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Abstract. An algebra A is said to have the endomorphism kernel property (EKP) if every
congruence on A is the kernel of some endomorphism of A. Three classes of monounary
algebras are dealt with. For these classes, all monounary algebras with EKP are described.
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1. Introduction

The notions of homomorphism and congruence in universal algebra are of cardinal

importance. The well-known fundamental homomorphism theorem says that there

is a correspondence between congruences on an algebra A and kernels of homomor-

phisms of the same algebra.

We deal with algebras possessing the endomorphism kernel property (EKP). An

algebra is defined to have EKP if every congruence on A is the kernel of an endo-

morphism of A. This notion was introduced in [2] for distributive lattices. EKP was

studied in finite distributive lattices and de Morgan algebras (see [2]), Stone algebras

and modular p-algebras (see [8]–[10]). Further, the strong EKP (i.e. each congruence

of A is a kernel of a strong endomorphism of A) was investigated in [3], [4], [6], [7],

and [11]–[13].

We focus on EKP in monounary algebras. The importance of theory of unary

and monounary algebras is pointed out for example in the monographs [24], [15],

[19], [25]. The advantage of monounary algebras is their relatively easy visualization

as they can be represented as planar directed graphs. Several authors concentrate
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on endomorphisms of monounary algebras, see e.g. [1], [5], [16], [17], [18], [21], [26],

[27] and of injective monounary algebras (see [20], [22], [23]).

The main result of the paper is a characterization of a monounary algebra A with

EKP if

(i) A consists of finitely many connected components (Theorem 3.1),

(ii) A is injective (Theorem 4.1),

(iii) each cyclic element of A has only finitely many ancestors (Theorem 5.1 and 5.2).

2. Preliminaries

The set of all positive integers is denoted by N, N0 = N ∪ {0}. The cardinality of

a set A is denoted by ‖A‖. If ψ is a mapping from a set A into a set B, then ker(ψ)

denotes the kernel of ψ.

We deal with monounary algebras. The fundamental operation will be mostly

denoted by f . The identity operation is denoted by id.

Let A = (A, f) be a monounary algebra. We denote by S(A) the class of all

algebras that are isomorphic to a subalgebra of A. The algebra A is connected if for

every a, b ∈ A there exist m,n ∈ N such that fn(a) = fm(b). We say that a set B is

a component of the algebra A if B has the following properties:

(1) B ⊆ A,

(2) f(B) ⊆ B,

(3) (B, f) is connected,

(4) if a ∈ A is such that f(a) ∈ B, then a ∈ B.

If ‖A‖ = 1, then the algebra A is called trivial. A component B of an algebra A

is called trivial if the algebra (B, f) is trivial.

We say that a set C is a cycle of the algebra A if C has the following properties:

(1) C is a finite subset of A,

(2) f(C) = C,

(3) (C, f) is connected.

If C is a cycle, then ‖C‖ is called the length of the cycle C. Algebra A is called a

cycle if A is a cycle of A.

A subset B of A is termed as a chain of A if for every a, b ∈ B there is n ∈ N0

such that either fn(a) = b or fn(b) = a. If A is a chain of A, then we will say that A

is a basic algebra. Basic monounary algebras were introduced in [14].

A connected monounary algebra with a one-element cycle is called a root mo-

nounary algebra or simply a root, cf. [15]. By a c-root we mean the root with the

cycle {c}.
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Let b ∈ A. We denote

f−1(b) = {a ∈ A : f(a) = b},

↓b = {a ∈ A : fk(a) = b for some k ∈ N0},

↑b = {fk(b), k ∈ N},

CA = {a ∈ A : a is an element of some cycle of A},

C∗
A = {a ∈ A : f(a) = a}.

Let k, l ∈ N be such that l divides k, l < k. Let κ be a cardinal number. The

following condition is denoted by (γ).

(γ) If A contains κ cycles of length k, then A contains κ · ℵ0 cycles of length l.

