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Approximating solutions of split equality of some nonlinear

optimization problems using an inertial algorithm

LATEEF O. JOLA0OSO, OLUWATOSIN T. MEWOMO

Abstract. This paper presents an inertial iterative algorithm for approximating
a common solution of split equalities of generalized mixed equilibrium problem,
monotone variational inclusion problem, variational inequality problem and com-
mon fixed point problem in real Hilbert spaces. The algorithm is designed in
such a way that it does not require prior knowledge of the norms of the bounded
linear operators. We prove a strong convergence theorem under some mild con-
ditions of the control sequences and also give a numerical example to show the
efficiency and accuracy of our algorithm. We see that the inertial algorithm
performs better in terms of number of iteration and CPU-time than the non-
inertial algorithm. This result improves and generalizes many recent results in
the literature.

Keywords: split equality; generalized equilibrium problem; variational inclusion
problem; variational inequality; quasi-nonexpansive mapping; fixed point prob-
lem

Classification: 47TH06, 4TH09, 47J05, 47J25

1. Introduction

Let Hy, H> and Hj3 be real Hilbert spaces, C' and @ be nonempty, closed and
convex subsets of H; and H,, respectively, and let A: H; — Hz and B: Hy — Hj
be bounded linear operators. The split equality problem (SEP) according to
A. Moudafi, see [40], is defined as:

(1.1) Find x € C and y € @ such that Ax = By.

The SEP allows asymmetric and partial relation between the variables x and y.
In fact, many problems arising in mathematics and other sciences can be regarded
as SEP. This include decomposition in PDE’s, optimal control in decision making
and image modulated radiation therapy (IMRT), see [1], [2], [12], [13], [45], [46].
One of the common methods used for solving the SEP (1.1) is the following
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projection method by C.L. Bryne and A. Moudafi in [11]:

Tpt1 = PC(-Tn - ’YnA*(Axn - Byn>)a

(1.2) ;
Yn+1 = PQ(yn + Y B* (Azy — Byn))a

where v, € (¢,2/(Aa + Ap) —¢), Aa and Ap are the operator (matrix) norms || A||
and || B|| (or the largest eigenvalues of A*A and B*B), respectively. To determine
stepsize 7,, one will need to first calculate (or at least) estimate the operator
norms ||A|| and ||B||. In general it is difficult or even impossible to determine the
norms ||Al| and ||B]|.

When C and @ are the sets of fixed points (which are closed and convex) of
some nonlinear operators, then (1.1) becomes the split equality common fixed
point problem (SECFP) which is defined as:

(1.3) find z € F(S) and y € F(T) such that Az = By,

where S: Hy — H; and T: Hy — Hy are nonlinear mappings and F(S) and
F(T) are the sets of fixed points of S and T, respectively, (i.e., F(S) := {x € C:
Sz =z} and F(T) := {y € Q: Ty = y}). The SECFP was first studied by
A. Moudafi in [40] and he introduced the following algorithm for finding its solu-
tions:

Tpy1 = S(xn — v A (Az, — Byy)),

(1.4) .
Ynt1 = T(Yn + 1B (Az, — Byn)),

where S and T are firmly quasi-nonexpansive mappings and 7, € (£,2/(Aa +
Ap) —¢€). A lot of researchers have further studied the SECFP and several modi-
fications of (1.4) were introduced, see for instance [21], [22], [37], [41], [54], [55].

G. Lépez et al. in [31] and J. Zhao and Q. Yang in [56] presented helpful
methods for estimating the step-sizes which does not require a prior knowledge
of the operator norms for solving the SEP. In this direction, J. Zhao in [53]
studied the SEP and presented the following step-size selection which guarantees
convergence of the iterative scheme without a prior information about the operator
norms of A and B,

e (0 2|| Az, — By, |? )
A= (Azp = Byn) | + | B*(Azp — Bya)|?

Definition 1.1. A nonlinear mapping 7': H — H is said to be

(a) L-Lipschitz continuous mapping if there is a constant L > 0 such that

(1.5) [Tz —Ty|l < Llilz —yll,  Va,yeH.
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If L € [0,1), then T is called a contraction and if L = 1, T is called
a nonexpansive mapping;
(b) quasi-nonexpansive if F(T) # () and

[Tz —p| <|lz—pll, VaeH and pe F(T);
(c) firmly quasi-nonexpansive if F(T) # () and
T2 = pl* < llo = plI* = [lz = T2|®>,  VeeH and pe F(T);
(d) monotone if

(e) a-inverse strongly monotone (shortly, a-ism), if there is a constant oz > 0
such that

(Tz = Ty,x —y) > o|Tz - Ty|*,  Va,yeH.

Clearly every nonexpansive mapping is quasi-nonexpansive if F(T) # (. Also,
the class of a-ism mapping is é—Lipschitz continuous.

