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Abstract. In this paper we consider two versions of the Collatz-Wielandt quotient for a
pair of nonnegative operators A,B that map a given pointed generating cone in the first
space into a given pointed generating cone in the second space. If the two spaces and two
cones are identical, and B is the identity operator, then one version of this quotient is the
spectral radius of A. In some applications, as commodity pricing, power control in wireless
networks and quantum information theory, one needs to deal with the Collatz-Wielandt
quotient for two nonnegative operators. In this paper we treat the two important cases:
a pair of rectangular nonnegative matrices and a pair of completely positive operators. We
give a characterization of minimal optimal solutions and polynomially computable bounds
on the Collatz-Wielandt quotient.
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1. Introduction

The celebrated Perron-Frobenius theorem describes important spectral properties

of a square matrix A with nonnegative entries [32], [14], [15], [16]. In particular, the

spectral radius ̺(A) (the maximum of absolute values of all eigenvalues of A) is an

eigenvalue of A. Furthermore, to ̺(A) corresponds a nonnegative eigenvector y:

(1) Ay = ̺(A)y, y 
 0,

which is called the Perron-Frobenius eigenvector, abbreviated as PF-eigenvector.

If A is irreducible, then y > 0 and is unique up to multiplication by a positive
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scalar. There are many classical and recent books giving a full account of the Perron-

Frobenius theory of nonnegative matrices, for example [3], [12], [17], [18], [24], [30],

[31], [36]. It is well known that PF-theory found innumerous applications in all

sciences. See for example [1], [2], [34], [39] and references therein.

We denote by Rm×n ⊃ Rm×n
+ the sets of real valued and nonnegative valuedm×n

matrices, respectively. (Rm = Rm×1 ⊃ Rm
+ = Rm×1

+ the set of column vectors and

the subset of nonnegative column vectors with m coordinates, respectively.) Let

[n] = {1, . . . , n}, 0/0 = 0, +/0 = ∞.
One of the most applicable feature of PF-theory is the Collatz-Wielandt charac-

terization of ̺(A) for A ∈ Rm×m
+ , see [8], [40]:

(2) inf
x=(x1,...,xm)⊤>0

max
i∈[m]

(Ax)i
xi

= ̺(A).

Theorem 6.4.5 in [12] gives a necessary and sufficient conditions on A that the above

infimum is achieved for a positive x. In a simple noiseless model in wireless networks

1/̺(A) is the reception threshold, [39], [34] and [12], §6.9.

Given a pair of nonsquare matrices A,B ∈ Rm×n one can consider the generalized

eigenvalue problem

(3) Ax = λBx, A,B ∈ Rm×n, λ ∈ C.

In order to assure that one has a finite number of eigenvalues, one needs to assume

that max(rank A, rank B) = n, which implies that m > n. There is an extensive

literature on this problem, see for example [9], [4], [7] and references therein. A first

attempt to generalize Perron-Frobenius theory to (3), to the best knowledge of the

author, is by Mangasarian [28]. He showed the assumption that B⊤y > 0 implies

that A⊤y > 0 yields that (3) has a discrete and finite spectrum, and the eigenvalue

with the largest absolute value is real, nonnegative and the corresponding eigenvector

is nonnegative.

The Perron-Frobenius theory was generalized to nonnegative operators A with

respect to a closed pointed generating cone K in finite and infinite dimensional

Banach spaces [26], [25], [35], [3]. There is also a natural generalization of the

Collatz-Wielandt characterizations to the spectral radius of ̺(A), see [10], [11].

The aim of this paper is to consider the Collatz-Wielandt type infmax problem for

a pair of nonnegative operators A,B : RN1 → RN2 , with respect to closed pointed

generating conesKi ⊂ RNi for i = 1, 2: AK1, BK1 ⊆ K2. Denote byK
o
i the interior

of Ki. Let

(4) r(A,B,x) = inf{t, t ∈ [0,∞], tBx−Ax ∈ K2} for x ∈ K1 \ {0}.
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We set r(A,B,x) = ∞ if tBx−Ax 6∈ K2 for each t > 0. Define

(5) ̺(A,B) = inf{r(A,B,x),x ∈ Ko
1}.

In general, ̺(A,B) can have any value in [0,∞]. We call ̺(A,B) the Collatz-Wielandt

quotient.

We also consider the following variation of ̺(A,B):

(6) ˆ̺(A,B) = inf{r(A,B,x),x ∈ K1 \ {0}}.

We call ˆ̺(A,B) the weak Collatz-Wielandt quotient. Clearly, ˆ̺(A,B) 6 ̺(A,B).

Even in the classical case, where A ∈ Rm×m
+ and B is the identity matrix, one

may have the strict inequality ˆ̺(A, I) < ̺(A, I) = ̺(A). A simple example is the

following one. Assume that A is a direct sum of k irreducible matrices A1, . . . , Ak,

where ̺(A1) > ̺(A2) > . . . > ̺(Ak). (So A is block diagonal diag(A1, . . . , Ak).)

Then ̺(A, I) = ̺(A1) and ˆ̺(A, I) = ̺(Ak). See Section 3. We show that if either A

or B are positive, then the Collatz-Wielandt quotient and the weak Collatz-Wielandt

quotient are equal. Furthermore, we have the following stability results. Suppose

that we have two sequences of positive matrices Al and Bl that converge to A and B,

respectively. Then lim
l→∞

̺(A,Bl) = ˆ̺(A,B), and lim
l→∞

̺(Al, B) = ̺(A,B) provided

that B does not have a zero row. Thus, the Collatz-Wielandt quotient and the weak

Collatz-Wielandt quotient seem to be equally important quantities.

In the first part of this paper we consider the Collatz-Wielandt quotient for a pair

of rectangular nonnegative matrices A,B ∈ Rm×n
+ , i.e.:

(7) ̺(A,B) := inf
x=(x1,...,xn)⊤>0

max
i∈[m]

(Ax)i
(Bx)i

.

(So Ki = RNi

+ for i = 1, 2 and N1 = n, N2 = m.)

We now give a simple model of commodity pricing, where the above Collatz-

Wielandt ratio arises. (Another example in wireless networks discussed in [1], [2] is

discussed in Section 6.) Assume that we havem producers of commodities which pro-

duce n commodities. Each producer i produces a subset of commodities C(i) ⊂ [n].

(We do not exclude the possibility that two producers produce the same commod-

ity j.) Assume that the price of commodity j is xj > 0. Then x = (x1, . . . , xn)
⊤ > 0

is the pricing vector. The expected value of the cost of producer i for one unit of his

products is
n∑

j=1

aijxj . The expected value of the profit of producer i for one unit is
n∑

j=1

bijxj . One can impose the obvious conditions that aij = 0 if j ∈ C(i) (producer i

does not buy the commodity it produces), and bij = 0 if j 6∈ C(i) (the producer sells
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only the items it produces). Then the ratio of the profit to the expense for producer i

is (Bx)i/(Ax)i. We call this ratio profit factor. In order that each producer will stay

in business for the pricing vector x one needs to satisfy the minimum profit factor

requirement: min
i∈[m]

(Bx)i/(Ax)i > β. Then the optimal pricing choice is the solution

to the supremum problem

sup
x>0

min
i∈[m]

(Bx)i
(Ax)i

=
1

̺(A,B)
.

We are interested in a nontrivial case, where ̺(A,B) < ∞. It is easy to show that
this inequality holds if and only if the following condition is satisfied: For each zero

row i of B row i of A is zero.

We now summarize our results for the extremal problem (7). Assume that

̺(A,B) ∈ (0,∞). (It is easy to characterize the case ̺(A,B) = 0.) Then there

exists y ∈ Rn
+ \ {0} such that ̺(A,B) = r(A,B,y) with the following prop-

erty: There exists a sequence yk > 0 for k ∈ N such that lim
k→∞

yk = y and

lim
k→∞

r(A,B,yk) = ̺(A,B) = r(A,B,y). Such y is called an optimal y. An opti-

mal vector y is called minimal optimal if y is an optimal vector, and there is no

optimal vector z whose support is strictly contained in the support of y. We call y

a generalized Perron-Frobenius vector, abbreviated as GPF-eigenvector, if

(8) Ay = ̺(A,B)By, y 
 0.

Note that if (3) has an eigenvector x > 0 with a corresponding λ > 0, then

̺(A,B) 6 λ and it is easy to give examples where ̺(A,B) < λ and each opti-

mal y is not a GPF-eigenvector. (See the example in the end of Section 5.) We

next show, as briefly pointed in [2], that for any ε ∈ (0, 1) we can find one of the

following: Either ̺(A,B) < ε or we can find an approximation of ̺(A,B, ε) such

that |̺(A,B, ε) − ̺(A,B)| 6 ε̺(A,B), in polynomial time. This follows from the

well known fact that a solvability of linear system of equations is polynomial in the

data, see [20], [27].

We show that each minimal optimal y has at most m positive coordinates. The

existence of an optimal y with at mostm+1 positive coordinates in a general setting

is shown in [2]. Furthermore, if there exists an optimal vector with l > m positive

coordinates, then the rank of the matrix A′ − ̺(A,B)B′ is less than m. (Here

A′, B′ ∈ Rm×l
+ are the submatrices induced by l positive entries of y.) This result

implies that for each minimal optimal y′ with l positive coordinates there exists

a minimal optimal y with the same support as y such that (Ay − ̺(A,B)By)i = 0

for at least l indices i ∈ [m]. That is, there exists a minimal optimal solution that is
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a GPF-eigenvector of the system Ãy = ̺(A,B)B̃y, where Ã, B̃ are the submatrices

of A, B obtained from A, B by erasing a set of rows I in A, B, respectively. For the
optimal commodity pricing model that we introduced above, the above results have

the following meaning: First each zero coordinate j of y implies that the commodity j

is not produced. The producers corresponding to the set I have their profit ratio
above 1/̺(A,B). For all other producers the profit ratio is 1/̺(A,B). Similar results

are shown for ˆ̺(A,B).

We also give the following generalization of the main result in [2]. Namely, if B

has no zero row and each column has one positive element, then there is an optimal

solution which is a GPF-eigenvector. That is, in the wireless model of transmitters-

receivers, where each receiver i can obtain a signal from several transmitters, which

can only transmit to the receiver i, there is a choice to pick exactly one transmit-

ter j(i). (However, if the system is not irreducible, as defined in [2], this choice would

imply that some other transmitters to receiver i′ should be shut off.)

The second part of this paper is a generalization of the above results to pairs

of completely positive operators, which frequently appear in quantum information

theory as quantum channels. Denote by Hn ⊃ H+,n ⊃ H+,1,n the real space of n×n

Hermitian matrices, the cone of positive semidefinite matrices and the convex set of

positive semidefinite matrices of trace one, respectively. Note that H+,n is a pointed

generating cone in Hn ≡ Rn2

. In quantum information theory (QIT),H+,1,n is the set

of density matrices (mixed states). Recall that C : Hn → Hm is called a completely

positive operator, abbreviated as CP-operator, if

(9) C(X) =

k∑

j=1

TjXT ∗
j , Tj ∈ Cm×n, j ∈ [k].

(Here Cm×n is the space of m × n complex valued matrices and T ∗ = T⊤ for T ∈
Cm×n.) Then C(H+,n) ⊆ H+,m, that is, C is a nonnegative operator with respect to
the pair of cones H+,n,H+,m. In QIT, C is called quantum channel if

(10)
k∑

j=1

T ∗
j Tj = In.

That is, C is a quantum channel if and only if C is a CP trace preserving operator. In
particular, C maps a density matrix to a density matrix. Quantum channel is one of
the most significant notions in QIT, see [38], [22], [37], [21], [29], [23], [33]. The second

main problem we discuss are ̺(A,B) and ˆ̺(A,B) for two CP-operatorsA,B : H+,n →
H+,m. The quantities ̺(A,B) and ˆ̺(A,B) could be viewed as the quantum analog of
the optimal commodity pricing assignment discussed above. We show that most of
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our results on ˆ̺(A,B) generalize to ˆ̺(A,B), and some results on ̺(A,B) generalize

to ̺(A,B). We show that there exists weak optimal Y ∈ H+,n \ {0} such that
r(A,B, Y ) = ˆ̺(A,B). A weak optimal Y is called minimal if there is no optimal
Z such that range Z is strictly contained in range Y . We show that a minimal

weak optimal Y has rank at most m. Assume that Y ′ is a minimal weak optimal

with rank l. Then there exists a minimal weak optimal Y satisfying range Y ′ =

range Y such that rank (ˆ̺(A,B)B − A)(Y ) 6 m− l. In particular, if l = m, then Y

is a weak GPF-eigenvector. Assume that B is δ-positive for a given rational δ > 0.

(This assumption can be verified in polynomial time.) Then ̺(A,B) = ˆ̺(A,B).
Furthermore, ̺(A,B) has an ε ∈ (0, 1) approximation in polynomial time in 〈A〉 +
〈B〉+ 〈δ〉+ 〈ε〉. (We need the assumption that B is δ-positive because verifying the
existence of a nonzero positive semidefinite matrix satisfying (A − tB)(X) 6 0 is

a feasibility problem in semidefinite programming, which may not be polynomially

solvable.)

We now survey briefly the content of the paper. Section 2 discusses basic properties

of ̺(A,B) and ˆ̺(A,B). Section 3 discusses that classical case of the pair A,B ∈
Rm×n

+ , where m = n and B is the idenity matrix I. We show that ̺(A, I) =

̺(A). If A is not irreducible, then one may have the strict inequality ˆ̺(A, I) <

̺(A, I). We characterize completely ˆ̺(A, I). In Section 4 we give a polynomial

time approximation algorithm to ̺(A,B) and ˆ̺(A,B). In Section 5 we give various

properties of minimal optimal and minimal weak optimal vectors for the pair A,B ∈
Rm×n

+ . In Section 6 we discuss WN-pairs A,B ∈ Rm×n
+ arising in wireless network.

That is, B has no zero row and one positive element in each column. Such pairs were

introduced and studied in [1], [2]. We give generalizations of the results in [1], [2],

since we do not restrict ourselves to S-irreducible systems. Sections 7, 8 and 9 are

devoted to a study of the Collatz-Wielandt quotients for pairs of completely positive

operators.

