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Abstract. We give several different q-analogues of the following two congruences of
Z.-W. Sun:
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where p is an odd prime, r is a positive integer, and (mn ) is the Jacobi symbol. The proofs
of them require the use of some curious q-series identities, two of which are related to
Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the
latter author and Zeng in 2012.
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1. Introduction

Among other things, Sun in [14], (1.7) and (1.8) proved the congruences
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where p is an odd prime, r is a positive integer, and (mn ) is the Jacobi symbol.

Recently, the latter author and Liu in [6], Theorem 1.2 gave the following q-analogue

of (1.1): for odd n,

(1.3)

(n−1)/2
∑

k=0

(q; q2)kq
k2

(q4; q4)k
≡ (−q)(1−n2)/8 (mod Φn(q)

2).

Here and in what follows, (a; q)n = (1−a)(1−aq) . . . (1−aqn−1) and Φn(q) is the nth

cyclotomic polynomial in q.

The first aim of this paper is to give q-analogues of (1.1) and (1.2) as follows.

Theorem 1.1. Let n be a positive odd integer. Then

(n−1)/2
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)

q2⌊(n+1)/4⌋2 (mod Φn(q)
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2),(1.5)

where ⌊x⌋ denotes the largest integer not exceeding x.

It is easy to see that the congruences (1.4) and (1.5) reduce to (1.1) and (1.2),

respectively, when q → 1 and n = pr.

Recall that the q-binomial coefficients
[
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if 0 6 k 6 n,

0 otherwise.

Moreover, the q-integer is defined as [n] = [n]q = (1 − qn)/(1 − q). The second

aim of this paper is to give the following result, which in the case n = pr confirms

a conjecture of the latter author and Zeng, see [8], Conjecture 5.13.

Theorem 1.2. Let n be a positive integer. Then
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Note that, exactly similarly to the proof of Theorem 5.3 in [8], we can show that

(1.7)

n−1
∑

k=0

q(n−k)2
[

n+ k

k

]2[
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k

]2

≡ 0 (mod [n]).

Therefore, combining the congruences (1.6) and (1.7), we see that the congru-

ence (1.6) also holds modulo [n]Φn(q). We refer the reader to [7] and references

therein for other congruences on sums involving q-binomial coefficients.

Suggested by the referee, we would like to make the following conjecture.

Conjecture 1.3. The congruence (1.6) still holds modulo [n]Φn(q)
2.

The paper is organized as follows. In the next section, we give a new proof of

a curious q-series identity of Liu, see [12] and also provide two similar identities. We

prove Theorems 1.1 and 1.2 in Sections 3 and 4, respectively. Finally in Section 5,

motivated by the recent work of the latter author and Zudilin, see [9], we give param-

eter generalizations of (1.3)–(1.5) and show more complicated q-analogues of (1.1)

and (1.2).

2. A curious q-series identity of J.-C. Liu

Liu in [12], (2.3) presented the following q-series identity:
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which will be used in our proof of (1.4). We give a new proof (2.1) here for two

reasons. Firstly, Liu’s proof of (1.4) is a little complicated and cannot be generalized

to prove similar identities. Secondly, we want the paper to be more self-contained.

P r o o f of (2.1). By the q-binomial theorem (see, for example, [1], page 36,

Theorem 3.3), we have
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Equating the coefficients of xn−a on both sides of (2.2), we obtain

n−a
∑

k=0

(−1)kq(
k

2)
[

n+ a

k

][

2n− k

n− a− k

]

= qn
2−a2

,

which can be written as
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.

With the help of (2.3), we are now able to prove (2.1). By Slater’s Bailey pair C(1)

in [13], we have
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It follows that
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Interchanging the summation order on the right-hand side of (2.4) and using (2.3),

we get

(2.5)
n
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Since the jth and (1 − j)th terms on the right-hand side of (2.5) cancel each other

for j = 1, . . . , ⌊n/2⌋, only the term corresponding to j = −⌊n/2⌋ on the right-hand

side of (2.5) survives. This proves (2.1). �

Similarly, we can show that
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There are many more identities similar to (2.1) and (2.6). For example, using the

identities (see [10], Proposition 2)

(−q; q2)n =
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where (−q2; q2)−1 = 1/2.

3. Proof of Theorem 1.1

It is easy to see that

(1 − qn−2j+1)(1− qn+2j−1) + (1− q2j−1)2qn−2j+1 = (1− qn)2,

1− qn ≡ 0 (mod Φn(q)), and so

(1 − qn−2j+1)(1− qn+2j−1) ≡ −(1− q2j−1)2qn−2j+1 (mod Φn(q)
2).

