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Abstract. We obtain solutions to some conjectures about the nonlinear difference equation

xn+1 = α+ βxn−1e
−xn , n = 0, 1, . . . , α, β > 0.

More precisely, we get not only a condition under which the equilibrium point of the above
equation is globally asymptotically stable but also a condition under which the above equa-
tion has a unique positive cycle of prime period two. We also prove some further results.
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1. Introduction

In [1], the authors consider the nonlinear difference equation

(1.1) xn+1 = α+ βxn−1e
−xn , n = 0, 1, . . . ,

with initial values x−1 and x0. Because of the biological point of view, assume that

α, β > 0. Then we know that equation (1.1) has exactly one equilibrium point x̄,

and furthermore x̄ > α. In [1], they obtained the following results:

Theorem 1.1. A point x̄ is locally asymptotically stable if

β <
−α+

√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2

and is unstable (and in fact is a saddle point) if

β >
−α+

√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2.
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Theorem 1.2. The following statements are true:

(i) Every positive solution of equation (1.1) is bounded if β < eα.

(ii) Equation (1.1) has positive unbounded solutions if β > eα.

Theorem 1.3. The equilibrium x̄ of equation (1.1) is globally asymptotically

stable if

β 6
−α+

√
α2 + 4

2
eα.

After the above results, the following conjectures and open problem have been

stated in [1]:

Conjecture 1.4. The equilibrium x̄ of equation (1.1) is globally asymptotically

stable if

(1.2)
−α+

√
α2 + 4

2
eα < β <

−α+
√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2.

Conjecture 1.5. Equation (1.1) has a unique positive cycle of prime period two if

(1.3) β >
−α+

√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2.

Moreover, if β < eα, then every positive solution {xn}∞n=−1 of equation (1.1), which

does not converge to x̄, converges to the unique period 2 cycle.

Open Problem. Determine the boundedness character of the positive solution of

equation (1.1) when β = eα.

We should note that Conjecture 1.5 has been partially solved by Fotiades and

Papaschinopoulos in [2], Proposition 2.2 under the condition αβ > 2(β − 1).

In the present paper, we prove that Conjectures 1.4 and 1.5 are always true. Hence

we do not need the extra condition αβ > 2(β − 1), which improves Proposition 2.2

in [2]. We also show that when β = eα, equation (1.1) has no (bounded) periodic

solution (or, period 2 solution), which partially solves the above open problem stated

in [1]. At the end of the paper, we prove that the same situation is also valid for the

case of β > eα.
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2. Auxiliary results

We first get the next result.

Lemma 2.1. Positive solutions {x2n} and {x2n+1} of equation (1.1) are even-

tually monotonic, i.e., either non-decreasing or non-increasing for every sufficiently

large n.

P r o o f. From (1.1), we get

x2n+3 − x2n+1 = β
ex2nx2n+1 − ex2n+2x2n−1

ex2nex2n+2

and

x2n+4 − x2n+2 = β
ex2n+1x2n+2 − ex2n+3x2n

ex2n+1ex2n+3
.

Using these equations, we now consider the following possible cases:

(a) Let x−1 > x1 and x0 6 x2. Then we obtain that

x3 − x1 = β
ex0x1 − ex2x−1

ex0ex2
6 β

(ex0 − ex2)x−1

ex0ex2
6 0 ⇒ x3 6 x1,

and

x4 − x2 = β
ex1x2 − ex3x0

ex1ex3
> β

ex1(x2 − x0)

ex1ex3
> 0 ⇒ x4 > x2.

Applying the same procedure, we see that

x−1 > x1 > x3 > . . . and x0 6 x2 6 x4 6 . . . ,

whence the result.

(b) Let x−1 6 x1 and x0 > x2. The proof follows easily as in (a). In this case, we

get

x−1 6 x1 6 x3 6 . . . and x0 > x2 > x4 > . . . .

(c) Let x−1 > x1 and x0 > x2. Now, define

(2.1) N := min{n ∈ N : xn 6 xn+2}.