2. Preliminary results

For a positive integer n let 1n = (1, . . . , 1)⊤ ∈ Rn. Let S ⊆ [m], T ⊆ [n]. Denote

by 1S = (x1, . . . , xm)⊤ ∈ Rm
+ the characteristic vector of S, i.e. xi = 1 if i ∈ S

and xi = 0 otherwise. So 1∅ = 0,1[m] = 1m. Assume that F ∈ Rm×n. Denote by

F (S, T ) the matrix obtained from F be deleting the rows of F in the set S and the

columns in the set T . So F (S, T ) ∈ R(m−|S|)×(n−|T |). If either S = [m] or T = [n],

we denote F (S, T ) by ∅. Denote by F [S, T ] the matrix F ([m] \ S, [n] \ T ).
Assume that A,B ∈ Rm×n

+ . For x = (x1, . . . , xn)
⊤ 
 0 we define

r(A,B,x) = inf{t, t > 0, Ax 6 tBx}.
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Note that r(A,B,x) ∈ [0,∞]. That is, r(A,B,x) = ∞ if and only if there exists

i ∈ [m] such that (Ax)i > 0 and (Bx)i = 0. Equivalently

r(A,B,x) = max
{ (Ax)i
(Bx)i

, i ∈ [m]
}
.

Hence,

(11) ̺(A,B) = inf{r(A,B,x), x > 0}, ˆ̺(A,B) = inf{r(A,B,x), x ∈ Rn
+ \ {0}}.

The following lemma is deduced straightforwardly.

Lemma 2.1. Assume that A,B ∈ Rm×n
+ .

(1) ̺(0, B) = ˆ̺(0, B) = 0.

(2) ̺(A,B) = ∞ if and only if B has a zero row i, while the ith row of A is not zero.

(3) Let S be a strict subset of [m]. Then for each x 
 0, r(A(S, ∅), B(S, ∅),x) 6

r(A,B,x). In particular, ̺(A,B) > ̺(A(S, ∅), B(S, ∅)) and ˆ̺(A,B) > ˆ̺(A(S, ∅),
B(S, ∅)). Suppose furthermore that for each i ∈ S the row i of A and B are

zero. Then for each x 
 0, r(A(S, ∅), B(S, ∅),x) = r(A,B,x). In particular,

̺(A,B) = ̺(A(S, ∅), B(S, ∅)) and ˆ̺(A,B) = ˆ̺(A(S, ∅), B(S, ∅)).
(4) Let T be a strict subset of [n] such that A[[m], T ] = B[[m], T ] = 0. Then

̺(A,B) = ̺(A(∅, T ), B(∅, T )) and ˆ̺(A,B) = ˆ̺(A(∅, T ), B(∅, T )).
(5) Suppose that for each zero row i ofB the row i ofA is zero. Then r(A,B,1n)<∞.
(6) There exists x ∈ Rn

+ \ {0} such that r(A,B,x) < ∞ if and only if there exists
a nonempty subset T ⊆ [n] such that r(A,B,1T ) < ∞.

(7) The weak Collatz-Wielandt quotient is positive if and only if the union of the

supports of the rows of A is [n], i.e. A⊤1m > 0.

(8) Assume that A1, B1 ∈ Rm×n
+ and A1 6 A,B 6 B1. Then ̺(A1, B1) 6 ̺(A,B)

and ˆ̺(A1, B1) 6 ˆ̺(A,B).

The following lemma gives a lower bound on ˆ̺(A,B):

Lemma 2.2. Let A = [aij ], B = [bij ] ∈ Rm×n
+ . Then

(12) ˆ̺(A,B) > min
j∈[n]

∑m
i=1 aij∑m
i=1 bij

.

P r o o f. Clearly, it is enough to assume that ˆ̺(A,B) < ∞. Assume that x 
 0

and r(A,B,x) < ∞. Observe that

r(A,B,x) >

∑m
i=1(Ax)i∑m
i=1(Bx)i

=
1mAx

1mBx
=

∑n
j=1(1mA)jxj∑n
j=1(1mB)jxj

> min
j∈[n]

(1mA)j
(1mB)j

.

�
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Lemma 2.3. Assume that A,B ∈ Rm×n
+ . Let I ⊆ [m] be the set of the zero rows

of B. Denote by T the union of the supports of the rows i ∈ I of A. Then one of
the following conditions holds:

(1) If I = ∅, then ̺(A,B) 6 r(A,B,1n) < ∞.
(2) If T = [n], then ˆ̺(A,B) = ∞.
(3) Assume that I 6= ∅ and T is a strict subset of [n]. Then ˆ̺(A,B) = ˆ̺(A(I, T ),

B(I, T )).

P r o o f. (1) If I = ∅, then (B1n)i > 0 for each i and r(A,B,1n) =

max
i∈[m]

(A1n)i/(B1n)i < ∞.
(2) Suppose that T = [n]. Let x 
 0. Then there exists i ∈ I such that (Ax)i > 0

and (Bx)i = 0. Hence, r(A,B,x) = ∞, which yields that ˆ̺(A,B) = ∞.
(3) Suppose that I 6= ∅, T ⊂ [n]. Let x 
 0 and assume that (supp x) ∩

T 6= ∅. Then there exists i ∈ I such that (Ax)i > 0. As (Bx)i = 0, it fol-

lows that r(A,B,x) = ∞. Hence, to determine ˆ̺(A,B) it is enough to consider

inf{r(A,B,x), x 
 0, supp x ⊆ [n] \ T }. Note that if supp x ⊆ [n] \ T , then

(Ax)i = (Bx)i = 0 for i ∈ I. Therefore, ˆ̺(A,B) = ˆ̺(A(I, T ), B(I, T )). �

The above lemma gives rise to a polynomial time algorithm to check if ˆ̺(A,B) is

finite or infinite:

A l g o r i t hm 2.4. Given A = [aij ], B = [bij ] ∈ Rm×n
+ , set S = [n], I = J ⊆ [m]

the set of zero rows of B and T the union of the supports of the rows i ∈ I of A;
While I 6= ∅ and T 6= S

Replace A,B, S by A(I, T ), B(I, T ), S \ T ;
Replace I by the set of zero rows of B;
Replace T by the union of the supports of the rows i ∈ I of A;
Replace J by I ∪ J ;
Else

If I = ∅, then ˆ̺(A,B) 6 r(A,B, 1S) < ∞ and stop;
If T = S, then ˆ̺(A,B) = ∞ and stop;
Denote by Πn ⊂ Rn

+ the set of probability vectors on Rn
+. Let Π

o
n be the interior

of Πn, i.e. all probability vectors with positive coordinates.

We now discuss some properties of ̺(A,B) and ˆ̺(A,B).

Lemma 2.5. Let A,B ∈ Rm×n
+ .

(1) The function r(A,B,x) is lower semicontinuous on Rm×n
+ ×Rm×n

+ × (Rn
+ \ {0}).

(2) Let T ⊂ [n] be a nonempty subset such that B1T > 0. Assume that x ∈ Rn
+,

supy = T . Suppose that the sequence 0 < xk ∈ Rn, k ∈ N, converges to x. Then

lim
k→∞

r(A,B,xk) = r(A,B,x). In particular, ̺(A[[m], T ], B[[m], T ]) > ̺(A,B).
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(3) Assume that

A = [A1 A2], A1 =

[
A11

0

]
, A2 =

[
A12

A22

]
, B = [B1 B2],

B1 =

[
B11

0

]
, B2 =

[
B12

B22

]
,

where A11, B11 ∈ Rm′×l, 1 6 m′ < m, 1 6 l < n, and B111l > 0. Suppose that

̺(A11, B11) < ̺(A,B). Then ̺(A22, B22) = ̺(A,B).

P r o o f. (1) Suppose that Ak, Bk ∈ Rm×n
+ , xk ∈ Rn

+ \ {0}, k ∈ N and assume

that

lim
k→∞

Ak = A, lim
k→∞

Bk = B, lim
k→∞

xk = x ∈ Rn
+ \ {0}.

Suppose that t = lim inf
k→∞

r(Ak, Bk,xk) ∈ [0,∞]. If t = ∞, then r(A,B,x) 6 t.

Assume that t ∈ [0,∞). By passing to subsequences we can assume without loss of

generality that lim
k→∞

r(Ak, Bk,xk) = t. As Akxk 6 r(Ak, Bk,xk)xk, we deduce that

Ax 6 tBx. Hence, r(A,B,x) 6 t.

(2) As B1T > 0 and supx = T , we deduce that Bx > 0. Therefore,

̺(A,B) 6 lim
k→∞

r(A,B,xk) = lim
k→∞

max
i∈[m]

(Axk)i
(Bxk)i

= max
i∈[m]

(Ax)i
(Bx)i

= r(A,B,x).

Let z ∈ R|T | be the projection of x on its support. Then z > 0 and r(A,B,x) =

r(A[[m], T ], B[[m], T ], z). Hence ̺(A[[m], T ], B[[m], T ]) > ̺(A,B).

(3) Assume that ̺(A11, B11) < t0 = ̺(A,B). Suppose to the contrary that

̺(A22, B22) < t0. Let 0 < z ∈ Rl, 0 < u ∈ Rn−l such that r(A11, B11, z) <

t0, r(A22, B22,u) < t0. For s > 0 let x(s) = (z⊤, su⊤)⊤. As B11z > 0, there exists

K > 0 such that B11z > KA12u. Then

A11z+ sA12u 6 r(A11, B11, z)B11z+ sKB11z = (r(A11, B11 + sK)B11z,

A22su 6 r(A22, B22)su.

Thus, for s small enough we have the inequality r(A,B,x(s)) < t0, which is a con-

tradiction. �

Lemma 2.6. Let m,n > 1 be integers. Assume that A,B ∈ Rm×n
+ . Then:

(1) There exists y ∈ Rn
+ \ {0} such that ˆ̺(A,B) = r(A,B,y). (Such y is called

a weak optimal y.)

(2) There exists y ∈ Rn
+ \ {0} such that ̺(A,B) = r(A,B,y) with the following

property: There exists a sequence yk > 0 for k ∈ N such that lim
k→∞

yk = y and

lim
k→∞

r(A,B,yk) = ̺(A,B) = r(A,B,y). (Such y is called an optimal y.)
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P r o o f. (1) If ˆ̺(A,B) = ∞, then each x ∈ Πn is weak optimal. Assume that

ˆ̺(A,B) < ∞. Choose a sequence of yk ∈ Πn such that tk := r(A,B,yk) ∈ (0,∞),

k ∈ N, tk > tk+1 for k ∈ N, such that lim
k→∞

= ˆ̺(A,B). Pick up a subsequence of yk

which converges to y ∈ Πn. Part (1) of Lemma 2.5 yields that r(A,B,y) 6 ˆ̺(A,B).

Thus r(A,B,y) = ˆ̺(A,B) and y is weak optimal.

(2) If ̺(A,B) = ∞, then each x ∈ Π◦
n is optimal. Assume that ̺(A,B) < ∞.

Without loss of generality we may assume that B does not have a zero row. We show

by induction on n that there exists an optimal y. For n = 1 this claim is trivial.

Assume that the claim holds for n 6 N . Suppose that n = N + 1. There exists

a sequence of yk ∈ Π◦
n such that tk := r(A,B,yk) ∈ (0,∞), k ∈ N, tk > tk+1 for

k ∈ N, such that lim
k→∞

= ̺(A,B). Pick up a subsequence of yk which converges to

w ∈ Πn. Part (1) of Lemma 2.5 yields that r(A,B,w) 6 ̺(A,B). If ̺(A,B) = 0,

we deduce that w is optimal. Assume that ̺(A,B) > 0. If r(A,B,w) = ̺(A,B),

then w is minimal. Assume that r(A,B,w) < ̺(A,B). Hence, T = supp w is

a strict subset of [n]. Furthermore, part (2) of Lemma 2.5 yields that B1T is not

positive.

By relabeling the elements of [n] we can assume that T = [l] for some l ∈ [n− 1].

Let K = {l+ 1, . . . , n} and denote

A1 = A[[m], [l]], B1 = B[[m], [l]], A2 = A[[m],K], B2 = B[[m],K].

Let I be the set of zero rows of B1. As B11l is not positive, |I| > 1. As

r(A,B,w) < ∞, we deduce that I is a subset of zero rows of A1. Let 0 < z ∈ Rl

be the projection of w on its support. Relabel the rows of A and B so that

I = {m′ + 1, . . . ,m}.
Assume first that m′ = 0, i.e. I = [m]. So A1 = B1 = 0. Part 4 of Lemma 2.1

yields that ̺(A,B) = ̺(A2, B2). As |K| = n − l < n, we can apply the induction

hypothesis to (A2, B2) to deduce the existence of an optimal u ∈ Πn−l, supp y ⊆ K.
That is, there exists a sequence 0 < uk ∈ Rn−l, k ∈ N such that lim

k→∞
uk = u

and lim
k→∞

r(A2, B2,uk) = ̺(A2, B2). Choose a sequence 0 < zk ∈ Rl such that

lim
k→∞

zk = 0. Let vk = (z⊤k ,u
⊤
k ) > 0 for k ∈ N. Clearly r(A,B,vk) = r(A2, B2,uk).

Hence y = (0⊤,u⊤)⊤) is optimal.

Assume that m′ = m−|I| ∈ [m−1]. It now follows that the conditions of part (3)

of Lemma 2.5 hold. The induction hypothesis yields that there exists u ∈ Rn−l
+ \ {0}

such that r(A22, B22,u) = ̺(A22, B22) = ̺(A,B). Furthermore, there exists a se-

quence 0 < vk ∈ Rn−l, k ∈ N such that lim
k→∞

vk = v and lim
k→∞

r(A2, B2,vk) =

̺(A2, B2). For s > 0 let v(s) = (z⊤, sv)⊤. As in the proof of part (3) of Lemma 2.5

we deduce r(A,B,v(s)) 6 max(r(A11, B11, z) + Ks, ̺(A,B)). Choose s0 > 0 such
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that r(A11, B11, z) + Ks0 < ̺(A,B). Then r(A,B,v(s0)) = ̺(A2, B2) = ̺(A,B).

Set vk = (z⊤, s0u
⊤
k )

⊤ > 0, k ∈ N. So lim
k→∞

vk = v(t0). Choose K
′ > K such that

r(A11, B11, z)+K ′s0 < ̺(A,B). As lim
k→∞

uk → u, it follows that there exists N such

that A12uk 6 K ′Bz for k > N . Therefore, r(A,B,vk) = ̺(A2, B2,uk) for k > N .

This implies that v(s0) is optimal. �

We call y a minimal (weak) optimal if y is (weak) optimal and there is no (weak)

optimal w such that the support of w is strictly contained in the support of y.

A vector y 
 0 is called a weak GPF-eigenvector if Ay = ˆ̺(A,B)y.

The next lemma discusses connections between ̺(A,B) and ˆ̺(A,B).

Lemma 2.7. Let A,B ∈ R
m,n
+ . Then:

(1) ˆ̺(A,B) 6 ̺(A,B).

(2) Let y be weak optimal. If either Ay > 0 or By > 0, then ̺(A,B) = ˆ̺(A,B)

and y is optimal.

(3) Assume that either A > 0 or B > 0. Then ̺(A,B) = ˆ̺(A,B) and each weak

optimal y is optimal.