Let B = (B, f) and A ∩B = ∅. The algebra (A ∪B, f) will be denoted by A+ B.

Let a ∈ A, b ∈ B. Let A be an a-root and B be a b-root. Then

A⊕ B = ((A ∪B) \ {b}, g),

where

g(x) =

{

f(x) if x ∈ (A ∪B) \ f−1(b),

a otherwise.

Let A = (A, f). Now we present three lemmas without proofs; they are easy to

show directly from definitions.

Lemma 2.1. Let B = (B, f) be a subalgebra of A and θ ∈ Con(B). If θ′ =

θ ∪ {(a, a), a ∈ A \B}, then θ′ ∈ Con(A).

Lemma 2.2. Let B = (B, f) ∈ S(A). Then the following statements are valid:

(1) If k ∈ N, κ is a cardinal number and B contains κ cycles of length k, then A

contains κ cycles of length k.

(2) If c ∈ C∗
B, then there exists c

′ ∈ C∗
A such that

‖f−1(c)‖ 6 ‖f−1(c′)‖.

(3) If f is injective on the set A \ CA, then f is injective on the set B \ CB.

(4) Let D = (D, id) and D ∩B = ∅. If ‖D‖+ ‖C∗
B‖ 6 ‖C∗

A‖, then B +D ∈ S(A).

(5) Let B be connected and its operation be not injective.

If A = D1 + D2 and the operation of D1 is injective, then B is a subalgebra

of D2.
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Lemma 2.3. The following statements are valid:

(1) If A is connected, then any homomorphic image of A is connected.

(2) Let k ∈ N. If A is a cycle of length k and B is a homomorphic image of A,

then B is a cycle of length l, where l divides k.

(3) Let κ be the number of components of A. Then the algebra (B, id) such that

‖B‖ 6 κ is a homomorphic image of A.

(4) Let k ∈ N. If A is connected without a cycle, then there are at least two

homomorphic images of A such that they are basic algebras with a cycle of

length k.

(5) If B is a homomorphic image of A such that C∗
B 6= ∅, then B is a homomorphic

image of A+D for every algebra D.

Lemma 2.4. Let {Ai : i ∈ I} be the set of all components of A without a cycle.

Let ai ∈ Ai be such that f
−1(ai) 6= ∅ for every i ∈ I.

Then there exist c /∈ A and a c-root D = (D, g) and a homomorphism ϕ from A

onto D such that

(1) ϕ is injective on the set A \
(

CA ∪
⋃

i∈I

↑ai
)

,

(2) ‖g−1(c)‖ =
∑

x∈CA

(‖f−1(x)‖ − 1) +
∑

i∈I

‖f−1(ai)‖+ 1.

P r o o f. Put D = {c} ∪
[

A \
(

CA ∪
⋃

i∈I

↑ai
)]

. For z ∈ D put

g(z) =

{

c if z = c or f(z) ∈ CA or f(z) = ai for some i ∈ I,

f(z) otherwise.

Then the algebra (D, g) is the c-root such that

‖g−1(c)‖ =
∑

x∈CA

(‖f−1(x)‖ − 1) +
∑

i∈I

‖f−1(ai)‖+ 1.

It is a homomorphic image of A since

ϕ(x) =

{

x if x ∈ D,

c otherwise,

is a homomorphism from A onto (D, g). �

404



3. Several properties of algebras with EKP

We say that an algebraA has an endomorphism kernel property if every congruence

relation on A is a kernel of some endomorphism of A, i.e.

Con(A) = {ker(ϕ) : ϕ is an endomorphism of A}.

Shortly, we will write that A has EKP.

The next lemma is a very useful tool for manipulation with EKP in monounary

algebras. It will be often used in this paper.

Lemma 3.1. The algebra A has EKP if and only if B ∈ S(A) for every homo-

morphic image B of A.

P r o o f. It follows immediately from Lemma 2.1 of [13]. �

E x am p l e 3.1.