Then we have three possible cases:

⊲ If there is no finite natural number N as in (2.1), then the proof is done.

⊲ Assume that N is an odd integer. Then, from (2.1), it is clear that

x−1 > x1 > x3 > . . . > xN−2 > xN ,

xN 6 xN+2,

x0 > x2 > x4 > . . . > xN−1 > xN+1.
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Hence, we may write that

xN+3 − xN+1 = β
exNxN+1 − exN+2xN−1

exN exN+2
6 β

exN+2(xN+1 − xN−1)

exN exN+2
< 0,

which means

(2.2) xN+1 > xN+3.

Now using (2.3) and the fact that N is odd, we observe that

xN+4 − xN+2 = β
exN+1xN+2 − exN+3xN

exN+1exN+3
> β

xN (exN+1 − exN+3)

exN+1exN+3
> 0,

which gives

(2.3) xN+2 < xN+4.

Therefore, as in the cases (a) and (b), we conclude from (2.2) and (2.3) that

xN 6 xN+2 < xN+4 < xN+6 < . . . ,

x0 > x2 > x4 > . . . > xN+1 > xN+3 > xN+5 > . . . ,

whenever N is odd.

⊲ If N is an even integer, then we arrive at the following situation:

xN 6 xN+2 < xN+4 < xN+6 < . . . ,

x−1 > x1 > x3 > . . . > xN+1 > xN+3 > xN+5 > . . . .

(d) Finally, let x−1 < x1 and x0 < x2. This is the symmetric case of (c). �

Due to Lemma 2.1, one can say that {xn} is a positive unbounded solution of
equation (1.1) if and only if

either lim
n→∞

x2n = ∞ or lim
n→∞

x2n+1 = ∞,

which is equivalent to

either lim
n→∞

x2n+1 = α or lim
n→∞

x2n = α.

Hence, if {xn} is a positive bounded solution of equation (1.1), there exist x, y ∈
(α,∞) such that

(2.4) lim
n→∞

x2n = x and lim
n→∞

x2n+1 = y.
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Then we get the next lemma.

Lemma 2.2. Let {xn} be a positive bounded solution of equation (1.1), and let

x, y ∈ (α,∞) as in (2.4). Then, the following statements hold:

(i) x = x̄ ⇔ y = x̄,

(ii) x < x̄ ⇔ y > x̄,

(iii) x > x̄ ⇔ y < x̄.

P r o o f. We observe from (1.1) and (2.4) that x = α+βxe−y and y = α+βye−x.

Hence we get

(2.5) y = ln
βx

x− α
.

Since ln(βx̄/(x̄− α)) = x̄ and x̄ is unique, the statement (i) follows from (2.5),

immediately.

Since the function f(x) = ln(βx/(x− α)) is strictly decreasing on (α,∞), we can

say that α < x < x̄ if and only if f(x) > f(x̄) = x̄, which gives y > x̄. Hence, the

proof of (ii) is done.

Similarly, replacing x by y, we see that α < y < x̄ if and only if f(y) > f(x̄) = x̄,

which implies x > x̄. �

Observe that αβ > 2(β − 1) for any α > 2.

Now define the following functions on the interval (0, 2):

f(α) =
2

2− α
, g(α) =

−α+
√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2,

h(α) =
−α+

√
α2 + 4

2
eα.

From the definitions of f and g we first obtain that

f
(1

2

)

=
4

3
≈ 1.3333 and g

(1

2

)

=
e

2
≈ 1.3591,

f(1) = 2 and g(1) =
3−

√
5

2
e(1+

√
5)/2 ≈ 1.9263.