(4) Assume that 0 < Bl ∈ Rm×n for l ∈ N and lim
l→∞

Bl = B. Then lim
l→∞

̺(A,Bl) =

ˆ̺(A,B).

(5) Assume that 0 < Al ∈ Rm×n for l ∈ N and lim
l→∞

Al = A. If B does not have

a zero row, then lim
l→∞

̺(Al, B) = ̺(A,B).

P r o o f. (1) The inequality ˆ̺(A,B) 6 ̺(A,B) is clear.

(2) Let y ∈ Πn be weak optimal. So r(A,B,y) = ˆ̺(A,B). Assume first that

By > 0. For t > 0 define y(t) = y + t1n. Note that lim
tց0

y(t) = y. As (By)i > 0 for

i ∈ [n], it follows that

lim
tց0

(Ay(t))i
(By(t))i

=
(Ay)i
(By)i

.

Hence

̺(A,B) 6 lim
tց0

r(A,B,y(t)) = r(A,B,y) = ˆ̺(A,B) ⇒ ̺(A,B) = ˆ̺(A,B),

and y is optimal.

Assume second that Ay > 0. Suppose that B has a zero row. Then ̺(A,B) =

ˆ̺(A,B) = ∞ and y is optimal. Assume now that B does not have a zero row.

Then ̺(A,B) < ∞. As Ay 6 ˆ̺(A,B)By, it follows that ˆ̺(A,B) > 0 and By > 0.

Therefore the first case yields ̺(A,B) = ˆ̺(A,B) and y is optimal.

(3) This claim follows from part 2.

567



(4) Assume that we have a sequence xl ∈ Πn such that r(A,Bl) = r(A,Bl,xl)

for each l ∈ N. Denote t = lim sup r(A,Bl), s = lim inf r(A,Bl). Let Bl = Cl +

Dl, Cl, Dl > 0, where supp Cl = supp B and supp Cl ∩ supp Dl = ∅. Clearly,
lim
l→∞

Cl = B and lim
l→∞

Dl = 0. Fix ε > 0. Then there exists M(ε) such that

B 6 (1 + ε)Cl for l > M(ε). In particular, B 6 (1 + ε)Bl for l > M(ε). Hence,

1

1 + ε
r(A,Bl,x) = r(A, (1 + ε)Bl,x) 6 r(A,B,x).

Therefore,

1

1 + ε
̺(A,Bl) =

1

1 + ε
ˆ̺(A,Bl) = ˆ̺(A, (1 + ε)Bl) 6 ˆ̺(A,B) for l > M(ε).

As ε > 0 was chosen arbitrarily, it follows that t 6 ˆ̺(A,B).

There exists a subsequence 1 6 l1 < l2 < . . . such that lim
k→∞

̺(A,Blk) = s and

lim
k→∞

xlk = x ∈ Πn. The inequality Axlk 6 r(A,Blk )Blkxlk yields Ax 6 sBx. (We

may have that s = ∞.) Suppose first that s < ∞. Hence s > ˆ̺(A,B). Combine

that with the inequality t 6 ˆ̺(A,B) to deduce that s = t = ˆ̺(A,B). Assume second

that s = ∞. Then t = ∞ and the inequality t 6 ˆ̺(A,B) yields that ˆ̺(A,B) = ∞.
(5) Denote t = lim sup r(Al, B), s = lim inf r(Al, B). Let Al = Cl+Dl, Cl, Dl > 0,

where supp Cl = supp A and supp Cl ∩ supp Dl = ∅. Clearly, lim
l→∞

Cl = A and

lim
l→∞

Dl = 0. Fix ε ∈ (0, 1) in the rest of the proof. Then there existsM(ε) such that

(1 − ε)Cl 6 A 6 (1 + ε)Cl for l > M(ε). In particular, A 6 (1 + ε)Al for l > M(ε).

Hence, for x 
 0

(1 + ε)r(Al, B,x) = r((1 + ε)Al, B,x) > r(A,B,x).

Therefore,

(1 + ε)̺(Al, B) = ̺((1 + ε)Al, B) > ̺(A,B) for l > M(ε).

As ε > 0 was chosen arbitrarily, it follows that s > ̺(A,B). As B does not have

zero row, it follows that ̺(A,B) 6 r(A,B,1n) < ∞. Let x(ε) ∈ Π◦
n satisfy Ax(ε) 6

(̺(A,B)+ε)Bx(ε). As B does not have a zero row, it follows that Bx(ε) > 0. Since

lim
l→∞

Dl = 0, there exists L(ε) > M(ε) such that Dlx(ε) 6 εBx(ε) for l > L(ε). Then

Alx(ε) = Clx(ε) +Dlx(ε) 6 (1− ε)−1Ax(ε) + εBx(ε)

6 ((1 − ε)−1(̺(A,B) + ε) + ε)Bx(ε) for l > L(ε).
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That is, ̺(Al, B) 6 ((1 − ε)−1(̺(A,B) + ε) for l > L(ε). Therefore

t 6 ((1− ε)−1(̺(A,B) + ε) + ε).

As ε was an arbitrary number in the open interval (0, 1), it follows that t 6 ̺(A,B).

Combine that with the inequality s > ̺(A,B) to deduce that s = t = ̺(A,B). �

3. The classical case

In this section we discuss the case where m = n and B is the identity matrix I.

We first recall some basic results on directed graphs ~G = (V, ~E). Here V is a finite

set of vertices and ~E ⊆ V ×V is the set of diedges of ~G. An ordered tuple (v, w) ∈ ~E

is a diedge from v to w. The diedge (v, v) is called a loop. A dipath ~P in ~G is

an ordered set of diedges {(v1, v2), (v2, v3), . . . , (vp, vp+1)} for a positive integer p.
A dipath ~P is closed if vp+1 = v1. The digraph ~G is called acyclic or diforest if ~G

does not have a closed path. The digraph ~G is called strongly connected if for any

two distinct vertices v, w ∈ V there is a dipath in ~G from v to w. (A digraph on one

vertex with no diedge is strongly connected.)

ForW ⊆ V we define the induced subdigraph ~G(W ) = (W, ~E(W )), where ~E(W ) is

the set of diedges in ~E that connects two vertices inW . Assume that ~G is not strongly

connected. Then the subgraph ~G(W ) is called strongly connected component of ~G

if the subgraph ~G(W ) is strongly connected but ~G(U) is not strongly connected for

each U that strictly contains W . Let V =
k⋃

i=1

Vi be the partition of V corresponding

to the strongly connected components of ~G. That is, ~G(Vi) for i ∈ [k] are all strongly

connected components of ~G. The reduced digraph ~Gred = (Vred, ~Ered) of ~G is defined

as follows: First, Vred = {{V1}, . . . , {Vk}}. Second, a diedge ({Vi}, {Vj}) is in ~Ered if

i 6= j and there is a diedge in ~E from Vi to Vj . For a strongly connected digraph ~G

we let Vred = {{V }} and ~Ered = ∅. It is straightforward to show that ~Gred is acyclic.

With each digraph we associated an undirected graph G = (V,E), where undirected

edge {i, j} is in E if either (i, j) or (j, i) in ~E. Then G is a union of its connected

components G(Wj), j ∈ [c], where each Vi is a subset of some Wj . Clearly, each Wj

is a union of some subsets V1, . . . , Vk. The subset Wj induces a subdigraph ~G(Wj).

Observe that ~G(Wj) induces a reduced digraph ~G(Wj)red, which is a subdigraph

of the reduced graph of ~Gred. The subdigraph ~G(Wj)red is called a ditree of ~Gred.

A vertex {Vp} is called a source of ~Gred if there is no {Vq} such that there is a diedge
in ~Gred from {Vq} to {Vp}. A vertex {Vp} is called a sink of ~Gred if there is no {Vq}
such that there is a diedge in ~Gred from {Vp} to {Vq}. Clearly, each ditree ~G(Wj)red
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contains at least one source {Vp} and one sink {Vq}. Denote by R(~G) ⊆ [k] all

indices p ∈ [k] such that {Vp} is a source.
Let A = [aij ] ∈ Rm×m

+ . One associates with A the digraph ~G(A) = ([m], ~E(A)).

A diedge (i, j) is in ~E(A) if and only if aij > 0. A is called irreducible if ~G(A) is

strongly connected. Let G(A) be the induced undirected graph. Then after renaming

the indices, A is permutation similar to a block diagonal matrix diag(A1, . . . , Ac) if

and only if G(A) has c-connected components. Each Aj corresponds to ~G(Wj). For

each nonzero subset U ⊆ [m] denote by A[U ] the submatrix [aij ]i,j∈U . Each Aj can

be assumed to be in the Frobenius normal form [12], Theorem 6.4.4. It is a block

upper triangular form, where each diagonal block is an irreducible matrix A[Vi],

where Vi ⊆ Wj . (The order of the diagonal blocks depends on the labeling of the

vertices of the ditree ~G(Wj)red. One such labeling is given in [12], Theorem 6.4.4.)

We assume that the top diagonal block of A[Wj ] is A[Vp], where {Vp} is a source in
the ditree ~G(Wj)red and the bottom diagonal block is A[Vq ], where {Vq} is a sink
in ~G(Wj)red. Furthermore, every source {Vp} can be chosen to be the top diagonal
block in A[Wj ]. In particular

̺(A) = max
i∈[k]

̺(A[Vi]), ̺(A[Wj ]) = max
Vi⊆Wj

̺(A[Vi]).

We first bring the well-known result due to Wielandt [40].

Lemma 3.1. Let A ∈ Rm×m
+ be an irreducible matrix. Then ̺(A, I) = ˆ̺(A, I) =

̺(A). Furthermore, in characterization (2) in Theorem 3.2 equality holds if and only

if x is the PF-eigenvector of A.

P r o o f. The equality ̺(A, I) = ̺(A), i.e. the characterization (2) was proved

by Wielandt [40]. Wielandt also showed that equality in (2) holds if and only if x is

the PF-eigenvector of A. The equality ̺(A, I) = ˆ̺(A, I) follows from the following

observation: Assume that x = (x1, . . . , xm)⊤ 
 0 and 1 6 |supp x| < m. Then

r(A, I,x) = ∞. Indeed, let I = [m] \ supp x. As ~G(A) is irreducible, there exists

(i, j) ∈ ~E(A) such that i ∈ I and j ∈ supp x. Hence aij > 0. Therefore, xi = 0 and

(Ax)i > 0, which yield that (Ax)i/xi = ∞. �

Theorem 3.2. Assume that A ∈ Rm×m
+ . Then:

(1) ̺(A, I) = ̺(A), and Ay = ̺(A)y for some y 
 0.

(2) There exists x = (x1, . . . , xm)⊤ > 0 such that ̺(A) = max
i∈[m]

(Ax)i/xi if and only

if the following condition holds: Let ~Gred be the induced reduced graph by A

with the set of vertices {{V1}, . . . , {Vk}}. The equality ̺(A[Vj ]) = ̺(A) implies

that {Vj} is a sink of ~Gred.
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(3) The vector x ∈ Π◦
m such that ̺(A) = max

i∈[m]
(Ax)i/xi is unique if and only if A is

irreducible.

(4) ˆ̺(A, I) = min
i∈R(~G(A))

̺(A[Vi]) and Aw = ˆ̺(A, I)w for some w 
 0.

P r o o f. (1) Recall Perron’s result that claims that a positive square matrix C

has a positive eigenvector u corresponding to ̺(C). Assume that B ∈ Rm×m
+ .

Let J ∈ Rm×m
+ be a matrix whose all entries are 1. Set Bl = B + J/l for each

positive integer l. Perron’s theorem implies the existence of ul ∈ Πo
m such that

Blul = ̺(Bl)ul. Since Πm is compact, there is a subsequence of {ul} which con-
verges to u ∈ Πm. Clearly, lim

l→∞
̺(Bl) = ̺(B). Hence, Bu = ̺(B)u. Choose

B = A. Then r(A, I,ul) < ̺(Al, I.ul) = ̺(Al). Therefore ̺(A, I) 6 ̺(A). Fur-

thermore A has a nonnegative eigenvector y corresponding to A. Let x > 0. We

show that r(A, I,x) > ̺(A). Assume that A⊤u = ̺(A)u, where u 
 0. Then

u⊤(r(A, I,x)x) > u⊤Ax = ̺(A)u⊤x. As x > 0, we deduce that u⊤x > 0. Hence,

r(A, I) > ̺(A). (This argument is in [8].) Hence ̺(A, I) > ̺(A) and ̺(A, I) = ̺(A).

(2) Assume that there exists x=(x1, . . . , xm)⊤>0 such that ̺(A)=max
i∈[m]

(Ax)i/xi.

Let {{V1}, . . . , {Vk}} be the vertices of the reduced graph induced by A. Suppose

that ̺(A) = ̺(A[Vj ]). Let z = (z1, . . . , zl)
⊤ ∈ R

|Vj |
+ be the subvector of x restricted

to the set Vj . Hence

̺(A) = ̺(A[Vj ]) 6 max
i∈[|Vj |]

(A[Vj ]z)i
zi

6 max
i∈Vj

(Ax)i
xi

6 ̺(A).

Therefore, all the inequalities are equalities. The first equality and Lemma 3.1 yield

that A[Vj ]z = ̺(A[Vj ])z. The second equality yields that Vj is a sink.

Vice versa assume that ̺(A[Vj ]) = ̺(A) if and only if {Vj} is a sink of ~Gred. We

now show that there exists x = (x1, . . . , xm)⊤ > 0 such that equality holds in (2).

Without loss of generality we may assume that ̺(A) > 0. (Otherwise A = 0.) Let

C0(~Gred) ⊆ {{V1}, . . . , {Vk}} be the set of the sink vertices in ~Gred. Assume that

{Vj} is a sink. Then the restriction of x to Vj is the PF-eigenvector xj > 0 of

A[Vj ]. If C0(~Gred) = {{V1}, . . . , {Vk}}, we easily deduce that equality holds in (2)
for this x. If not, let us consider the subsets Cl(~Gred) ⊂ {{V1}, . . . , {Vk}} for l =
0, 1, . . . , p, which is a partition of {{V1}, . . . , {Vk}}, defined as follows. For l > 1 the

set Cl(~Gred) ⊂ {{V1}, . . . , {Vk}} consists of vertices in ~Gred with the maximal path

length l in the digraph ~Gred starting at these vertices. Thus, the diedges in ~Gred

from Cl(~Gred) go only to Cr(~Gred) for r = 0, 1, . . . , l − 1, and each {Vj} ∈ Cl(~Gred)

has at least one diedge. (This corresponds to the Frobenius normal form given

in [12], Theorem 6.4.4.) Suppose that we already determined the restriction of x

to {Vq} ∈ Cr(~Gred) for r 6 l − 1, which is denoted by xq, where xq > 0. We now
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show how to determine xj for each {Vj} ∈ Cl(~Gred). Recall that ̺(A[Vj ]) < ̺(A).

