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we know that then

f =

(
fj :

∏
i<κ

Rai → Bj

)
j∈J

,

|J | = λ. We have ∀j ∈ J ∃i(j) < κ with f(
∏
i≥i(j)Rai) = 0. Let

i0 = sup {i(j) : j < λ} .

By the assumption, cf(κ) > λ, therefore i0 < κ. Now we clearly have

f
(∏
i≥i0

Rai

)
= 0 .

The remaining claims are a special case and the fact that the direct sum is sub-
module of the direct product, hence by (2) has to be κ-tslender.

(6) Let f :
∏
i<κRai → B be an arbitrary morphism. Then

βf :
∏
i<κ

Rai → C ,

hence, by κ-tslenderness of C, there is an i′ < κ such that

βf
( ∏
κ>i≥i′

Rai

)
= 0 .

In other words,

f
( ∏
κ>i≥i′

Rai

)
⊆ kerβ = Imα ∼= A ,

which implies that f maps
∏
κ>i≥i′ Rai into Imα ∼= A. On the other hand, A was

assumed to be κ-tslender which then implies that there is an i0 < κ, i0 ≥ i′, with
f(
∏
κ>i≥i0 Rai) = 0, which establishes slenderness of B. �

4 Classes Hκ

In this section, we assume that cardinals are non-measurable.

Definition 3. Given an infinite cardinal κ, an M ∈ RMod is called a κ-hmodule,
if, for every index set I, and every family of R-modules {Ai : i ∈ I}, the following
holds:

HomR

(∏
i∈I

Ai

/∏
i∈I

κ
Ai,M

)
= 0.

For brevity, denote Dκ =
∏
i∈I Ai

/ ∏κ
i∈I Ai, so that we can rewrite this condition

as
HomR (Dκ,M) = 0 .

The class of κ-hmodules is denoted by Hκ.
Some well-known properties of the Hom functor are instrumental in obtaining

some properties of κ-hmodules as follows:
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Proposition 5. (1) 0 ∈ Hκ.

(2) Hk is closed with respect to submodules.

(3)
∏
Mj ∈ Hk if and only if, every Mj ∈ Hκ (closure with respect to products).

(4) For a short exact sequence 0 −→ A
α−→ B

β−→ C −→ 0, if A,C ∈ Hκ, then
B ∈ Hκ.

(5) If κ < λ, then Hκ ⊆ Hλ.

Proof. (1) is trivial.
(2) follows from the fact that, if B ≤ A, then Hom (Dκ, B) ≤ Hom (Dκ, A).
The natural isomorphism

Hom
(
Dκ,

∏
Mj

)
∼=
∏

Hom (Dκ,Mj)

establishes one implication of (3) and the other implication is a consequence of (2).
(4) is a consequence of left exactness of the Hom functor:

0 −→ Hom (Dκ, A) −→ Hom (Dκ, B) −→ Hom (Dκ, C) .

For (5) assume that, on the contrary, there were an

a = (ai)i∈I ∈
∏
i∈I

Ai ,

and a morphism f : Dκ → M with f(a) 6= 0; then it would contradict Proposi-
tion 3 (2) since we would have

HomR

(∏
i∈I

Rai

/∏
i∈I

κ
Rai,M

)
6= 0 .

For (6), use the fact that, for κ < λ,∏
i∈I

κ
Ai ≤

∏
i∈I

λ
Ai . �

Properties (2)–(4) signify that Hκ is a torsion free class for a torsion theory, for
every κ (cf. e.g. Stenström [7]).

A good question is whether Proposition 3 (2) holds for κ-cslender modules. It
does for κ = ω and non-measurable index sets I (cf. Dimitric [2], Theorem 3.9).
We are exploring this issue for uncountable κ.
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