Since f(12 ) < g(12 ) and f(1) > g(1), the equation f(α) = g(α) has at least one

solution in the interval (12 , 1). On the other hand, we also get the following facts for

every α ∈ (0, 2):

f(0+) = g(0+) = h(0+) = 1,

f(2−) = ∞ > g(2−) =
1

2 +
√
3
e1+

√
3 > h(2−) =

(

−1 +
√
2
)

e2,

f ′(α) > 0, g′(α) > 0, h′(α) > 0, f ′′(α) > 0, g′′(α) > 0, h′′(α) > 0,

h(α) < f(α) and h(α) < g(α).
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The above observations imply that the functions f and g are strictly increasing and

convex on (0, 2). Hence, the equation f(α) = g(α) has exactly one solution in the

interval (0, 2), say α0. It follows from a numerical approximation that

(2.6) α0 ≈ 0.81464.

Thus, we get the next lemma.

Lemma 2.3.

(i) Condition (1.2) implies β > 1.

(ii) If α > α0, then condition (1.2) implies

(2.7) αβ > 2(β − 1).

Now using α0 in (2.6) we consider the following functions defined on the inter-

val [0, α0]:

u(t) = −2et(t− 1)(t− 2), v(t) = t2 + 2t− 4.

Then we get

u′(t) = −2et(t2 − t− 1), u′′(t) = −2et(t2 + t− 2), v′(t) = 2t+ 2, v′′(t) = 2

and

u(0) = v(0) = −4, u′(0) = v′(0) = 2.

On the other hand, defining the function ϕ := u′′ on the interval [0, α0], we see that

ϕ′(t) = −2et(t2 + 3t− 1) and ϕ′′(t) = −2et(t2 + 5t+ 2).

Hence, ϕ has exactly one critical point t0 in [0, α0], where t0 = 1
2 (−3+

√
13) ≈ 0.3028.

Then we observe that ϕ has a maximum at the critical point t0. Also, since ϕ(0) =

4 > ϕ(α0) ≈ 2.3565, we obtain that the function ϕ = u′′ has the minimum value at

the point t = α0. Then we get, for every t ∈ [0, α0], that

u′′(t) > u′′(α0) ≈ 2.3565 > v′′(t).

So, integrating twice the last inequality on the interval [0, α0], we immediately see

that

(2.8) u(α) > v(α) for every α ∈ (0, α0].
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3. Proofs of Conjectures 1.4 and 1.5

Now we are ready to give our main result, which answers Conjecture 1.4.

Theorem 3.1. The equilibrium solution x̄ of equation (1.1) is globally asymptot-

ically stable if (1.2) holds.

P r o o f. Assume that (1.2) holds. Due to Theorems 1.1 and 1.3 it is enough to

show that x̄ is a global attractor of equation (1.1). Now, using the fact that

−α+
√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2 < eα,

we get β < eα and hence from (1.2) and Theorem 1.2 (i) we observe that every

solution of equation (1.1) is bounded. Now let {xn} be any bounded solution of
equation (1.1). Then Lemma 2.1 implies that there exist x, y ∈ (α,∞) such that (2.4)

holds. Hence we get from equation (1.1) that

(3.1) x = α+ βxe−y and y = α+ βye−x.

If we show that x = y, the proof is completed. Observe that, by Lemma 2.2 (i),

the case of x = x̄ is clear. To get a contradiction assume now that x 6= x̄, which is

equivalent to x 6= y. From the equation (3.1), since

x =
α

1− βe−y
and y =

α

1− βe−x
,

we get

x = α+ βxe−α/(1−βe−x) and y = α+ βye−α/(1−βe−y).

Now consider the function:

(3.2) F (z) = α+ βze−α/(1−βe−z) − z, z ∈ (α,∞).

We first claim that

(3.3) F ′(x̄) < 0.

Indeed, since

F ′(z) = βe−α/(1−βe−z) +
αβ2ze−z

(1 − βe−z)2
e−α/(1−βe−z) − 1
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and

(3.4) x̄ =
α

1− βe−x̄
,

we may write that

F ′(x̄) = βe−x̄ +
β2

α
x̄3e−2x̄ − 1 =

β2

α
x̄3e−2x̄ − α

x̄
.

Hence, our claim is true if and only if

(3.5) βx̄2e−x̄ < α.

As in the proof of Proposition 2.1 in [2], define the function h as follows:

h(x) =
x− α

x
ex, x > α.