Definition 1.2. An operator T: H — H is said to be

(i) convex if there is o € (0,1) such that
T(ax+(1—-a)y) <al(z)+ (1 -a)T(y), Va,yeH;

(ii) proper if the effective domain of T, domT := {z € H: T(x) € H} is
nonemptys;

(iii) weakly lower semicontinuous if for every subsequence {z,, } C H and
every point z in H, we have x,, — x implies T(z) < liminfy_, o T(xy, ).

A set-valued mapping T: H — 27 is called monotone if for all z,y € H, with
u € T(x) and v € T(y) then
<x—y,u—v> Zoa

and T is maximal monotone if the graph of T' denoted by G(T') which is define
by G(T) := {(z,y): y € T(z)} is not properly contain in the graph of any other
monotone mapping. It is also known that T is maximal if and only if for (x,u) €
Hx H, (x—y,u—v) >0 for all (y,v) € G(T) implies u € T(x).

1.1 Generalized mixed equilibrium problem. Let C be a nonempty, closed
and convex subset of H, F': C' x C — R be a nonlinear bifunction, ¢: C — H be
a nonlinear mapping and U: C' — R U {oo} be a proper convex lower semicontin-
uous function. The generalized mixed equilibrium problem (GMEP) is defined as
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finding a point & € C such that
(1.6) F(z,y) + (¢pz,y —2) +U(y) —U(z) 20,  VyeC.

The set of solutions of (1.6) is denoted y GMEP(F, U, ¢) which is a closed and
convex set, see [29].

If ¢ = 0, Problem (1.6) reduces to the mixed equilibrium problem (MEP)
which is to find a point = € C such that

F(z,y)+U(y) —U(x) > 0, Vy e C.

In particular, if U = 0 in (1.1), the MEP reduces to the classical equilibrium
problem which was introduced by E. Blum and W. Oettli in [6] and defined s
finding a point & € C such that

Flz,y) 20, VyeC.

The GMEP is very general in the sense that it includes as special cases, op-
timization problem, variational inequality problem, fixed point problem, Nash
equilibrium problem in noncooperative games and many others.

When C and @ in (1.1) are the solution sets of GMEP, then (1.1) becomes the
split equality generalized mixed equilibrium problem (SEGMEP). Recently some
authors have studying the SEGMEP and introduced some iterative schemes for
approximating solutions of SEGMEP in real Hilbert spaces. See for instance [14],
[20], [23], [24], [25], [43], [48], [49].

1.2 Variational inequality problems. Let C' be a nonempty, closed and con-
vex subset of a Hilbert space H and T: C' — H be a nonlinear mapping. The
variational inequality problem (VIP) is define as finding a point z € C such that

(1.7) (Tz,y — x), VyeC.

We denote the set of solutions of VIP by VP(T, C). It is well known that a point
is a solution of the VIP (1.7) if and only if it is a solution of the fixed point equation

Po(x — NT'zx) =z,

where A > 0 and P¢ is the metric projection onto C. Several iterative methods
have been introduced in the literature for finding the solutions of VIP (1.7).
If the sets C' and @ in (1.1) are the solution sets of VIP, then (1.1) becomes
a split equality variational inequality problem (SEVIP). Recently, some authors
have also studying the SEVIP and several iterative methods were proposed for
approximating its solutions. See for instance [27].
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1.3 Monotone variational inclusion problems. Let f: H — H be a-inverse
strongly monotone operator and M : H — 2 be a maximal monotone operator.
The monotone variational inclusion problem is defined as finding a point z € H
such that

(1.8) 0€(f+ M)z

The set of solutions of the MVIP (1.8) is denoted by VI(f, M). The MVIP was
first introduced by R.T. Rockafellar in [44] and has been studied extensively in
recent days, see for instance [30]. The MVIP has successfully been applied to
study some concrete problems in machine learning, image processing and linear
inverse problem. The resolvent operator J} associated with M and A is the
mapping J}: H — H defined by

(1.9) I (2) = (I +AXM) " (z), € H, A\>0.

It is well-known that the resolvent operator J /]\V[ is single-valued, nonexpansive
and 1l-inverse strongly monotone and that a solution of problem (1.8) is a fixed
point of JY (I — \f), i.e.,

0¢ flx)+M(z) <= x=JYI-\)(x).

If f is a-ism with 0 < A < 2a, then JM (I — \f) is nonexpansive and VI(f, M) is
closed and convex.

Taking C' and @ in (1.1) to be the solution sets of MVIP, the SEP becomes
a split equality monotone variational inclusion problem (SEMVIP). The SEMVIP
was first studied by A. Moudafi in [39] and C.L. Byrne in [11] in 2011 and have
been studied recently by many other authors, see for example [19], [26] and ref-
erences there in.