Choose tj ∈ (̺(A[Vj ]), ̺(A)]. We now determine xj by the condition (Ax)[Vj ] = tjxj .

Denote by A[Vj , Vq] the restriction of A to rows in the set Vj and columns in the set

in Vq. Then the above condition is equivalent to

(tjIVj
−A[Vj ])xj =

∑

Vq∈
l−1⋃

r=0

Cr(~Gred)

A[Vj , Vq]xq.

Since all xq > 0 for Vq ∈
l−1⋃
r=0

Cr(~Gred) and at least one of A[Vj , Vq] is a nonzero

nonnegative matrix, it follows that the right hand side in the above equality is

a nonzero nonnegative vector. As tj > ̺(A(Vj)) and A[Vj ] is irreducible, it follows

that (tjIVj
−A[Vj ])

−1 is a positive matrix [12], Lemma 6.4.3. Therefore,

xj = (tjIVj
−A(Vj))

−1
∑

Vq∈
l−1⋃

r=0

Cr(~Gred)

A[Vj , Vq]xq > 0.

This shows that the constructed x is a positive vector. It is left to show that ̺(A) =

max
i∈[m]

(Ax)i/xi. Assume that i ∈ Vj . Then our construction gives that (Ax)i/xi =

tj 6 ̺(A). For a sink {Vj} such that ̺(A(Vj)) = ̺(A) we have that tj = ̺(A).

Hence, ̺(A) = max
i∈[m]

(Ax)i/xi.

(3) The proof of 2 shows that x ∈ Πo
m is unique if and only if A is an irreducible

matrix.

(4) Clearly, it is enough to show the equality ˆ̺(A, I) = min
i∈R(~G(A))

̺(A[Vi]) in the

case where ~G(A)red is a ditree, that is, G(A) is a connected graph. Let {Vi} be
a source of ~G(A)red. So we can choose a Frobenius normal form so that the irreducible

matrix A[Vi] appears in the first diagonal block of the Frobenius normal form F of A.

Let A[Vi]z = ̺(A[Vi])z, where z > 0. Extend z to Rm
+ by addind zero entries for

indices {|Vi| + 1, . . . ,m} to obtain the vector v ∈ Rm
+ . Then Fv = ̺(A[Ui])v.

Rename the indices to deduce that Aw = ̺(A[Ui])w. Hence, r(A, I,w) = ̺(A[Ui])

and ˆ̺(A, I) 6 ̺(A[Ui]). This shows that ˆ̺(A, I) 6 α = min
i∈R(~G(A))

̺(A[Vi]).

It is left to show the reverse inequality r(A, I,x) > α for each x 
 0 such

that r(A, I,x) < ∞. Suppose first that x > 0. The above arguments yield that

r(A, I,x) > ̺(A) > α. Assume now that supp x is a strict subset of [m]. Let I ⊆ [k]

be the set of all i ∈ [k] such that supp x ∩ Vi 6= ∅. We claim that for each i ∈ I
we have the equality supp x ∩ Vi = Vi. Indeed, assume that supp x ∩ Vi is a strict

subset of Vi. Let xi = x[Vi] ∈ R
|Vi|
+ be the restriction of x to Vi. Thus xi 
 0.
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Since A[Vi] is an irreducible matrix, the proof of Lemma 3.1 yields that there exists

p ∈ Vi \ supp x such that (A[Vi]xi)p > 0. As (Ax)p > (A[Vi]xi)p, it follows that

(Ax)p/xp = +/0 = ∞. So r(A, I,x) = ∞, contrary to our assumption. Assume
that {Vi} is a source in ~G(A)red. Clearly r(A, I,x) > r(A[Vi], I,xi). Lemma 3.1

yields that r(A[Vi], I,xi) > ̺(A[Vi]). Hence, r(A[Vi], I,xi) > α. Assume that {Vi}
is not a source. Hence, there is j ∈ [k] such that (j, i) ∈ ~E(~G(A)red). We claim that

supp x ∩ Vj = Vj . Suppose not. So supp x ∩ Vj = ∅. From the definition of the re-
duced graph ~G(A)red it follows there is p ∈ Vj and q ∈ Vi such that apq > 0. Hence,

(Ax)p > 0 and xp = 0. Thus r(A, I,x) = ∞, which contradicts our assumption.
Thus supp x ∩ Vj = Vj . Repeating this argument a number of steps we deduce that

there is a source vertex {Vl} in ~G(A)red such that supp x ∩ Vl = Vl. The previous

arguments yield that r(A, I,x) > ̺(A[Vl]) > α. �

We remark that part 1 of this theorem is well known, part 2 is close to [12],

Theorem 6.4.5, part 3 is perhaps known, and part 4 seems to be new.

E x am p l e 3.3. Let

A =



a 1 1

0 1 1

0 0 1 + a


 ,

where a ∈ (0, 1], and B = I3. Then

(1) ̺(A, I3) = ̺(A) = 1 + a, x = (1 + 2a−1, 2a−1, 1)⊤ is optimal and y = (1, 1, 0)⊤

is minimal optimal;

(2) ˆ̺(A, I) = a and y = (1, 0, 0)⊤ is the unique weak minimal vector in Π3.

P r o o f. (1) It is straightforward to show that r(A, I,x) = (1 + a), hence x is

optimal. Take y(t) = (1, 1, t)⊤ for t > 0. Then r(A,B,y(t)) = 1 + a+ t. Let t → 0

to deduce that y is optimal. Suppose to the contrary that y is not minimal optimal.

Thus either u = (1, 0, 0)⊤ or v = (0, 1, 0)⊤ is minimal optimal. But r(A, I,u) = a

and r(A, I,v) = ∞. Contradiction.
(2) Part 4 of Theorem 3.2 yields that ˆ̺(A, I) = a. It is straightforward to show

that y = (1, 0, 0)⊤ is the unique weak minimal vector in Π3. �
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4. Polynomial approximation of ̺(A,B) and ˆ̺(A,B)

We first recall the fundamental result that a feasibility of a system of linear in-

equalities and minimization of a linear function are polynomial. For simplicity we

state a variant of this fact in the following setting that we need.

Lemma 4.1. Let C ∈ Qm×n, b = (b1, . . . , bm)⊤ ∈ Qm, c = (c1, . . . , cn)
⊤ ∈ Qn.

Then one can find in polynomial time in 〈C〉+ 〈b〉 if the following polytope is empty
or not:

(13) Cx > b, x = (x1, . . . , xn)
⊤
> 0,

n∑

i=1

xi = 1.

Furthermore, if the above polytope is nonempty, then the minimum of the linear

function c⊤x over this polytope can be found in polynomial time.

This result is well known, see for example [27], [20]. To be precise, [27], Corol-

lary 2.3.7 assumes for simplicity that system (13) is solvable, and then one can find

the maximum or minimum of c⊤x, where c ∈ Qn is given and x satisfies (13). To

apply [27], Corollary 2.3.7 for solvable system we consider the following linear pro-

graming problems LPj for j ∈ [m]. Let c⊤j be the jth row of C. Let Cj ∈ Q(j−1)×n,

bj ∈ Qj−1 be the matrix and the column obtained from C and b by deleting the

m− j + 1 rows j, . . . ,m, respectively. Assume that the system

(14) Cjx > bj , x = (x1, . . . , xn)
⊤ > 0,

n∑

i=1

xi = 1

is solvable for j + 1 = l ∈ [n]. (This is trivially true for l = 1.) Now consider

the maximum problem max c⊤l x over the set given by (14) for j = l. Assume that

the maximum is achieved at xl. Then the polytope given by (14) for j = l + 1 is

nonempty if and only if c⊤xl > bl. Hence, by running at mostm linear programming

problems we can determine in polynomial time if system (13) is feasible or not.

Theorem 4.2. Let A,B ∈ Qm×n
+ \ {0}. Assume that ̺(A,B) < ∞. Then for any

ε ∈ (0, 1) ∩ Q one of the following statements can be verified in polynomial time in

〈A〉+ 〈B〉+ 〈ε〉:
(1) The Collatz-Wielandt quotient satisfies ̺(A,B) < ε.

(2) The Collatz-Wielandt quotient is positive and one can find ˜̺(A,B) ∈ Q+ \ {0}
such that

(15) ˜̺(A,B) 6 ̺(A,B) 6 (1 + ε)˜̺(A,B).
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P r o o f. Let t0 = r(A,B,1n) < ∞ andN = ⌈log2 ε−1⌉+1. Set k = 1, tk = 1
2 tk−1

and C = tkB −A. Consider system (13) with b = 0. Assume first that this system

is solvable. Let µi,k be the maximum of xi for system (13) with b = 0 for i ∈ [n].

Assume first that µi,k > 0 for each i ∈ [n]. We claim that ̺(A,B) 6 tk. Indeed,

assume that µi,k = xi,i,k, where xi,k = (x1,i,k, . . . , xn,i,k)
⊤ ∈ Qn satisfies system (13)

with b = 0. Set x = 1
n

n∑
i=1

xi,k to deduce that r(A,B,x) 6 tk. Assume that for

k = 2, . . . , N we have the inequality ̺(A,B) 6 tk. Then ̺(A,B) 6 tN < ε and we

showed condition (1).

Suppose now that for the smallest value k ∈ [N ] one of the following conditions

hold: Either system (13) with C = tkB − A and b = 0 is not solvable or µi,k =

0 for some i ∈ [n]. Then 0 < tk 6 ̺(A,B). Set l = 0, fl = tk, gl = tk−1.

Then fl 6 ̺(A,B) 6 gl. If (gl − fl)/fl 6 ε, then ˜̺(A,B) = fl. If not, set M =

⌈log4/3 (gl − f0)/f0ε⌉ and apply now the bisection algorithm: Let hl = (fl + gl)/2

and C = hlB − A. Consider system (13) with b = 0. Assume first that this

system is solvable. Let µi,l be the minimum of xi for system (13) with b = 0 for

i ∈ [n]. Suppose that µi,l > 0 for each i. Then fl+1 = fl, gl+1 = (fl + gl)/2. If

µi,l = 0 for some i or system (13) with b = 0 is not solvable, set fl+1 = (fl + gl)/2,

gl+1 = gl. Clearly fl+1 6 ̺(A,B) 6 gl+1. Continue this bisection to l = M . Then

˜̺(A,B) = fM and condition (2) holds. �

We now discuss briefly an approximation of ˆ̺(A,B). First use Algorithm 2.4 to de-

termine if ˆ̺(A,B) < ∞. Assume that ˆ̺(A,B) < ∞. Next assume that ˆ̺(A,B) > 0,

that is, condition 7 of Lemma 2.1 holds. Then the right hand side of (12) is a posi-

tive lower bound for ˆ̺(A,B). Use Algorithm 2.4 to find a nonempty subset S ⊆ [n]

such that r(A,B,1S) < ∞. Thus r(A,B,1S) is an upper bound on ˆ̺(A,B). Next

apply a simplified version of the bisection algorithm used in the proof of Theorem 4.2

(without considering the minimum problem) to deduce:

Proposition 4.3. Let A,B ∈ Qm×n
+ \ {0}. Assume that 0 < ˆ̺(A,B) < ∞.

Then for any ε ∈ (0, 1) ∩ Q one can find ¯̺(A,B) ∈ Q+ \ {0} in polynomial time in
〈A〉+ 〈B〉+ 〈ε〉* such that

(16) ¯̺(A,B) 6 ˆ̺(A,B) 6 (1 + ε)¯̺(A,B).
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5. Minimal optimal solutions

We first discuss weak optimal solutions which are easier to characterize.

Theorem 5.1. Let m,n be positive integers. Assume that A = [aij ], B = [bij ] ∈
Rm×n

+ . Suppose that ˆ̺(A,B) < ∞.
(1) Assume that y ∈ Rn

+ \ {0} is weak optimal. Then at least one coordinate of
(A− ˆ̺(A,B)B)y is zero.

(2) Assume that there exists a weak optimal vector y ∈ Rn
+ with l positive coordi-

nates. Let A′, B′ ∈ Rm×l be the submatrices of A and B, respectively, induced

by the positive coordinates of y. If l > m, then rank (A′ − ˆ̺(A,B)B′) < m.

(3) A minimal weak optimal y has at most m positive coordinates.

(4) Let y be a minimal weak optimal with m positive coordinates. Then y is a weak

GPF-vector. Furthermore, rank (A′ − ˆ̺(A,B)B′) = m− 1.

(5) Let y′ be a minimal weak optimal with l < m positive coordinates. Then there

exists a minimal weak optimal y satisfying supp y = supp y′ with the following

property: Let K = {k ∈ [m], (Ay)k = ˆ̺(A,B)(By)k}. Then |K| > l.

P r o o f. (1) Let D(t) = A − tB and t0 = ˆ̺(A,B). As r(A,B,y) = t0, it

follows that C(t0)y 6 0. Suppose to the contrary that C(t0)y < 0. Then t0 > 0.

Furthermore, there exists 0 6 t1 < t0 such that C(t1)y 6 0. Hence, r(A,B,y) 6

t1 < t0, contrary to our assumption.

(2) Assume that y is weak optimal vector which has l positive coordinates. Let

A′, B′ ∈ Rm×l be defined as in the theorem. Assume that 0 < z ∈ Rl is the subvector

of y induced by its positive coordinates. Let C(t) = A′−tB′ and t0 = ˆ̺(A,B). Then

C(t0)z = −w, w ∈ Rm
+ . Assume l > m and rank C(t0) = m. Then there exists an

m×m submatrix of C(t0) which is nonsingular. By permuting the columns of C(t0)

we can assume the following. Let A′ = [A1 A2], B
′ = [B1 B2], where A1, B1 ∈ Rm×m

and det(A1 − t0B1) 6= 0. Denote C1(t) = A1 − tB1, C2(t) = A2 − tC2. Assume that

z⊤ = (u⊤,v⊤), 0 < u ∈ Rm, 0 < v ∈ Rl−m. Thus C1(t0)u = −(C2(t0)v+w). Since

detC1(t0) 6= 0, there exists ε > 0 such that detC1(t) 6= 0 for |t − t0| < ε. Observe

that u = −C1(t0)
−1(C2(t0)v + w) > 0. Let u(t) = −C1(t)

−1(C2(t)v + w) for t ∈
(t0−ε, t0+ε). Then u(t) is continuous in the interval (t0−ε, t0+ε). Hence, there exists

ε1 ∈ (0, ε) such that u(t) > 0 for |t−t0| 6 ε1. Set t1 = t0−ε1 and z
′ = (u(t1)

⊤,v⊤)⊤.