Then we know that the function h is strictly increasing on (α,∞). Also, we get

from (3.4) that

(3.6) β =
x̄− α

x̄
ex̄,

which implies

h(x̄) = β.

From the hypothesis (1.2), we observe that

h(x̄) = β <
−α+

√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2 = h

(

α+
√
α2 + 4α

2

)

,

which gives

x̄ <
α+

√
α2 + 4α

2
.

From the last inequality, we immediately see that

x̄− α <
−α+

√
α2 + 4α

2
,

which yields

(3.7) x̄(x̄− α) < α.
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Then, using (3.6) and (3.7), we get that (3.5) holds, which corrects our claim (3.3).

Now, from the definition of the function F in (3.2), we observe that x, y and x̄

are solutions of the equation F (z) = 0. Assuming x < x̄, we immediately get from

Lemma 2.2 (ii) that y > x̄. Now, since

F (x) = F (x̄) = 0, F (α) > 0 and F ′(x̄) < 0,

the graph of F in the interval (α, x̄) becomes at least once concave up and once

concave down, respectively (or has more fluctuations). Similarly, since

F (y) = F (x̄) = 0, F ′(x̄) < 0 and lim
z→∞

F (z) = −∞,

the graph of F in the interval (x̄,∞) becomes at least once concave up and once

concave down, respectively (or has more fluctuations). Therefore, the graph of F

in the interval (α,∞) becomes at least once concave up, concave down, concave up

and concave down, respectively (or has more fluctuations), which implies that the

equation F ′′(z) = 0 has at least three solutions in (α,∞).

Now we complete the proof by investigating two main parts for α0 ≈ 0.81464

given by (2.6):

Case (I): Let α > α0. Then from Lemma 2.3 we get the condition (2.7). Now using

the same idea as in the proof of Proposition 2.2 in [2], we see that F ′′(z) = 0 has

exactly one solution in (α,∞) under the condition (2.7), which gives a contradiction.

Case (II): Let 0 < α 6 α0. By an argument similar to the case (I), if condition (2.7)

holds, the proof follows immediately. Otherwise, we get

(3.8)
2

2− α
6 β <

−α+
√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2.

We know from the proof of Proposition 2.2 in [2] that

(3.9) F ′′(z) = −αβ2e−3ze−α/(1−βe−z)

(1 − βe−z)4
·G(z) for z > α,

where

(3.10) G(z) = e2z(z − 2)− βez(αz − 4)− β2(z + 2).

We can define the above function G on [α,∞). Then we get, for z > α, that

G′(z) = e2z(2z − 3)− βez(αz + α− 4)− β2

G′′(z) = ez{4zez(z − 1)− ez(αz + 2α− 4)}.
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We now consider the function H on [α,∞) defined by

(3.11) H(z) = 4ez(z − 1)− β(αz + 2α− 4).

Then we see that

H ′(z) = 4zez − αβ.

The function H ′ is strictly increasing in [α,∞). Since H ′(α) = 4αeα − αβ > 0 and

lim
z→∞

H ′(z) = ∞, the function H is strictly increasing in [α,∞). Now we observe

from the inequality (2.8) that

4eα(α− 1)

α2 + 2α− 4
<

2

2− α

for every α ∈ (0, α0]. Using the last inequality and also considering (3.8) we see that

β >
4eα(α− 1)

α2 + 2α− 4
,

which yields

H(α) = 4eα(α− 1)− β(α2 + 2α− 4) > 0 for every α ∈ (0, α0].