(1) An n-element cycle, n > 1, has not EKP.

(2) Let A 6= ∅. Algebras (A, id), (A, const), where const is a constant operation,

have EKP.

(3) Let κ be an infinite cardinal. Let A = (A, f) be such that

(a) f2(x) = f(x) for every x ∈ A,

(b) A consists of at most κ components,

(c) every component has the cardinality κ.

Then A has EKP.

Lemma 3.2. Let A = (A, f), B = (B, id) and A ∩ B = ∅. Then the following

statements are equivalent:

(i) A has EKP,

(ii) A+ B has EKP.

Lemma 3.3. Let A = (A, f) have EKP. If B is a component of A, then the

algebra (A \B, f) has EKP.

P r o o f. Denote D = A \ B and D = (D, f). Let θ ∈ ConD. Consider θ′ =

θ ∪ {(b, b), b ∈ B}. Then θ′ ∈ ConA according to Lemma 2.1. The assumption A

has EKP implies that there exists an endomorphism ϕ of A such that ker(ϕ) = θ′.

We have that ker(ϕ|D) = θ and ϕ is injective on B. If ϕ(D) ⊆ D, then ϕ|D is an

endomorphism of D.

Suppose that ϕ(D) ∩ B 6= ∅. Denote E = ϕ−1(B). Then E consists of some

components of A. Let B′ = (B′, f) be a component of A such that ϕ(B) ⊆ B′.
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Assume that there exists a ∈ D such that ϕ(a) ∈ B′. Take b ∈ B. Then there

exist m,n ∈ N such that fn(ϕ(a)) = fm(ϕ(b)) since B′ is connected. Therefore

ϕ(fn(a)) = ϕ(fm(b)). We have

fn(a) /∈ B, fm(b) ∈ B and (fn(a), fm(b)) ∈ ker(ϕ),

a contradiction. Hence ϕ(D) ∩B′ = ∅.

Take B′′ = (ϕ(B), f). We have B′′ ∼= B because ϕ is injective on B. Let us

define ε, the mapping from A into A, such that

ε(x) =











x if x ∈ B,

ϕ2(x) if x ∈ E,

ϕ(x) otherwise.

We obtain that ε is an endomorphism of A, ker(ε) = θ′ and ε|D is an endomorphism

of D, ker(ε|D) = θ. �

Lemma 3.4. Let A = (A, f) have EKP. Then the algebra A satisfies condi-

tion (γ).

P r o o f. Let k, l ∈ N be such that l divides k, l < k. Let κ be a cardinal number.

Suppose that A contains κ cycles of length k. Then these κ cycles can be homo-

morphically mapped onto κ cycles of length l. That means A contains κ cycles of

length k and κ cycles of length l. These 2κ cycles can be mapped by a homomor-

phism onto 2κ cycles of length l. Therefore A contains κ cycles of length k and 2κ

cycles of length l, etc. It yields that A contains ℵ0 · κ cycles of length l. �

Let {Ai : i ∈ I} be the component partition of A.

Lemma 3.5. Let A = (A, f) have EKP. Then ‖CA‖ = ‖C∗
A‖ = ‖I‖.

P r o o f. Every connected monounary algebra contains at most one cycle. This

yields ‖C∗
A‖ 6 ‖I‖.

The algebra (I, id) is a homomorphic image of A and C∗
A ⊆ CA. It implies that

‖CA‖ > ‖C∗
A‖ > ‖I‖ in view of Lemma 3.1.

Let I be finite. Then every component of A contains a 1-element cycle according

to (I, id) ∈ S(A). Thus ‖CA‖ = ‖C∗
A‖.

Let I be infinite. Then

‖CA‖ 6 ‖I‖
∞
∑

k=1

k = ‖I‖ · ℵ0 = ‖I‖.

�
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Corollary 3.1. Let A be a basic algebra. The algebra A has EKP if and only

if A has a 1-element cycle.