Therefore,

(3.1) (q1−n; q2)k(q
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k
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(1− qn−2j+1)(1 − qn+2j−1)

≡ qk
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k
∏
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(1− q2j−1)2qn−2j+1 = (q; q2)2k (mod Φn(q)
2).
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It follows that

(n−1)/2
∑
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3

)
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2−1)/12 (mod Φn(q)
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The last equality holds because of the identity (see [2], [3], [4])
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k
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]

=

{

(−1)⌊n/3⌋qn(n−1)/6, if n 6≡ 2 (mod 3),

0, if n ≡ 2 (mod 3).

The proof of (1.5) then follows from the quadratic reciprocity law

( 3

n

)
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)

.

Similarly, we have
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∑
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n
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2).

The last equality follows from (2.1) by replacing n with (n−1)/2 and q with q → q2.

4. Proof of Theorem 1.2

We can easily prove the congruence

(q1−n; q)k(q
n+1; q)k = (q; q)2k (mod Φn(q)

2)

762



similar to (3.1). It follows that

[

n+ k

k

]2[
n− 1

k

]2

=
(qn+1; q)2k(q

1−n; q)2k
(q; q)4k

q2nk−k2−k ≡ q2nk−k2−k (mod Φn(q)
2)

and so

n−1
∑

k=0

q(n−k)2
[

n+ k

k

]2[
n− 1

k

]2

≡
n−1
∑

k=0

qn
2−k = qn

2−n+1[n] ≡ q[n] (mod Φn(q)
2)

as desired.

5. Concluding remarks

Very recently, the latter author and Zudilin in [9] developed a creative micro-

scoping method to prove q-supercongruences by adding a parameter a (see also [5]).

Along the same lines, we can generalize (1.3)–(1.5) as follows: for any positive odd

integer n modulo (1− aqn)(a− qn):

(n−1)/2
∑

k=0

(aq; q2)k(q/a; q
2)kq

k2

(q; q2)k(q4; q4)k
≡ (−q)(1−n2)/8,(5.1)

(n−1)/2
∑

k=0

(aq; q2)k(q/a; q
2)kq

2k

(q2; q2)k(q2; q4)k
≡

( 2

n

)

q2⌊(n+1)/4⌋2 ,(5.2)

(n−1)/2
∑

k=0

(aq; q2)k(q/a; q
2)kq

2k

(q4; q4)k(q2; q4)k
≡

( 3

n

)

q(n
2−1)/12.(5.3)

It is easy to see that, letting a → 1 in (5.1)–(5.3), we recover (1.3)–(1.5), respectively.

Moreover, there are other different q-analogues of (1.1) and (1.2). For example,

applying the identities (2.6)–(2.8) (replacing n with (n − 1)/2 and q with q2), we

have the following more complicated q-analogues of (1.1) modulo Φn(q)
2:

(n−1)/2
∑

k=0

(q; q2)k
(q2; q2)k(−q; q2)k

≡ (−1)(n−1)/2q(1−n2)/4

⌊(n−1)/4⌋
∑

k=−⌊(n−1)/4⌋

(−1)kq6k
2+2k,

(n−1)/2
∑

k=0

(−q2; q4)k(q; q
2)kq

2k

(q4; q4)k(−q; q2)k
≡ (−1)(n−1)/2q(n

2−1)/4

⌊(n−1)/4⌋
∑

k=−⌊(n−1)/4⌋

(−1)kq−4k2

,

(n−1)/2
∑

k=0

(1 + q2k)(−q4; q4)k−1(q; q
2)kq

2k

(q4; q4)k(−q; q2)k

≡ (−1)(n−1)/2q(n
2−1)/4

⌊(n−1)/4⌋
∑

k=−⌊(n−1)/4⌋

(−1)kq2k−4k2

.
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Similarly, applying the invariant of (3.2) (see, for example, [11], (1.5))

⌊n/2⌋
∑

k=0

(−1)kq(
k+1

2 )
[

n− k

k

]

=

⌊n/3⌋
∑

k=−⌊(n+1)/3⌋

(−1)kqk(3k+1)/2,

which follows readily from Franklin’s involution on partitions into distinct parts (see

the proof of [1], Theorem 1.6), we have the following q-analogue of (1.2): mod-

ulo Φn(q)
2,

(n−1)/2
∑

k=0

(q; q2)k
(q4; q4)k(−q; q2)k

≡ (−1)(n−1)/2q(1−n2)/4

⌊(n−1)/3⌋
∑

k=−⌊n/3⌋

(−1)kq3k
2+k.

There are also parameter generalizations of the above four congruences, which are

omitted here.
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