Thus C(t1)z
′ = −w, which implies that r(A′, B′, z′) 6 t1 < ˆ̺(A′, B′) = ˆ̺(A,B).

This contradicts the definition of ˆ̺(A′, B′). Hence, rank C(t0) < m.

(3) Assume to the contrary that y is a minimal weak optimal solution with l > m

positive coordinates. Let A′, B′, C(t), z,w, t0 be defined as in part 2 of the proof. We

showed that rank C(t0) < m. Hence, dimkerC(t0) > 2. Choose x ∈ kerC(t0) \ {0}
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such that x has at least one negative coordinate and one positive coordinate. So y

is not proportional to x. Let z(s) = z + sx for s > 0. Note that C(t0)z(s) = −w.

Let s0 > 0 be the biggest s such that z(s) > 0. Then z(s0) 
 0, z(s0) has at least

one zero component and C(t0)z(s0) = −w. Thus r(A′, B′, z(s0)) 6 t0 = ˆ̺(A′, B′).

Hence r(A′, B′, z(s0)) = t0, which contradicts the minimality of y.

(4) Assume that y is a minimal weak optimal with m positive coordinates. Use

the notations of parts 2 and 3 of the proof. We claim that C(t0)z = 0. Suppose

not. By part 2 rank C(t0) < m. Let x ∈ kerC(t0) \ {0}. So y is not proportional
to x. By considering ±x we may assume that x has at least one negative coordinate.

Define z(s0) as in part (3) to deduce that y is not minimal. So C(t0)z = 0. Assume

to the contrary that rank C(t0) < m− 1. Choose x ∈ kerC(t0) to have positive and

negative coordinates. Then we conclude as above that z is not minimal.

(5) Let y′ be a minimal weak optimal with l < m positive coordinates. Part 1

of the theorem yields that C(t0)y
′ has at least one zero coordinate. Thus if l = 1,

part 5 of the theorem is trivial.

Assume that l > 1. Consider all minimal weak optimal ỹ such that supp ỹ =

supp y′. Let K(ỹ) = {k ∈ [m], (Aỹ)k = ˆ̺(A,B)(Bỹ)k}. Choose a minimal weak
optimal y such that |K(y)| = p is maximal. We claim that p > l. Suppose not.

Let K = K(y). Assume the notations of part 2. Let Ã = A′[K, [n]], B̃ = B′[K, [n]],

C̃(t) = C(t)[K, [n]]. Hence C̃(t0))z = 0. Suppose first that rank C̃(t0) 6 l − 2.

Hence, there exists u ∈ Rl satisfying C̃(t0)u = 0 such that u has positive and

negative coordinates. Thus, z and u are linearly independent. Let v ∈ Rm be

the extension of u by adding zero coordinates. In particular, v has a zero coor-

dinate where y has zero coordinate. Let s > 0 and consider z(s) = z + su and

y(s) = y + sv. Let s1 > 0 be the smallest value such that z(s1) > 0 and z(s1) has

at least one zero coordinate. Since y was minimal, we deduce that y(s1) is not weak

optimal. That is, there exists s2 ∈ (0, s1) with the following property: There ex-

ists j ∈ [m] \ K so that (Ay(s2))j = t0(By(s2))j and (Ay(s2))k 6 t0(By(s2))k

for k ∈ [m] \ {K ∪ {j}}. Clearly (Ay(s2))k = t0(By(s2))k for k ∈ K ∪ {j}.
So y(s2) is optimal and |K(y(s2))| > |K| = |K(y)|. This contradicts the choice
of y.

It is left to consider the case where |K| = l − 1 and rank C̃(t0) = l − 1. We

proceed similarly as in the proof of (2). Permute the columns of C(t) so that C̃(t) =

[C̃1(t) C̃2(t)] ∈ R(l−1)×l and C̃1(t0) ∈ R(l−1)×(l−1) is a nonsingular matrix. Therefore,

C̃1(t) is nonsingular for |t−t0| < ε for some ε > 0. Assume that z⊤ = (u⊤,v⊤). Thus

u = −(C̃(t0))
−1C̃1(t0)v. As u > 0, it follows that u(t) = −(C̃(t))−1C̃1(t)v > 0 for

|t − t0| < ε′ for some ε′ ∈ (0, ε). Let w(t)⊤ = (u(t)⊤,v⊤). As (A′w(t0))j <

(t0 − ε1)(B
′w(t0))j for j ∈ [m] \ K and some ε1 > 0, there exists t′ ∈ (t0 − ε′, t0)

such that C̃(t′)w(t) = 0 and (A′w(t′))j < t′(B′w(t′))j for j ∈ [m] \ K. That is,
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ˆ̺(A′, B′) 6 t′. This contradicts our assumption that ˆ̺(A′, B′) = t0. Therefore,

|K| > l. �

Parts (4)–(5) and their proofs yield:

Corollary 5.2. Let m,n be positive integers. Assume that A,B ∈ Rm×n
+ . Sup-

pose that ˆ̺(A,B) < ∞. Then there exists a minimal weak optimal y ∈ Rn
+ with at

most m positive coordinates, and a minimal I ⊂ [m], possibly an empty set, with

the following properties:

(17) A(I, ∅)y = ˆ̺(A,B)B(I, ∅)y, m− |I| > |supp y|.

Furthermore, if m − |I| = |supp y|, then the only nonzero solution of (A(I), ∅) −
ˆ̺(A,B)B(I, ∅))x = 0, whose nonzero coordinates lie in suppy, are multiples of y.

We now show that some similar results apply to optimal vectors.

Theorem 5.3. Let m,n be positive integers. Assume that A = [aij ], B = [bij ] ∈
Rm×n

+ . Suppose that ̺(A,B) < ∞.
(1) Assume that y ∈ Rn

+ \ {0} is optimal. Then at least one coordinate of
(A− ̺(A,B)B)y is zero.

(2) Assume that there exists an optimal vector y ∈ Rn
+ with l positive coordinates.

Let A′, B′ ∈ Rm×l be the submatrices of A and B, respectively, induced by the

positive coordinates of y. If l > m, then rank (A′ − ̺(A,B)B′) < m.

(3) There exists an optimal y which has at most m positive coordinates.

P r o o f. (1) Part 2 of Lemma 2.6 yields the existence of a sequence yl ∈ Π◦
n such

that lim
l→∞

yl = y, and lim
l→∞

r(A,B,yl) = r(A,B,y) = ̺(A,B). Clearly, at least one

coordinate of (A−r(A,B,yl)B)yl is zero. Hence, there exists an infinite subsequence

{lp}, p ∈ N such that a fixed coordinate of (A − r(A,B,yl)B)ylp is zero. Letting

p → ∞ we deduce the claim.
(2) Let t0 = ̺(A,B). Assume first that By > 0. Then part (3) of Lemma 2.5

yields that r(A,B,x) > ̺(A,B) for each x ∈ Rn
+, supx = supy. Then we proceed

as in the proof of part 2 of Theorem 5.1, using the notations and the results in this

proof. Rename the columns of A and B so that the first l coordinates of y are

positive. Let A′ = A[[m], [l]], B′ = B[[m], [l]], C(t) = A′ − tB′, and 0 < z ∈ Rl

be the projection of y on its first l coordinates. As By = B′z > 0, it follows that

we can choose t1 < t0 such that B
′z′ > 0. Hence, r(A′, B′, z′) 6 t1 < t0, which

contradicts the claim that r(A′, B′, z′) > t0. Hence, rank C(t0) < m.
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Assume that I 6= ∅ is the set of zero coordinates of By. That is, I is the set of
the zero rows of B′. As ̺(A,B) < ∞, we deduce that the set of zero rows of A′

contains I. Clearly, rank C(t0) < m.

(3) We prove the claim by induction on n. For n = 1 the vector y = (1) is

optimal, hence m > l = 1. Assume that the claim holds for n 6 N and suppose that

n = N+1. Let y be a minimal optimal with vector with minimal number of positive

coordinates l. Assume the conventions of parts (1)–(2) of the proof. Suppose to the

contrary that l > m. Then we proceed to the proof of part (3) of Theorem 5.1. Let

t0 and 0 < z ∈ Rl be as in part 2. Let J = {l + 1, . . . , n}. (If l = n, then J = ∅.)
Assume that x ∈ kerC(t0)\{0} such that x has at least one negative coordinate and
one positive coordinate. Set z(s) = z+ sx and choose s0 > 0 the biggest s such that

z(s0) > 0. Then z′ = z(s0) 
 0 and z′ has at least one zero coordinate. Clearly,

r(A′, B′, z′) 6 r(A′, B′, z) = t0.

Suppose first that r(A′, B′, z′) < t0. Part (2) of Lemma 2.5 yields that B
′z′ is

not a positive vector. Hence B′ has at least one zero row. Let I be the set of zero
rows of B. As r(A′, B′, z′) < t0, it follows that the set of zero rows of A contains I.
Hence ˆ̺(A′, B′) 6 r(A′, B′, z′) < t0.

Assume first that |I| = m. Then A′ = B′ = 0. If J = ∅, then A = A′,

B = B′, and vector (1, 0, . . . , 0)⊤ is a minimal optimal vector, contrary to our

assumption. Hence |J | > 1. Clearly, ̺(A,B) = ̺(A[[m], [J ]], B[[m], [J ]]) and

an optimal vector of (A[[m], [J ]], B[[m], [J ]]) can be extended trivially, by adding

zero coordinates, to an optimal vector of (A,B). The induction hypothesis on the

pair (A[[m], [J ]], B[[m], [J ]]) yields the existence of an optimal w ∈ Rn−l
+ satisfy-

ing |supw| 6 m. Extend trivially w to Rn
+ to obtain an optimal vector y with

supy 6 m, contrary to our assumption.

Assume that |I| = m − m′ ∈ [m − 1]. Rename the rows of A and B so

that I = {m′ + 1, . . . ,m}. Let C = A[[m′], [l]], D = B[[m′], [l]]. Clearly

ˆ̺(C,D) = ˆ̺(A′, B′) < t0. Let us consider a weak minimal vector w ∈ Rl
+ cor-

responding to (C,D) with minimal number of positive coordinates. Theorem 5.1

yields that p = |supw| 6 m′. Rename the first l columns of A and B so that

the first p coordinates of w are positive. Let 0 < u ∈ Rp be the projection

of w on its first p-coordinates. Let C′ = C[[m′], [p]], D′ = D[[m′], [p]]. Ob-

serve that ˆ̺(C,D) = r(C,D,w) = r(C′, D′,u) = ˆ̺(C′, D′) < t0. Let I ′ be

the set of zero rows of D′. We claim that m′ > p + |I ′|. Recall the set of
zero rows in C′ contains I ′. Let A11 = C′(I ′, ∅), B11 = D′(I ′, ∅). Clearly,
ˆ̺(C′, D′) = ˆ̺(A11, B11). Furthermore, x ∈ R

p
+ is a weak optimal vector of

(A11, B11) if and only if it is a weak optimal vector of (C
′, D′). Note that each

weak optimal vector of (C′, D′) can be trivially extended to a weak optimal vec-

tor of (C,D). Since a weak optimal vector of (C,D) has at least p positive co-
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ordinates, it follows that each optimal vector of (A11, B11) is positive. Hence,

̺(A11, B11) = ˆ̺(A11, B11) < t0.

Apply Theorem 5.1 to minimal optimal vectors of (A11, B11) to deduce the in-

equality m′ − |I ′| > p. Let m′′ = m′ − |I ′| rearrange the first m′ rows of A and B so

that I = {m′′ + 1, . . . ,m′}. Let K = {p+ 1, . . . , n}. Observe

A = [A1 A2], A1 = A[[m], [p]] =

[
A11

0

]
, A2 = A[[m], [K]] =

[
A12

A22

]
,

B = [B1 B2], B1 = B[[m], [p]] =

[
B11

0

]
, B2 = B[[m], [K]] =

[
B12

B22

]
,

A11, B11 ∈ R
m′′×p
+ , A22, B22 ∈ R(m−m′′)×(n−p).

As I ′ was the set of zero rows of D′, we deduce that B11 has no zero rows. Hence

B111p > 0. Thus the conditions of part (3) of Lemma 2.5 hold. Thus ̺(A22, B22) =

t0. We now can apply the induction hypothesis on the optimal vector of the pair

(A22, B22). That is, there exists an optimal v ∈ R
n−p
+ satisfying |supu| 6 m −m′′.

We now use the arguments of the proof of part (2) of Lemma 2.6 to deduce that

y = (u⊤, s1v
⊤)⊤ is an optimal for the pair (A,B) for some s1 > 0. Note that

|supy| = |supu|+ |supv| 6 p+m−m′′ 6 m′′ + (m−m′′) = m, which contradicts

our assumption.

It is left to discuss the case where r(A′, B′, z(s0)) = ̺(A,B). Let x̂ ∈ Rn be the

trivial extensions of x to Rn. Then Ax̂ = t0x̂. Let y(s) = y + sx̂ ∈ Rn. Then

(A − t0B)y(s) = (A − t0B)y 6 0. Hence r(A,B,y(s)) 6 t0 for y(s) > 0. This

holds for s ∈ [0, s0]. Note that our assumption is that r(A,B,y(s0)) = t0. We claim

that y(s0) is optimal. Recall that there exists a sequence 0 < yk ∈ Rn such that

lim
k→∞

yk = y, lim
k→∞

r(A,B,yk) = r(A,B,y) = t0 > 0. Let yl(s) = yl + sx̂. Then

(18) (A− t0B)yk(s) = (A− t0B)yk 6 (r(A,B,yk)− t0)yk, k ∈ N.

Let yk = ỹk + vk, where ỹk is obtained by replacing the positive coordinates of yk

with zero coordinates in the places y has zero coordinates. Then vk = yk − ỹk > 0.

The coordinates of vk are positive where the coordinates of ỹk are zero, and the

coordinates of vk are zero where the coordinates of ỹk are positive. Thus yk(s) =

y(s) + (ỹk − y) + vk. Fix s ∈ (0, s0). We claim that there exists K(s) > 1 and

N(s) > 0 such that for k > N(s) we have the inequality yk 6 K(s)yk(s). Indeed,

as y(s) has positive coordinates where y has positive coordinates, it follows that

there exists K(s) > 1 such that y 6 K(s)y(s)/2. Clearly vk 6 K(s)vk for all

k ∈ N. As lim
k→∞

(ỹk − y) = 0, it follows that there exists N(s) such that (ỹk − y) 6

K(s)y(s)/2 for k > N(s). Hence, yk 6 K(s)yk(s) and yk(s) > 0 for k > N(s).
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Therefore, r(A,B,yk(s)) > t0 for k > N(s). Use (18) to deduce that r(A,B,yk(s)) 6

r(A,B,yk) for k > N(s).