P r o o f. If A contains a 1-element cycle, then it has EKP by Lemma 3.1. If A

has EKP, then the previous assertion gives C∗
A 6= ∅. �

Theorem 3.1. Let I be a finite set and {Ai : i ∈ I} be the component partition

of the algebra A. The algebra A has EKP if and only if

(1) the algebra (Ai, f) has EKP for every i ∈ I,

(2) if J ⊆ I, J = {j1, . . . , jm}, then there exists j ∈ J such that

Aj1 ⊕ . . .⊕Ajm ∈ S(Aj).

P r o o f. Suppose that A has EKP. In view of Lemma 3.2 we suppose that A

has no trivial component. The first assertion follows from Lemma 3.3.

Denote D = (D, f) = Aj1 ⊕ . . . ⊕ Ajm . Consider the algebra A′ that has a

component partition {D} ∪ {Ai : i ∈ I \ J}. Then A′ is a homomorphic image of A.

In view of Lemma 3.1 we have A′ ∈ S(A). Therefore there exists k ∈ I such that

D ∈ S(Ak). If k ∈ J , then condition (2) is satisfied. Assume that k ∈ I \ J .

Then there exists k1 ∈ I \ {k} such that Ak ∈ S(Ak1 ) according to A
′ ∈ S(A). We

have D ∈ S(Ak) ⊆ S(Ak1). Therefore if k1 ∈ J , then condition (2) is satisfied. If

k1 ∈ I \ J , then we will continue to take k2 ∈ I \ {k, k1} such that Ak ∈ S(Ak1 )

according to A′ ∈ S(A). After at most ‖I‖ −m steps we obtain an element from J .

Suppose that (1), (2) are valid. Let B = (B, f) be a homomorphic image of A,

the mapping ϕ be a corresponding homomorphism and {Bk, k ∈ K} be a component

partition of B. Define ψ : I → K such that if ϕ(Ai) ⊆ Bk, then ψ(i) = k. Take

k ∈ K. Denote L = ψ−1(k). If ‖L‖ = 1, then ϕ(Aψ−1(k)) = Bk and Bk ∈ S(Aψ−1(k))

according to (1). Let ‖L‖ > 1. Then
⋃

i∈L

ϕ(Ai) = Bk. Take j ∈ L such that
∑

i∈L

Ai ∈ S(Aj) according to (2). We obtain ϕ(Ai) ∈ S(Ai) ⊆ S(Aj) for every i ∈ L.

Therefore Bk =
⋃

i∈L

ϕ(Ai) ∈ S(Aj). �

Corollary 3.2. Let A consist of finitely many components. If A has EKP, then

there exists at most one c ∈ C∗
A such that

1 < ‖f−1(c)‖ < ℵ0.
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Corollary 3.3. Let A be such that

(1) A consists of finitely many components,

(2) f2(a) = f(a) for every a ∈ A,

(3) at most one component of A is finite.

Then A has EKP.

4. Injective algebras

A monounary algebra is called injective if its fundamental operation is injective.

Finite components of injective algebras are cycles and infinite components contain

no cycle. If CA 6= ∅, then the algebra (CA, f) is injective.

In this section, we describe all injective monounary algebras with EKP. Then a

method how to obtain a new algebra with EKP from an injective one will be derived.

Namely, we will see that an algebra with EKP that has finitely many components

can be added.

Denote by I the class of all injective monounary algebras.

Theorem 4.1. Let A ∈ I. Then the following statements are equivalent:

(i) A has EKP.

(ii) Every component of A is a cycle and A satisfies (γ).

P r o o f. Let (i) be valid. Assume that A contains a component without a

cycle. Then this component can be mapped by a homomorphism onto a con-

nected monounary algebra with a cycle and a non-injective operation according to

Lemma 2.3 (4). That means A has not EKP by Lemma 3.1. Condition (γ) is valid

by Lemma 3.4.