Hence, H(z) > 0 for every z ∈ [α,∞). Since G′′(z) = ezH(z), we have G′′(z) > 0

for z ∈ [α,∞). Then the function G′ is strictly increasing in [α,∞). In this case, we

obtain that G′(z) = 0 has at most one root in (α,∞). Therefore, F ′′(z) = 0 has at

most two solutions in (α,∞). This is a contradiction. �

Remark 3.2. Assume that

(3.12) β =
−α+

√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2

holds. Then we claim that equation (1.1) has no periodic solution, and hence ev-

ery solution converges to the equilibrium point x̄. Indeed otherwise, F ′′(z) = 0

would have at least 3 solutions in (α,∞) since F (α) > 0, lim
z→∞

F (z) = −∞, F (x̄) =

F ′(x̄) = 0 due to (3.12). However, as in the cases (I) and (II) in the proof of Theo-

rem 3.1, we see that F ′′(z) = 0 has at most 2 solutions in (α,∞), which is a contra-

diction.

Now we prove Conjecture 1.5, which also improves Proposition 2.2 in [2] since we

do not need the extra condition (2.7).
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Theorem 3.3. Every positive solution of equation (1.1) except for the equilibrium

solution converges to the unique period 2 cycle if

(3.13)
−α+

√
α2 + 4α

α+
√
α2 + 4α

e(α+
√
α2+4α)/2 < β < eα

holds.

P r o o f. Let (xn) be a positive solution which does not converge to x̄. Then

we know from Proposition 2.1 in [2] that if (3.13) holds, then equation (1.1) has

a positive periodic solution of prime period two. In this case, (xn) converges to this

periodic solution. Hence, we complete the proof if we show that this periodic solution

is unique. Indeed, if equation (1.1) had at least two positive periodic solutions of

prime period two, say (xn) and (x
′
n), then there would exist x, y, x

′, y′ ∈ (α,∞) such

that
lim
n→∞

x2n = x and lim
n→∞

x2n+1 = y,

lim
n→∞

x′
2n = x′ and lim

n→∞
x′
2n+1 = y′.

Assuming x < x′ < x̄, we get x̄ < y′ < y. Now consider the function

F (z) = α+ βze−α/(1−βe−z) − z, z ∈ (α,∞).

Since

F (x) = F (x′) = F (x̄) = 0, F (α) > 0 and F ′(x̄) > 0,

the graph of F in the interval (α, x̄) becomes at least once concave up, concave down,

concave up, respectively (or has more fluctuations). Similarly, since

F (y) = F (y′) = F (x̄) = 0, F ′(x̄) > 0 and lim
z→∞

F (z) = −∞,

the graph of F in the interval (x̄,∞) becomes at least once concave down, concave up

and concave down, respectively (or has more fluctuations). Therefore, the equation

F ′′(z) = 0 has at least 5 solutions in (α,∞). However, using an idea similar to in

Theorem 3.1, we observe that since H ′(α) > 0 and lim
z→∞

H ′(z) = ∞, the function H

is strictly increasing in [α,∞). Hence, H(z) = 0 has at most one solution in (α,∞),

which implies G′(z) = 0 has at most 2 solutions in (α,∞). But in this case we obtain

that G(z) = 0 has at most 3 solutions in (α,∞). These observations yield that, in

all possible cases, F ′′(z) = 0 has at most 3 solutions in (α,∞). This contradiction

proves that equation (1.1) has always a unique positive periodic solution of prime

period two if (3.13) holds. Hence, in this case, the condition αβ > 2(β − 1) in

Proposition 2.2 in [2] is redundant. �
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4. Some further results

Now we study the case of β = eα, which partially answers the open problem

stated in [1].

Theorem 4.1. If β = eα, then equation (1.1) has no (bounded) periodic solution.

P r o o f. Let β = eα. To get a contradiction assume that there exists a (bounded)

periodic solution of equation (1.1) except for the equilibrium solution. In this case,

by the monotonicity, the prime period must be 2. Then there exist x, y ∈ (α,∞)

such that

limx2n = x and limx2n+1 = y.

Hence, the function

F (z) = α+ zeα(1−1/(1−eα−z)) − z for z > α,

has at least one root in (α, x̄) and one root in (x̄,∞). We first observe that

F (x̄) = 0, F ′(x̄) > 0, F (α+) = 0, F ′(α+) = −1, lim
z→∞

F (z) = α > 0.