Choose an increasing sequence 0 < s1 < s2 < . . . which converges to s0. Choose

an increasing subsequence lj , j ∈ N such that lj > N(sj), |ylj (sj) − y(sj)| < 1/j

and r(A,B,yj(sj)) ∈ [t0, t0 + 1/j]. So lim
j→∞

ylj(sj) = y(s0) and y(s0) is optimal.

This contradicts our assumption that y is optimal vector with minimum number of

positive coordinates. �

We now give a simple example of two positive invertible stochastic matrices A,B ∈
R2×2

+ for which there is a unique optimal y ∈ Π2 with one positive coordinate.

Proposition 5.4. Let

A =

[
a 1− a

b 1− b

]
, B =

[
1− a a

1− b b

]
, 0 < b < a <

1

2
.

Then ̺(A,B) = ˆ̺(A,B) = a/(1− a) < 1 and z = (1, 0)⊤ is the unique optimal

vector in Π2, which is not a GPF-eigenvector.

P r o o f. As a, b ∈ (0, 12 ), it follows that

min
x∈Π2

(Ax)1
(Bx)1

=
(Az)1
(Bz)1

=
a

1− a
, min

x∈Π2

(Ax)2
(Bx)2

=
(Az)2
(Bz)2

=
b

1− b
,

where z = (1, 0)⊤ ∈ Π2 is the unique vector that minimizes both ratios. As

b/(1− b) < a/(1− a), we deduce that ̺(A,B) = a/(1− a) and z is a unique op-

timal in Π2. Clearly, ̺(A,B) < 1. �

Note that rank (A − ̺(A,B)B) = 2, which does not contradict part 2 of Theo-

rem 5.1 as l = 1 < m = 2. Observe that A12 = B12, that is, 1 is the eigenvalue of

the generalized eigenvalue problem (3) with corresponding positive eigenvector 12.

Note that the second eigenvalue of (3) is λ = −1 with corresponding eigenvector

(1,−1)⊤.

Recall that for A ∈ Rn×n
+ we have that ̺(A⊤) = ̺(A). For a pair of A,B ∈ Rm×n

+

such equality does not always hold. For a pair of matrices given in Proposition 5.4

we have ̺(A⊤, B⊤) = (1− a)/a > ̺(A,B). Indeed, observe that (A⊤x)1/(Bx)1 <

(A⊤x)2/(Bx)2 for each x ∈ Π2. The minimum of the bigger ratio is achieved for

z = (1, 0)⊤, which yields the equality ̺(A⊤, B⊤) = (1− a)/a.
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6. A special B appearing in a wireless network

Definition 6.1. A pair A,B ∈ Rm×n
+ is called a WN-pair (a wireless network

pair) if n > m, B has no zero row and each column of B has exactly one positive

entry.

A WN-pair was considered in [2]. It has the following interpretation in a wireless

network [2], Introduction. Each row i in A = [aij ] corresponds to the entity i

(receiver), and each nonzero element in the row i of B = [bij ] corresponds to an

affector (transmitter) of the entity i. In the classical case, m = n and B is a diagonal

matrix with positive diagonal. That is, each entity i has one affector located at

the entry (i, i) of B. In more general case the entity i may have several affectors

corresponding to the positive entries in the row i of B. The assumption that each

column B has one positive entry means that two different entities do not share

a common affector. In view of the wireless network interpretation of the entries of A

and B, it is assumed in [2] that aijbij = 0 for each pair (i, j). In our treatment we

drop this assumption.

Note that if m = n, then B is called a monomial matrix. So B = PD, where P

is an m×m permutation matrix and D is an m×m diagonal matrix with positive

diagonal entires. Hence, B−1 = D−1P⊤.

The following theorem gives an explicit formula for ˆ̺(A,B) of a WN-pair.

Theorem 6.2. Assume that A,B ∈ Rm×n
+ is a WN-pair. Let E(A,B) ⊂ Πn be

a finite set of vectors w that satisfy the following five conditions:

(1) The vector w ∈ Πn has l 6 m nonzero coordinates.

(2) Let I be the set of zero rows of B[[m], supp w]. Then |I| = m − l. (Hence,

B[[m] \ I, supp w] is monomial.)

(3) A[I, supp w] = 0.

(4) The matrix C(w) = B[[m] \ I, supp w]−1A[[m] \ I, supp w] is irreducible.

(5) Let 0 < z ∈ Rl be the projection of w on supp w. Then the vector z is the

PF-eigenvector of C(w).

The above conditions imply that ̺(C(w)) = r(A,B,w) and Aw = ̺(C(w))Bw.

Furthermore,

(19) ˆ̺(A,B) = min{r(A,B,w), w ∈ E(A,B)}.

In particular, y is a minimal weak optimal if and only if y ∈ E(A,B) and y minimizes

the right hand side of (19). Furthermore, each minimal weak optimal is a weak GPF-

eigenvector.
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P r o o f. We first justify that the assumption |I| = m− l in part (2) implies that

B11 = B[[m] \ I, supp w] is a monomial matrix. Since each column of B has exactly

one nonzero entry, it follows that B1 = B[[m], supp w] has l nonzero entries. Since

|I| = m − l, it follows that B11 has l nonzero rows. That is, each row and column

of B11 has exactly one nonzero element. We next show that conditions (1)–(5)

imply that Aw = ̺(C)Bw. Let A1 = A[[m], supp w] and A11 = A[[m] \ I, supp w].

Since z is a PF-eigenvector of C(w), it follows that A11z = ̺(C(w))B11z. Let

A21 = A[I, supp w], B21 = B[I, supp w]. As A21 = B21 = 0, we deduce that A1w =

̺(C(w))B1w, which is equivalent to Aw = ̺(C)Bw. Hence, r(A,B,w) = ̺(C(w)).

In particular, ˆ̺(A,B) 6 r(A,B,w). Denote by ̺1(A,B) the minimum in (19).

Then ˆ̺(A,B) 6 ̺1(A,B). To show equality (19) it is enough to show that a minimal

weak optimal y is in E(A,B). We show this claim by induction on m.

Form = 1 equality (19) trivially holds. Assume that each minimal weak optimal y

is in E(A,B) form 6 M . Suppose thatm = M+1. Assume that y ∈ Πn is a minimal

weak optimal vector with l = |supp y|. Part 3 of Theorem 5.1 yields that l 6 m.

Let 0 < z be the projection of y on its support. Let J = [n] \ supp y, A′ = A(∅,J )

and B′ = B(∅,J ). Then ˆ̺(A,B) = ˆ̺(A′, B′) = r(A′, B′, z). Denote by I the set of
zero rows of B′. As ˆ̺(A,B) < ∞, it follows that I is a set of zero rows of A′. Let

Ã = A(I,J ), B̃ = B(I,J ) ∈ Rm′×l
+ . Thus ˆ̺(A,B) = ˆ̺(Ã, B̃) = r(Ã, B̃, z). As B

does not have a zero column, it follows that B′ does not have a zero column. As I
is the set of zero rows of B′, it follows that B̃ does not have zero columns or zero

rows. As each column of B̃ has one positive element, it follows that B̃ has exactly l

nonzero entries. Hence, m′ 6 l.

The equality ˆ̺(A,B) = ˆ̺(Ã, B̃) = r(Ã, B̃, z) yields that z is a weak optimal

solution for ˆ̺(Ã, B̃) = ˆ̺(A,B). The assumption that y is a minimal weak optimal

yields that z is a minimal weak optimal for (Ã, B̃).

Assume first that m′ < m. We apply the induction hypothesis to Ã, B̃ and

a minimal z to deduce that m′ = l. So B̃ is a monomial matrix, ˆ̺(Ã, B̃) = ̺(C)

and Ãz = ̺(C)B̃z. The induction hypothesis yields that C is irreducible. Hence,

y ∈ E(A,B), as we claimed.

It is left to discuss the case where m′ = m = l. In this case we use part 4 of

Theorem 5.1. So y is a weak GPF-eigenvector. In particular, Ãz = ˆ̺(A,B)B̃z.

Since m′ = m, it follows that B̃ is a monomial matrix. Observe next that ̺(C) =

ˆ̺(Ã, B̃) = ˆ̺(C, I). Furthermore, z > 0 is a minimal weak optimal vector of (C, I).

Apply now part (4) of Theorem 3.2. A minimal weak optimal vector of (C, I) is

supported on Vi ⊆ [m] which corresponds to a source in the reduced graph ~Gred.

Furthermore, A[Vi] is irreducible. Since z > 0, it follows that Vi = [m] and C is

irreducible. Hence, y ∈ E(A,B). �
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The following notion of S-irreducibility was introduced in [2]:

Definition 6.3. A WN-pair A,B ∈ Rm×n
+ is called S-irreducible if the following

condition holds: For each subset K ⊆ [n] of cardinality m such that B[[m],K] is

a monomial matrix, the matrix B[[m],K]−1A[[m],K] is irreducible.

Note that if n = m, then S-irreducibility is equivalent to the irreducibility of

B−1A. The following proposition gives a sufficient condition for an S-irreducible

pair:

Proposition 6.4. Let A = [aij ], B = [bij ] ∈ Rm×n
+ be a WN-pair. Assume that

aij > 0 if bij = 0. Then the pair A,B is irreducible.

P r o o f. Let K ⊆ [n] of cardinality m such that B1 = B[[m],K] is a monomial

matrix. Let A1 = A[[m],K]. So A1 has positive elements where the elements of B1

are zero. Therefore all off-diagonal entries of C = B−1
1 A1 are positive, and C is

irreducible. �

The following theorem gives an explicit formula for ̺(A,B) of WN-pair.

Theorem 6.5. Let A,B ∈ Rm×n
+ be a WN-pair. Denote byM(B) the subset of

all K ⊆ [n] of cardinality m such that the matrix B[[m],K] is monomial. Then

(20) ̺(A,B) = min{̺(B[[m],K]−1A([m],K]), K ∈ M(B)}.

For each K ∈ M(B) such that ̺(A,B) = ̺(B[[m],K]−1A([m],K]) there exists an

optimal y ∈ Πn with the following property: The support of y is contained in K
and y is a GPF-vector. Assume that WN-pair is S-irreducible. Then each such y is

minimal optimal.

P r o o f. Assume first that the pair A,B is S-irreducible. Let E(A,B) be defined

as in Theorem 6.2. We claim that |supp w| = m for each w ∈ E(A,B). Assume to

the contrary that l = |supp w| < m. After relabeling the elements of the set [n] we

can assume that supp w = [l]. Let I be a zero set of B1 = B[[m], [l]]. Recall that

B11 = B[[m]\I, [l]] is monomial and A21 = A[I, [l]] = 0. Relabel the elements of [m]

so that I = {l+1, . . . ,m}. Since B does not have zero rows, there is a subset J of [n]
of cardinality m − l such that B[I,J ] is a monomial matrix. Clearly, [l] ∩ J = ∅.
Let K = [l] ∪ J . Then B1 = B[[m],K] is a monomial matrix, which is a direct sum

of B11 and B[I,J ]. Let A1 = A[[m],K]. Since A,B is S-irreducible, it follows that

C = B−1
1 A1 is irreducible. This contradicts the fact that C[I, [l]] = 0.

Thus, for eachw ∈ E(A,B) we have that |supp w| = m. Let z ∈ Π◦
m be the projec-

tion of w on supp w. Then C(w) = B[[m], supp w]−1A[[m], supp w] is irreducible,
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and z is the PF-vector of C(w). Hence, Bw = B[[m], supp w]z > 0. Theorem 6.2

yields that ̺(C(w)) = r(A,B,w).

Vice versa, each K ∈ M(B) induces w ∈ E(A,B) as follows. Let z ∈ Π◦
m be the

PF-eigenvector of C = B[[m],K]−1A([m],K]). Then w ∈ Πn is obtained from z by

adding zero coordinates. As C is irreducible, we deduce that w ∈ E(A,B).

Recall that ˆ̺(A,B) is given by (19). Assume that y is a minimal weak optimal.

So y ∈ E(A,B) and By > 0. Lemma 2.7 yields that y is minimal optimal. Hence,

̺(A,B) = ˆ̺(A,B). Characterization (20) follows from (19). Furthermore, y is

GPF-vector. This proves the theorem in the case where A,B is S-irreducible.

Assume now that A,B is not S-irreducible. Let J ∈ Rm×n be a matrix whose all

entries are 1. For l ∈ N denote Al = A+J/l. So Al > 0, and Proposition 6.4 implies

that the pair Al, B is S-irreducible. Fix K ∈ M(B). Let C = B[[m],K]−1A([m],K])

and Cl = B[[m],K]−1Al([m],K]). Observe that Al+1 6 Al for l ∈ N. Hence,

Cl+1 6 Cl for l ∈ N, and lim
l→∞

Cl = C. Therefore ̺(Cl), l ∈ N is a decreasing sequence

which converges to ̺(C). Apply characterization (20) to ̺(Al, B). Let ̺1(A,B) be

the right hand side of (20). It now follows that lim
l→∞

̺(Al, B) = ̺1(A,B). Part 5 of

Lemma 2.7 yields that ̺(A,B) = ̺1(A,B). Hence characterization (20) holds.

Assume that K ∈ M(B) and ̺(A,B) = ̺(B[[m],K]−1A([m],K]). For each l ∈ N

let wl ∈ Πn be be the vector induced by the PF-eigenvector 0 < zl ∈ Π◦
m of

B[[m],K]−1Al([m],K]). Let rl = ̺(B[[m],K]−1Al([m],K]). Then Alwl = rlBwl.

Pick a convergent subsequence wlk → y, k → ∞. Then Ay = ̺(A,B)By.

We claim that y is optimal. Choose xl ∈ Π◦
n such that r(Al, B,xl) 6 (̺(Al, B) +

1/l)xl. Clearly, ̺(A,B) 6 ̺(Al, B) 6 rl. Set vl = (1 − 1/l)y + xl/l > 0. Then

lim
k→∞

vlk = y and lim
k→∞

r(Al, B,xl) = ̺(A,B). Hence y is optimal. �

To summarize, if a WN-pair is S-irreducible, then each minimal optimal y, which is

a GPF-vector, corresponds to an optimal choice of one transmitter for each receiver.

If a WN-pair is not S-irreducible, there exists an optimal y, which is a GPF-vector,

and corresponds to an optimal choice of one transmitter for each receiver. However,

for some receivers all their transmitters may shut off. This can happen in the classical

case where m = n and B = Im. For example:

A =




0 1 1 1

1 0 1 1

0 0 0 1

0 0 1 0


 .