Suppose that (ii) is valid. Let B be a homomorphic image of A. Then every

component of B is a cycle. For every i ∈ N we denote by νi the number of cycles of

length i of A and by µi the number of cycles of length i of B.

Assume that i ∈ N. We need to prove that µi 6 νi. Then (i) is satisfied according

to Lemma 3.1. In view of Lemma 2.3 (2) we have

µi 6
∑

j∈N

νi·j .

Suppose that there exists j 6= 1 such that νi·j 6= 0. Then condition (γ) implies that

νi > ℵ0 and νi·k 6 νi for every k ∈ N. Therefore
∑

j∈N

νi·j = νi.

�
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Corollary 4.1. If A has EKP, then the algebra (CA, f) has EKP.

P r o o f. We have (CA, f) ∈ I. The assertion follows from Lemma 3.4,

Lemma 3.5 and the previous theorem. �

Theorem 4.2. Let algebras A = (A, f), B = (B, f) be such that

(a) A ∈ I,

(b) A ∩B = ∅,

(c) B consists of finitely many components,

(d) (D, f) /∈ I for every component D of B.

Then the following statements are equivalent:

(1) The algebra A+ B has EKP.

(2) Algebras A, B have EKP.

P r o o f. LetA, B have EKP. Thus, A consists of cycles according to Theorem 4.1

and every component of B has a cycle according to Lemma 3.5. Assume that ε is a

homomorphism from A+B onto D′ = (D′, f). Then ε(B) is a union of some compo-

nents of D′ according to (a). Therefore (ε(B), f) ∈ S(B) since B has EKP. Further,

the set ε(A) \ ε(B) is a union of some components of D′, too, and it determines

a subalgebra of the algebra (ε(A), f). Thus, the algebra (ε(A) \ ε(B), f) ∈ S(A)

since A has EKP. We conclude that D′ ∈ S(A+ B).

Suppose that A+B has EKP. Then A has EKP according to (c) and Lemma 3.3.

Let n be the number of components of B. Then n ∈ N according to (c) and the

number of nontrivial roots of A+ B is at most n according to (a). Suppose that B′

is a component of B that does not determine a root. In view of (d) take b ∈ B′ such

that ‖f−1(b)‖ > 1. Let d /∈ A ∪B. For x ∈ A ∪B we define

ζ(x) =

{

d if x ∈ ↑b,

x otherwise.

Then the algebra (ζ(A ∪B), f), where f(d) = d, is a homomorphic image of A+ B

that contains n+1 nontrivial roots. That means that this algebra is not a subalgebra

of A+B, a contradiction. We obtain that every component of B is a nontrivial root.

Let CB = {c1, . . . , cn}.

Assume that ϕ is a homomorphism from B onto D = (D, f), A∩D = ∅. Then every

component ofD is a root andD consists of at most n components. If every component

of D is trivial, then D ∈ S(B). Suppose that D contains nontrivial components. Let

d1, . . . , dm be all cyclic points of D such that ‖f−1(di)‖ > 1, i = 1, . . . ,m. Then

m 6 n. Put

ψ(x) =

{

x if x ∈ A,

ϕ(x) if x ∈ B.
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Then ψ is a homomorphism from A+B onto A+D. Thus A+D ∈ S(A+B). Assume

that ξ is an embedding of A+D into A+ B. Then ξ(di) ∈ B for every i = 1, . . . ,m

according to (a). Therefore D ∈ S(B) according to
∥

∥

∥
D \

( m
⋃

i=1

↓di
)
∥

∥

∥
+ m 6 n and

Lemma 2.2 (6). �

The sum of two algebras with EKP need not have EKP:

E x am p l e 4.1. Let A = {a, a′} and f(a) = f(a′) = a. The algebra A = (A, f)

has EKP. Let B ∩ A = ∅ and B = (B, f) be isomorphic to A. The algebra A + B

does not have EKP.