Therefore, F ′′(z) = 0 has at least 4 solutions in (α,∞). On the other hand, putting

β = eα in (3.9), (3.10) and (3.11), we obtain that

F ′′(z) = −αe2α−3ze−α/(1−eα−z)

(1 − eα−z)4
·G(z) for z > α,

where

G(z) := e2z(z − 2)− eα+z(αz − 4)− e2α(z + 2).

We again consider the function G on [α,∞). Then, for z > α,

G′(z) = e2z(2z − 3)− eα+z(αz + α− 4)− e2α, G′′(z) = ezH(z),

where

H(z) := 4ez(z − 1)− eα(αz + 2α− 4).

Then we see that

H ′(z) = 4zez − αeα.

The function H ′ is strictly increasing in [α,∞). Since H ′(α) = 3αeα > 0 and

lim
z→∞

H ′(z) = ∞, the function H is strictly increasing in [α,∞). Observe that

H(α) = αeα(2− α).
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We have two possible cases:

(a) The case of α > 2. In this case, condition (2.7) holds. Then, from Proposi-

tion 2.2 in [2], we see that F ′′(z) = 0 has exactly one solution in (α,∞) under the

condition (2.7), which gives a contradiction.

(b) The case of 0 < α < 2. In this case we get H(α) > 0. Hence H(z) > 0 for

every z ∈ [α,∞). Since G′′(z) = ezH(z), we have G′′(z) > 0 for z ∈ [α,∞). Then

the function G′ is strictly increasing in [α,∞). So, we obtain that G′(z) = 0 has at

most one root in (α,∞). Also, since G(α) = −α2e2α < 0, we get that F ′′(z) = 0 has

exactly one solution in (α,∞). This is a contradiction. �

The following result shows that a similar situation in Theorem 4.1 is also valid

for β > eα.

Theorem 4.2. If β > eα, then equation (1.1) has no (bounded) periodic solution.

P r o o f. Let β > eα. As in the proof of Theorem 4.1, to get a contradiction

assume that there exists a (bounded) periodic solution of equation (1.1) except for

the equilibrium solution. We again consider the following function:

F (z) = α+ βze−α/(1−βe−z) − z for z > α and z 6= lnβ.

We know that

F (x̄) = 0, F ′(x̄) > 0, F (lnβ−) = +∞, F (lnβ+) = α− lnβ < 0

lim
z→∞

F (z) = +∞.

It is easy to check that x̄ > lnβ. We first observe that if

z ∈ (α, ln β) ⇒ 1− βe−α < 1− βe−z < 0 ⇒ − α

1− βe−z
> 0

⇒ e−α/(1−βe−z) > 1 ⇒ βe−α/(1−βe−z) > β > 1.

Since

F ′(z) = βe−α/(1−βe−z) +
αβ2ze−z

(1− βe−z)2
e−α/(1−βe−z) − 1,

we see that F ′(z) > 0 for every α < z < lnβ. Now using the fact that F (α) > 0,

the equation F (z) = 0 has no solution in the interval (α, lnβ) since F is strictly

increasing in (α, lnβ). If equation (1.1) has a periodic solution, then we immediately

see that F (z) = 0 has at least one root in (lnβ, x̄) and one root in (x̄,∞). This

means that F ′′(z) = 0 has at least 3 solutions in (lnβ,∞). Now, for z > lnβ, we
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consider the functions G and H defined in (3.10) and (3.11), respectively. Then, we

know that

F ′′(z) = −αβ2e−3ze−α/(1−βe−z)

(1− βe−z)4
·G(z), G′′(z) = ezH(z).

Then using the cases (I) and (II) in the proof of Theorem 3.1, one can say that

F ′′(z) = 0 has at most 2 solutions in (lnβ,∞). This contradiction completes the

proof. �

Finally, combining all results we get the following characterization for positive

solutions of equation (1.1).

Corollary 4.3. Every positive solution of equation (1.1) except for the equilib-

rium solution converges to the unique period 2 cycle if and only if (3.13) holds.
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