Then the only optimal y ∈ Π4 is y = 1
2 (1, 1, 0, 0)

⊤.
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7. A pair of CP-operators

Recall that Cn is equipped with the standard inner product 〈x,y〉 = y∗x. Given

a finite dimensional inner product space over C, with a product 〈·, ·〉, we denote by
S(V) ⊃ S+(V) ⊃ S+,1(V) the real space of self adjoint operators A : V → V, the

cone of positive semidefinite operators and the convex set of all positive semidefinite

operators with trace 1, respectively. By fixing an orthonormal basis e1, . . . , en in V

we identify S(V), S+(V), S+,1,(V) with Hn,H+,n,H+,1,n, respectively.

On Cn×n we have the standard inner product 〈U, V 〉 = tr V ∗U . For X ∈ Hn

we denote by λ1(A) > . . . > λn(X) the n-real eigenvalues of X counted with their

multiplicities. Recall that for X,Y ∈ Hn we say that Y � X if Y − X ∈ H+,n,

i.e. Y −X is positive semidefinite. Denote by H++,n the interior of the cone H+,n,

i.e. the open set of positive definite n × n Hermitian matrices. Then Y ≻ X if

Y − X ∈ H++,n. Let H++,1,n = H+,1,n ∩ H++,n. Denote by CP (n,m) the cone

of completely positive operators from Hn to Hm, given by (9). In the rest of the

paper we assume that A,B ∈ CP (n,m). Then we can define ̺(A,B) and ˆ̺(A,B)
as in (4), (5) and (6) with respect to the cones K1 = H+,n,K2 = H+,m. We call

Y ∈ H+,n\{0} weak optimal if ˆ̺(A,B) = r(A,B, Y ). We call Y ∈ H+,n\{0} optimal
if the following conditions hold: First, ̺(A,B) = r(A,B, Y ). Second, there exists

a sequence Xl ∈ H++,n such that lim
l→∞

Xl = Y and lim
l→∞

r(A,B, Xl) = r(A,B, Y ).

We say that Y is a generalized Perron-Frobenius vector or weak generalized Perron-

Frobenius vector if

(21) A(Y ) = ̺(A,B)B(Y ), or A(Y ) = ˆ̺(A,B)B(Y ), Y ∈ H+,n \ {0},

respectively.

Given a pair C,D ∈ CP (n,m) we say that C � D or C ≻ D if for each X ∈ H+,1,n

we have that C(X) � D(X) or C(X) ≻ D(X), respectively. If D = 0, C ≻ 0 is called

a positive CP-operator. An example of positive CP-operator I(n,m) is the operator

I(n,m)(Z) = (trZ)Im for any Z ∈ Cn×n. (We will justify briefly why I(n,m) is

completely positive in the next section.)

In this paper we will concentrate on ˆ̺(A,B) since this quantity is much easier to
deal with. When the proofs of our results for CP-pair are very similar for the matrix

pair A,B ∈ Rm×n
+ , we will omit the proofs.

For A,B ∈ CP (n,m) and X ∈ Hn,+,1 we give a formula to compute r(A,B, X).

To do that we need to recall the classical definition of the Rayleigh quotient for

A,B ∈ H+,m, see [12], §4.4:
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Lemma 7.1. Let A,B ∈ H+,m. Define

(22) λ(A,B) = sup
x∈Cm\{0}

x∗Ax

x∗Bx
.

Then the above supremum is achieved for some y ∈ Cm \ {0}:
(1) λ(A,B) = ∞ if and only if kerB is not a subset of kerA. Then y ∈ kerB \kerA.
(2) If A = B = 0, then λ(A,B) = 0 and y is any nonzero vector in Cm.

(3) Assume that kerB ⊆ kerA and dimkerB < m. Let V ⊆ Cm be the orthogonal

complement of kerB. Then V is an invariant subspace of A and B. Denote by

A1, B1 the restrictions of A, B to V. Then B−1
1 A1 is a diagonalizable operator

in V with nonnegative eigenvalues. Furthermore,

(23) λ(A,B) = λ(A1, B1) = ̺(B−1
1 A1).

Moreover, a maximizing y of the quotient (22) can be chosen to be an eigenvector

of B−1
1 A1 corresponding to ̺(B

−1
1 A1).

In particular,

(24) λ(A,B) = inf{t > 0, tB � A}.

P r o o f. Parts (1) and (2) are straightforward. We now prove (3). Suppose first

that kerB = {0}. So B ∈ H++,m. Let C =
√
B be the unique root of B such that

C ∈ H++,m. Set x = C−1z. Then

x∗Ax

x∗Bx
=

z∗C−1AC−1z

z∗z
.

Thus the supremum (22) is the maximum characterization of the maximum eigen-

value of C−1AC−1 ∈ H+,m. So

λ(A,B) = λ(C−1AC−1, Im) = ̺(C−1AC−1) = ̺(C−2A) = ̺(B−1A).

As C−1AC−1 ∈ H+,m has nonnegative eigenvalues, it follows that B
−1A is diago-

nizable with nonnegative eigenvalues.

Suppose now that 1 6 dimkerB < m. Let V = kerB⊥. Then: AV ⊆ V = BCn.

Suppose that x ∈ kerB \ {0}. Then

x∗Ax

x∗Bx
=

0

0
= 0.
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Assume that x ∈ Cm \ kerB. Then x = u + v, where u ∈ V \ {0} and v ∈ kerB.

Clearly,
x∗Ax

x∗Bx
=

u∗Au

u∗Bu
=

u∗A1u

u∗B1u
.

Apply the previous arguments to A1, B1 ∈ S+(V) to deduce that λ(A,B) =

λ(A1, B1) = ̺(B−1
1 A1).

The characterization (24) follows straightforward from (22). �

Corollary 7.2. Let A,B ∈ CP (n,m) and X ∈ H+,n \ {0}. Then r(A,B, X) =

λ(A(X),B(X)).

Lemma 7.3. Let A,B ∈ CP (n,m). Then:

(1) ˆ̺(A,B) 6 ̺(A,B).
(2) Assume that A1,B1 ∈ CP (n,m) and A1 � A,B � B1. Then ̺(A1,B1) 6

̺(A,B) and ˆ̺(A1,B1) 6 ˆ̺(A,B).
(3) There exists a weak optimal Y ∈ Hn,+,1.

(4) Assume that there exists a weak optimal Y such that either B(Y ) ≻ 0 or A(Y ) ≻
0. If ̺(A,B) < ∞, then ̺(A,B) = ˆ̺(A,B).

(5) Suppose that ̺(A,B) < ∞, and either A ≻ 0 or B ≻ 0. Then ̺(A,B) = ˆ̺(A,B).

(6) Assume that 0 ≺ Dl ∈ CP (n,m) for l ∈ N and lim
l→∞

Dl = 0. Then lim
l→∞

̺(A,B +

Dl) = ˆ̺(A,B).
(7) Assume that 0 ≺ Dl ∈ CP (n,m) for l ∈ N and lim

l→∞
Dl = 0. If B(In) ≻ 0, then

lim
l→∞

̺(A+Dl,B) = ̺(A,B).

P r o o f. (1) Trivial.

(2) Straightforward from the definitions.

(3) As in the proof of part (1) of Lemma 2.6.

(4) As in the proof of part (2) of Lemma 2.7.

(5) As in the proof of part (3) of Lemma 2.7.

(6) We use similar arguments as in the proof of part (4) of Lemma 2.7 with the

following modifications. Let Bl = Cl + Dl, where Cl = B. Then the arguments of
part (4) of Lemma 2.7 apply.

(7) We use similar arguments as in the proof of part (5) of Lemma 2.7 with the

following modifications. Let Al = Cl + Dl, where Cl = A. Then the arguments of
part (5) of Lemma 2.7 apply. �

Let C : Hn → Hm be a linear operator. Then there exists a dual operator

C∨ : Hm → Hn which is defined as follows. Recall that on Hn one has the inner

product 〈X,Z〉 = trXZ, where trW is the trace of the matrix W ∈ Cn×n. Then
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C∨ : Hm → Hn is defined uniquely by the property 〈C(X), Z〉 = 〈X, C∨(Z)〉 for all
X ∈ Hn and Z ∈ Hm. Assume that C is CP-operator given by (9). Then C is
called unital if C(In) = Im. Recall that C∨ is also completely positive and given by

C∨(Y ) =
k∑

j=1

T ∗
j Y Tj. Thus, C is a quantum channel if and only if C∨ is unital.

The following lemma is an analog of Lemma 2.2:

Lemma 7.4. Let A,B ∈ CP (n,m). Then:

(1) ˆ̺(A,B) = 0 if and only if A∨(Im) is not positive definite.

(2) Assume that A∨(Im) is positive definite. Then

(25) ˆ̺(A,B) > ̺(A∨(Im)−1B∨(Im))−1.

In particular, if A and B are quantum channels, then ̺(A,B) > 1.

P r o o f. (1) Clearly, ˆ̺(A,B) = 0 if and only if there exists X ∈ H+,1,n such that

A(X) = 0. Recall that Y ∈ Hm,+ is zero if and only if 〈Y, Im〉 = 0. So A(X) = 0 if

and only if 〈A(X), Im〉 = 〈X,A∨(Im)〉 = 0. Hence, A∨(Im) 6≻ 0.

Vice versa, assume that A∨(Im) 6≻ 0. Therefore, there exists a vector x ∈ Cn,

x∗x = 1, such that A∨(Im)x = 0. In particular,

0 = x∗A∨(Im)x = 〈xx∗, A∨(Im)〉 = 〈A(xx∗), Im〉 ⇒ A(xx∗) = 0.

(2) Assume that A∨(Im) ≻ 0. Let X ∈ Hn,+,1. Assume that rank X = r ∈ [n].

Then spectral decomposition of X is X =
r∑

i=1

λixix
∗
i , where each λi > 0 and x∗

jxi =

δij for i, j ∈ [r]. As A(X) 6 r(A,B, X)B(X), it follows that

〈X,A∨(Im)〉 = 〈A(X), Im〉 6 r(A,B, X)〈B(X), Im〉 = r(A,B, X)〈X,B∨(Im)〉.

Hence,

r(A,B, X)−1 6
〈X,B∨(Im)〉
〈X,A∨(Im)〉 =

∑r
i=1 λix

∗
iB∨(Im)xi∑r

i=1 λix
∗
iA∨(Im)xi

6 max
i∈[r]

x∗
iB∨(Im)xi

x∗
iA∨(Im)xi

6 λ(B∨(Im),A∨(Im)) = ̺(A∨(Im)−1B∨(Im)).

This establishes (25).

Assume that A and B are quantum channels. Then A∨(Im) = B∨(Im) = In.

Hence, ̺(A∨(Im)−1B∨(Im)) = 1 and then ˆ̺(A,B) > 1. �
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8. Polynomial approximation of ̺(A,B) for δ-positive B

In this section we assume that A,B ∈ CP (n,m). Suppose furthermore that 0 <

̺(A,B) < ∞. We now want to apply the bisection algorithm as in the proof of
Theorem 4.2. To this end, for a given t > 0 we need to decide if the intersection

(tB −A)(H+,1,n) ∩ H+,m is empty or not.

Let X ∈ Hn and Z ∈ Hm. The square of the distance between tB(X)−A(X) and

Z is given by the following quadratic convex function:

(26) ft(X,Z) = 〈tB(X)−A(X)− Z, tB(X)−A(X)− Z〉, X ∈ Hn, Z ∈ Hm.

We assume that (X,Z) are in the cone H+,n ×H+,m subject to the linear constrain

trX = 1. Note that ft(X,Z) > 0. Finding the distance between the two convex sets

(tB −A)(H+,1,n) and H+,m is equivalent to the minimization problem

(27) µ0(t) = min{ft(X,Z), X ∈ H+,1,n, Z ∈ H+,m}.

This minimization problem can be dealt with by the standard interior point meth-

ods [5]. Fix τ > 0. Assume that we found an approximation µ(t) ∈ Q++ of µ0(t) by

an interior method within precision τ in polynomial time in the data. If µ(t) > 2τ ,

then dist((tB −A)(H+,1,n),H+,m) > τ . Hence ̺(A,B) > t. Suppose that µ(t) < 2τ .

How can we estimate from above ̺(A,B)? Recall that µ(t) = ft(X(t), Z(t)). So

tB(X(t)) = A(X(t)) + Z(t) +W,(28)

X(t) ∈ H++,1,n, Z(t) ∈ H++,m, W ∈ Hm, ‖W‖2 = trW 2 = µ(t) < 2τ.

To find an upper bound for ̺(A,B) from (28) we need to assume a positivity condition
on B.

Definition 8.1. Assume that m,n are two positive integers and δ > 0. Then:

(1) Denote by I(n,m) : Hn → Hm the linear transformation I(n,m)(X) = (trX)Im

for X ∈ Hn.

(2) A real linear transformation L : Hn → Hm is called δ-positive if L− δI(n,m) is

completely positive.

Let L : Hn → Hm be a real linear transformation. Since any F ∈ Cn×n is of

the form F = X + iY , where X,Y ∈ Hn and i2 = −1, it follows that Cn×n is the

complexification of Hn. Hence, L extends to linear operators L̂ : Cn×n → Cm×m

over C by letting L̂(iX) = iL(X) for X ∈ Hn. We will identify L̂ with L and no
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confusion will arise. Note that for U ∈ Cn×n we have that L(U∗) = L(U)∗. Associate

with L the following block Hermitian matrix of dimension mn:

(29) Z(L) =




L(e1e∗1) L(e1e∗2) . . . L(e1e∗n)
L(e2e∗1) L(e1e∗2) . . . L(e2e∗n)
...

...
...

...

L(ene∗1) L(ene∗2) . . . L(ene∗n)


 , ei = (δ1i, . . . , δni)

⊤, i ∈ [n].

Denote by λmn(Z(L)) the smallest eigenvalue of Z(L). The following lemma follows
from Choi’s characterization of completely positive operators [6], [13].

Lemma 8.2. Let δ > 0. A real linear transformation L : Hn → Hm is δ-positive

if and only if λmn(Z(L)) > δ.

P r o o f. Recall Choi’s theorem [6] that L−δI(n,m) is completely positive if and

only if λmn(Z(L−δI(n,m))) > 0. Clearly, for U ∈ Cn×n we have that I(n,m)(U) =

(trU)Im. Hence Z(I(n,m)) = Imn, and Z(L − δI(n,m)) = Z(L) − δImn. Thus

λmn(Z(L− δI(n,m))) = λmn(Z(L))− δ > 0 if and ony if λmn(Z(L)) > δ. �

Corollary 8.3. Let δ > 0 and assume that L : Hn → Hm is δ-positive. Then L
is completely positive. In particular, I(n,m) ∈ CP (n,m).