5. Class F

Denote by F the class of all monounary algebras A = (A, f) such that the set

f−1(a) is finite for every a ∈ CA. Thus I ⊂ F . In this section, we describe all

algebras with EKP from the class F . We will see that the non injective ones are

exactly the algebras of the form B + D, where B ∈ I has EKP and D is connected

with EKP.

The next statement follows from the definition of F immediately.

Lemma 5.1. Let A = (A, f) ∈ F . Then

(1) if A 6=
⋃

b∈CA

↓b, then A contains a component without a cycle,

(2) if C∗
A 6= ∅ and D =

⋃

b∈C∗
A

↓b, then one of the following cases occurs:

(a) D = A;

(b) A = (D, f) + B, where C∗
B = ∅.

We denote by F◦ the class of all monounary algebras A ∈ F such that every

component of A has a 1-element cycle. Thus, A ∈ F◦ if and only if C∗
A 6= ∅ and

equality (2)(a) from Lemma 5.1 is valid.

We denote by F∗ the class of all monounary algebras A such that A = (A, f) ∈ F◦

with A = B⊕D, where B is basic and D has a constant operation. The next assertion

is obvious.

Lemma 5.2. Let A = (A, f) ∈ F∗. Then

(1) A is connected,

(2) if c ∈ C∗
A, then f

−1(c) = A or A \ f−1(c) is a chain of A.
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The next lemma says that connected monounary algebras with EKP from F are

precisely the algebras of F∗.

Theorem 5.1. Let A ∈ F be connected. Then the following conditions are

equivalent

(i) A has EKP,

(ii) A ∈ F∗.

P r o o f. Let A be nontrivial. The implication (ii)⇒ (i) follows from Lemma 3.1.

Suppose that (i) is valid and (ii) fails to hold. Then there is c ∈ A such that

f(c) = c according to Lemma 3.5.

Let d ∈ A \ {c} be such that f−1(d) has at least two elements. Then there exists

a ∈ A \ {c} such that

(1) ‖f−1(a)‖ > 1,

(2) if n ∈ N\{1} is such that fn(a) = c and fn−1(a) 6= c, then for every a0 ∈ A\{c}

such that fn−1(a0) = c, the equality ‖f−1(a0)‖ = 1 is valid.

Take B = (A \ ↑a) ∪ {c} and for x ∈ B put

g(x) =

{

c if x ∈ f−1(a),

f(x) otherwise.

The algebra (B, g) is a homomorphic image of A. The relationship ‖g−1(c)‖ >

‖f−1(c)‖ is satisfied. Therefore (B, g) /∈ S(A) according to Lemma 2.2 (2), a con-

tradiction. We obtain that the set f−1(d) possesses at most one element. This is

equivalent to injectivity of f on the set A \ {c}.

Assume that A \ f−1(c) 6= ∅ and it is not a chain of A. Then there are a, b ∈

f−1(c) \ {c} such that a 6= b, f−1(a) 6= ∅ and f−1(b) 6= ∅. Take B′ = A \ {a} and

put for x ∈ B′

h(x) =

{

b if x ∈ f−1(a),

f(x) otherwise.

The algebra (B′, h) is a homomorphic image of the algebra A that is not isomorphic

to a subalgebra of A according to Lemma 2.2 (3), a contradiction. �

Lemma 5.3. Let A ∈ F◦ be not connected. Then the following conditions are

equivalent:

(i) A has EKP,

(ii) A = B +D, where B = (B, id) and D ∈ F∗.
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P r o o f. Every algebra satisfying (ii) has EKP according to Lemmas 5.1 and 3.2.

Let A have EKP. Assume that A contains more than one nontrivial component.

Remark that CA = C∗
A since A ∈ F◦. Let c /∈ A. Put B = (A ∪ {c}) \ CA. For

x ∈ A define

ϕ(x) =

{

c if x ∈ CA,

x otherwise

and for y ∈ ϕ(A) define

h(y) =

{

c if y = c or f(y) ∈ CA,

f(y) otherwise.