Let C : Cn×n → Cm×m be a linear transformation over C. Then C is called
rationally represented if the entries of each matrix L(eie∗j ) are Gaussian rationals,
denoted as Q + iQ. Assume that C is rationally represented. Denote by 〈C〉 =

n∑
i,j=1

〈L(eie∗j )〉 the complexity of C.

Theorem 8.4. Let A,B ∈ CP (n,m) be rationally represented. Assume further-

more that B is δ-positive for a given rational δ > 0. Then ˆ̺(A,B) = ̺(A,B).
Suppose that ̺(A,B) > 0. Then for any ε ∈ (0, 1) ∩ Q one can find ˜̺(A,B) ∈ Q++,

in polynomial time in 〈A〉+ 〈B〉+ 〈δ〉+ 〈ε〉, such that

(30) ˜̺(A,B) 6 ̺(A,B) 6 (1 + ε)˜̺(A,B).

P r o o f. As B(In) � δ(tr In)Im = δnIm, we deduce that r(A,B, In) 6

(nδ)−1̺(A(In)) < t0 ∈ Q++. Hence, ̺(A,B) < t0. As B ≻ 0, part 5 of Lemma 7.3

yields that ˆ̺(A,B) = ̺(A,B). As ˆ̺(A,B) > 0, Lemma 7.4 yields that A∨(Im) ≻ 0.

Hence, ̺(A,B) = ˆ̺(A,B) > ̺(A∨(Im)−1B∨(Im))−1 > s0 ∈ Q++. Note that the

values of s0, t0 are based on the eigenvalue computations of λ(A,B), given by (22),

whose approximation is polynomial [19].

591



We now start a bisection problem as in the proof of Theorem 4.2. Suppose that

we know that ̺(A,B) ∈ [sk, tk], where sk, tk ∈ Q++. Let t = (sk + tk)/2. Consider

the minimum problem (27). If µ(t) > 2τ , then ̺(A,B) > t. and we let sk+1 = t,

tk+1 = tk. Assume now µ(t) < 2τ . We claim that

(31) ̺(A,B) 6 t+

√
2τ

δ
.

Indeed, let X(t), Z(t) and W be defined as in (28). Let λ1(W ) > . . . > λm(W ) be

the m-eigenvalues of W . Then

2τ > ‖W‖2 = 〈W,W 〉 =
m∑

j=1

λj(W )2 > λm(W )2.

As
√
2τIm +W > 0, we obtain

(
t+

√
2τ

δ

)
B(X(t))−A(X(t)) = Z(t)+

√
2τ

δ
B(X(t))+W > Z(t)+

√
2τ

δ
δIm+W > 0.

Thus r(A,B, X(t)) 6 t+
√
2τ/δ, which implies (31). Now choose τ = (sk + tk)

2δ2/32.

So in the case µ(t) < 2τ we set sk+1 = sk, tk+1 = (sk + 3tk)/4.

To conclude we showed that ̺(A,B) ∈ [sk+1, tk+1], where [sk+1, tk+1] ⊂ [sk, tk]

and |tk+1 − sk| 6 3
4 |tk − sk|. Hence, in polynomial time in 〈A〉+ 〈B〉+ 〈δ〉+ 〈ε〉 we

get the approximation ˜̺(A,B) ∈ Q++ satisfying (30). �

9. Minimal weak optimal solutions for CP-operators

For X ∈ H+,n we call range X ⊆ Cn the support of X , and denote supp X =

range X . So dim supp X = rank X . Assume that A,B ∈ CP (n,m). Suppose

furthermore that ˆ̺(A,B) < ∞. A weak optimal Y ∈ H+,n is called minimal weak

optimal if there is no weak optimal X ∈ H+,n \ {0} such that supp X ( supp Y .

The following result is an analog of Theorem 5.1.

Theorem 9.1. Let m,n be positive integers. Assume that A,B ∈ CP (n,m).

Suppose that ˆ̺(A,B) ∈ (0,∞).

(1) Assume that Y ∈ H+,n\{0} is weak optimal. Then at least one of the eigenvalues
of (A− ˆ̺(A,B)B)(Y ) is zero.

(2) Assume that there exists a weak optimal Y ∈ H+,n whose rank is l > 1. Let

V = range Y . Denote by A′,B′ : S(V) → Hm the restrictions of A,B to all
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X ∈ Hn such that range X ⊆ V. Then A′,B′ are CP-operators. If l > m, then

rank (A′ − ˆ̺(A,B)B′) < m2.

(3) A minimal weak optimal Y has rank at most m.

(4) Assume that Y is a minimal weak optimal with rank m. Then Y satisfies (21).

Furthermore rank (A′ − ˆ̺(A,B)B′) = m2 − 1.

(5) Let Y ′ be a minimal weak optimal with rank l < m. Then there exists a minimal

weak optimal Y satisfying range Y = range Y ′ with the following property: The

matrix (A− ˆ̺(A,B)B)(Y ) has at least l zero eigenvalues.

P r o o f. (1) Let D(t) = A− tB and t0 = ˆ̺(A,B). As r(A,B, Y ) = t0, it follows

that D(t0)(Y ) 6 0. Suppose to the contrary that D(t0)(Y ) < 0, As t0 > 0, there

exists 0 6 t1 < t0 such that D(t1)(Y ) 6 0. Hence, r(A,B, Y ) 6 t1 < t0, contrary to

our assumption.

(2) Choose an orthonormal basis g1, . . . ,gl of V. Then PV =
l∑

i=1

gig
∗
i is the

orthogonal projection on V. Note that for each X ∈ Hn, PVXPV ∈ S(V). (Observe

that P ∗
V

= PV.) Suppose that C : Hn → Hm is a CP-operator given by (9). Define

Ĉ : Hn → Hm by Ĉ(X) = C(PVXPV). Then Ĉ(X) =
k∑

j=1

(TjPV)X(TjPV)∗. So Ĉ

is also a CP-operator. Hence A′,B′ are CP-operators. By choosing an orthonormal

basis g1, . . . ,gl of V we can identify S(V) with Hl. So A′,B′ : Hl → Hm. Recall that

dimHl = l2, dimHm = m2. Clearly, ˆ̺(A′,B′) = ˆ̺(A,B). By abusing the notation
we assume that an optimal Y is in H+,l.

Assume that l > m. Let C(t) = A′ − tB′ : Hl → Hm. Thus C(t0)(Y ) = −W

for some W ∈ H+,m. Clearly, rank C(t0) 6 m2. Assume to the contrary that

rank C(t0) = m2. Hence, there exists an m2-dimensional subspace W ⊆ Hl such

that C(t0)|W is an invertible operator. Let A1, B1 and A2, B2 be the restrictions of

A′, B′ toW andW⊥, respectively. Define C1(t) = A1 − tB1, C2(t) = A2 − tB2. As

C1(t0) is invertible, it follows that there exists ε > 0 such that C1(t) : W → Hm is

invertible for t ∈ [t0− ε, t0+ ε]. Let Y = Y1+Y2, where Y1 ∈ W, Y2 ∈ W⊥. Assume

that Y1(t) = −C1(t)−1(C2(t)(Y2)+W ). So Y1(t0) = Y1. Hence C(t)(Y1(t)+Y2) = −W .

As rank (Y1+Y2) = l, it follows that there exits t0−ε < t1 < t0 such that Y1(t)+Y2 ∈
H+,l and rank (Y1(t) + Y2) = l. Therefore, r(A,B, Y1(t) + Y2) 6 t1 < ˆ̺(A,B), which
contradicts the definition of ˆ̺(A,B).
(3) Assume to the contrary that Y is a minimal weak optimal with rank l > m.

Assume as in 2 that we restricted ourselves to A′,B′ : Hl → Hm. Let t0 and C(t0) be
defined as above. As l > m, it follows that dimHl = l2 > (m+1)2 = m2+2m+1. So

dimker C(t0) > 2m+ 1 > 2. Hence, there exists an indefinite matrix X ∈ Hl with at

least one positive and one negative eigenvalue such that C(t0)(X) = 0. Let s ∈ [0,∞]

and consider the matrix Y (s) = Y + sX . For s = 0, Y ∈ H++,l. For s ≫ 1, Y (s) has
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a negative eigenvalue. Hence, there exists s0 > 0 such that Y (s0) ∈ H+,l and at

least one eigenvalue of Y (s0) is 0. Note that Y (s0) 6= 0 as Y can not be proportional

to X . As C(t0)(Y (s0)) = C(t0)(Y ) = −W , it follows that Y (s0) is optimal. As

rank Y (s0) < l, we deduce that Y is not minimal weak optimal, contrary to our

assumptions.

(4) Let Y be minimal weak optimal of rank m. Assume as in 2 that we restricted

ourselves to A′,B′ : Hm → Hm. Part (2) yields that rank C(t0) < m2. Let X 6= 0

satisfy C(t0)(X) = 0. If X is indefinite as in the proof of (2), we deduce that Y

is not minimal weak optimal, contrary to our assumption. If X or −X is positive

semidefinite, then either X or −X is a GPF-vector. We claim that Y is proportional

to X . Otherwise, assuming that X is positive semidefine, by considering Y − sX

we deduce that Y is not optimal. Hence, Y is a GPF-vector. Moreover, the above

arguments yield that dimker C(t0) = 1, i.e. rank C(t0) = m2 − 1.

(5) Assume that Y ′ ∈ H+,n is minimal weak optimal with rank l < m. So (A −
̺(A,B)B)(Y ′) 6 0. By part 1 we know that (A − ̺(A,B)B)(Y ′) has at least one

zero eigenvalue. If l = 1, the claim 5 of the theorem trivially holds.

Assume that l > 1. Consider all minimal weak optimal Ỹ such that range Ỹ =

range Y ′. Let Y be minimal weak optimal satisfying: range Y = range Y ′ and

(A− ̺(A,B)B)(Y ) has the maximum number of zero eigenvalues. Assume that this

maximum is p. We claim that p > l. Suppose not. As in the proof of part (2) we

restrict ourselves to A′,B′ : Hl → Hm. So t0 = ̺(A′,B′). By abusing the notation

we assume that Y ′, Ỹ , Y ∈ H+,l. Let W = −C(t0)(Y ). Then Cm = U1 ⊕ U2,

where U1 = range W , U2 = U⊥
1 = kerW . Note that W |U1 is positive definite.

Let PU2
be the orthogonal projection of Cm on U2. Let Ã, B̃ : Hl → Hp, where

we identify Hp with PU2
HmPU2

and Ã, B̃ with PU2
APU2

, PU2
BPU2

, respectively.

Clearly, ˆ̺(Ã, B̃) 6 ˆ̺(A′,B′). As in the proof of part (5) of Theorem 5.1 we claim

that ˆ̺(Ã, B̃) = ˆ̺(A′,B′). Suppose not. Then there exists U ∈ H+,l \ {0} such that
r(Ã, B̃, U) = t1 < t0. Clearly, Y and U are linearly independent. As Y ∈ H++,l, we

can assume that Y > U . Let Y (f) = (1 − f)Y + fU . As in the proof of part (5) of

Theorem 5.1 we claim that there exists ε > 0 such that r(Ã, B̃, (1 − f)Y + fU)) 6

t0 − εf for f ∈ [0, 1]. We can choose ε = (t0 − t1)λ
′, where λ′ is the smallest

positive eigenvalue of B̃(Y )−1B̃(U). (Note that the eigenvalues of B̃(Y )−1B̃(U) are

the eigenvalues of the Hermitian matrix B̃(Y )−1/2B̃(U)B̃(Y )−1/2.) We now claim

that there exists small positive δ such that we have the inequality

(32) r(A′,B′, (1− f)Y + fU)) 6 t0 −
1

2
εf, f ∈ [0, δ].

For that, it is enough to show that λ(A′((1 − f)Y + fU),B′((1 − f)Y + fU)) 6

t0 − 1
2εf for f ∈ [0, δ]. We use the first variation formula for a geometrically simple
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eigenvalue t0 of the Rayleigh ratio on the right-hand side of (22), where A = A(f) =

A′((1 − f)Y + fU)) and B = B(f) = B′((1 − f)Y + fU)), as a function in f . The

standard variation formula for a geometrically simple eigenvalue [12], §3.8 yields

that it is enough to consider the first variation of the Rayleigh quotient given by

the right-hand side of (22) for x ∈ U2 \ {0}. This is equivalent to considering
λ(Ã((1 − f)Y + fU), B̃((1 − f)Y + fU)). The inequality

λ(Ã((1 − f)Y + fU), B̃((1− f)Y + fU)) 6 t0 − εf

for f ∈ [0, δ] yields that

(33)
d

df
λ(A′((1 − f)Y + fU),B′((1 − f)Y + fU))|f=0+ 6 −ε.

Recall Rellich’s theorem that the eigenvalues of analytic functions of Hermitian ma-

trices are analytic in the neighborhood of R, see [12], 4.17, (when we do not insist

on ordering of the eigenvalues). Hence λ(A′((1− f)Y + fU),B′((1 − f)Y + fU)) is

analytic in [0, δ] for some δ > 0. That is, it has convergent Taylor series at f = 0.

In particular, it is in the class C2[0, δ]. Hence (33) yields (32) for small enough

positive δ.

Clearly, (32) contradicts our assumption that ˆ̺(A′,B′) = t0. Therefore ˆ̺(Ã, B̃) =
t0 = r(Ã, B̃, Y ). Let C̃(t) = Ã − tB̃. So C̃(t0) : Hl → Hp. Our assumption that

l > p yields that ker C̃(t0) > l2 − p2 > 3. In particular, there exists an indefinite

X̃ ∈ Hl such that C̃(t0)(X̃) = 0. Identify X̃ with X ∈ Hn, where range X ⊆
range Y . The assumption that C̃(t0)(X̃) = 0 is equivalent to range C(t0)(X) ⊆
range C(t0)(Y ) = range W . Let Y (s) = Y + sX . Then C(t0)(Y (s)) = −W +

sC(t0)(X). As range C(t0)(X) ⊆ range C(t0)(Y ) = range W , it follows that −W +

sC(t0)(X) 6 0 for s > 0 if and only if s ∈ [0, s1], where s1 ∈ (0,∞]. Let s0 > 0

be the largest s > 0 such that Y (s) > 0. So rank Y (s0) ∈ [l − 1]. Note that Y (s)

is optimal for s ∈ [0,min(s0, s1)]. We claim that s1 < s0. Suppose not. Then

Y (s0) is weak optimal, range Y (s0) ⊂ range Y and rank Y (s0) 6 l − 1. Hence Y is

not minimal weak optimal, contrary to our assumptions. Consider a minimal weak

optimal Y (s1). Note that rank (−W + s1C(t0)(X)) < rank −W = m − p. Hence,

ker C(t0)(Y (s1) > p+ 1, contrary to the choice of Y . Therefore, p > l. �

A c k n ow l e d g em e n t s. The author thanks the referee for his comments.
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