Then (ϕ(A), h) is a homomorphic image of A. This algebra is a c-root. In view of

Lemma 2.2 (2) we obtain that ϕ(A) = B and (B, h) /∈ S(A), a contradiction. Thus,

A has exactly one nontrivial component D = (D, f).

Let D do not have EKP. That means D can be mapped by a homomorphism onto

an algebra D′ such that D′ /∈ S(D) according to Lemma 3.1. The algebra D′ is a

connected element of F◦. Therefore the operation of D′ is not injective. Further,

D′ is a homomorphic image of A too and it is not isomorphic to a subalgebra of A

according to Lemma 2.2 (5), a contradiction. We obtain D ∈ F∗ by Theorem 5.1.

Therefore (ii) is valid. �

Theorem 5.2. Let A ∈ F be not connected. Then the following statements are

equivalent:

(i) The algebra A has EKP.

(ii) Denote D1 =
⋃

b∈C∗
A

↓b. Then

(a) every component of A has a cycle,

(b) (CA, f) has EKP,

(c) C∗
A 6= ∅ and the algebra (D1, f) has EKP,

(d) if A /∈ F◦, then CA \ C∗
A = A \D1.

(iii) A = B +D, where

(a) B ∈ I,

(b) B has EKP,

(c) D ∈ F∗.

P r o o f. If A ∈ I, then properties (i), (ii) and (iii) are equivalent according to

Theorem 4.1. We suppose that A /∈ I.

Let (i) be fulfilled. Then (ii)(b) is true according to Corollary 4.1. Therefore

C∗
A 6= ∅ in view of Theorem 4.1. We have CA \ C∗

A ⊆ A \D1. Let ai, i ∈ I, c /∈ A
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and D be as in Lemma 2.4. If (ii)(a) is not valid, then I 6= ∅ and
∑

i∈I

‖f−1(ai)‖ > 0.

Take b ∈ CA. We obtain

‖g−1(c)‖ = ‖f−1(b)‖+
∑

x∈CA\{b}

(‖f−1(x)‖ − 1) +
∑

i∈I

‖f−1(ai)‖ > ‖f−1(b)‖.

That means that D /∈ S(A) according to Lemma 2.2 (2), a contradiction. If (ii)(d)

is not valid, then there is a ∈ CA \ C∗
A such that ‖f

−1(a)‖ > 1. Take b1 ∈ C∗
A. We

obtain

‖g−1(c)‖ = ‖f−1(b1)‖ +
∑

x∈CA\{b1}

(‖f−1(x)‖ − 1) +
∑

i∈I

‖f−1(ai)‖

> ‖f−1(b1)‖ + (‖f−1(a)‖ − 1) +
∑

x∈CA\{a,b1}

(‖f−1(x)‖ − 1) > ‖f−1(b1)‖.

That means that D /∈ S(A) according to Lemma 2.2 (2), a contradiction.

Let D0 be a homomorphic image of (D1, f). Then D0 is a homomorphic image

of A by Lemma 2.3 (5). Therefore D0 ∈ S(A). That means D0 ∈ S(D1, f) in view

of Lemma 5.1 (2). Hence (ii)(c) holds.

Now let (ii) be valid. Property (c) and Lemma 5.3 imply that there exist

B1, D ⊂ D1 such that (D1, f) = (B1, id) + (D, f) and (D, f) ∈ F∗. Denote

D = (D, f); thus (iii)(c) is valid. If A ∈ F◦, then we denote B = (B1, id), else we

denote B = (B1, id) + (CA \ C∗
A, f). We obtain

B1 ∪ (CA \ C∗
A) ∪D = (CA \ C∗

A) ∪D1 = A

according to (d). The algebra B consists of all components of the algebra (CA, f)

except one 1-element cycle. Thus, B has EKP according to (ii)(b) and Theorem 4.1.

We have shown that (ii) implies (iii).

If (iii) is satisfied, then A has EKP according to Lemma 5.2 and Theorem 4.2. �
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