In 2018, R. Shukla and R. Pant in [47] proposed the following algorithm for
finding a common solution of SEGMEP and SECFP:

F(un,w) + <¢(wn)aw - un> + Ul(w) - Ul(wn)
1

+T—<w—un,un—wn>20, Yw e C,

G(Vn, 2) + (0(2n), 2 — Vn) + Ua(2) — Us (2,

(1.10) (Un, 2) <1( ) ) (2) (2n)
Jrr—(zfvn,vnfzn)ZO, VzeQ,

Zp = Up — 'YnA* (Aun - B'Un)a

Wy, = vy + B (Au, — Buy,),



282 L. O. Jolaoso, O.T. Mewomo

Tn+1 = an,fl(xn) + (1 - Oln)S,B(Zn)7
Yn+1 = aan(yn) + (1 - an)TB(wn)7

where Sg = I+ (1-8)Sand T =1+ (1-08)T, S: HL — Hy and T: Hy — Hy
are quasi-nonexpansive mappings and f;: H; — H; for ¢ = 1,2, is a contraction
mapping. Under mild conditions, the authors proved a strong convergence of
algorithm 1.10 to a common solution = € €2, where Q := {(z,y) € Hy x Hs:
x € GMEP(F,U1¢) N F(S), y € GMEP(G,Us, ) N F(T) and Ax = By}.

On the other hand, let us mention the inertial type algorithm which is based
upon a discrete version of a second-order dissipative dynamical system, see [3], [4],
and can be regarded as a procedure for accelerating the convergence properties of
an algorithm. A lot of researchers have constructed fast iterative algorithms by
using inertial extrapolation techniques, including inertial forward-backward split-
ting methods, see [5], [42], inertial Douglas—Rachford splitting method, see [9], in-
ertial ADMM, see [15], inertial forward-backward-forward algorithm, see [10], [8],
inertial proximal-extragradient method, see [7], inertial split equilibrium method,
see [24] and inertial Mann method, see [50].

W. Cholomjiak et al. in [16] also introduced an inertial iterative algorithm for
solving the fixed point problem of a quasi-nonexpansive mapping and MVIP (1.8).
They proved the following weak convergence theorem.

Theorem 1.3. Let H be a real Hilbert space and T: H — CB(H) be a quasi-
nonexpansive mapping. Let f: H — H be an a-inverse strongly monotone oper-
ator and M : H — 2H a maximal monotone operator. Assume that VI(f, M) N
F(T) # 0 and I — T is demiclosed at 0. Let {z,}, {yn} and {z,} be sequences
generated by zg, 1 € H and

Zn = Tp + O0p(Tn — Tp_1),

1- an)Tyna

1- Bn) Tn( Tnf)znv n=>1,

where JM = (I +r,f)7%, {rn} C (0,20), {6} C [0,6] for some 6 € [0,1) and
{an}, {Bn} are sequences in [0, 1]. Assume that the following conditions hold:

(1) 2omz OnllTn — Tn_1 | < o0;

(ii) 0 < hm inf,, 00 ay, < limsup,,_, . an < 1;
i)
)

Zn = QpYn + (
(

Tn+1 = ﬁnzn

(iil) limsup,,_,o Bn < 1;
(iv) 0 < liminf,, e 7 < lmsup,,_,. mm < 2c.

Then, the sequence {x,} converges weakly to q € S.

Motivated by the works of R. Shukla and R. Pant, see [47], and W. Cholamjiak
et al., see [16], in this paper, we introduce an inertial algorithm for approximating
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a common solution of SEGMEP, SEMVIP, SEVIP and SECFP in real Hilbert
spaces. The algorithm is designed in such a way that the stepsize is chosen
without prior knowledge of the operator norms ||A| and ||B||. We also prove
a strong convergence result and further provide a numerical test to show the
relevance of our algorithm. This result improve and generalize many recent results
in literature.

Our contribution in this paper is in two folds:

o We consider a more general problem than the problems considered by
R. Shukla and R. Pant in [47], Z. Ma et al. [32], M. Rahman et al. [43],
A. Moudafi [39], L.O. Jolaoso et al. [24] and K.R. Kazmi and S.H.
Rizvi [26].

o The inertial algorithm technique used in this paper is new and it guaran-
tees strong convergence which is more desirable than the weak convergence
obtained by W. Cholamjiak et al. in [16], C.-S. Chuang [17], Q.-L. Dong
et al. [18] and D.V. Thong and D. V. Hieu [50], [51].

2. Preliminaries

In this section, we recall some preliminary results which will be needed in the
sequel. We denote the strong convergence and weak convergence of a sequence
{zn} to a point € H by =, — x and z,, — x, respectively.

Lemma 2.1 ([35], [52]). Let H be a real Hilbert space. Then the following result
holdsVx,y € H:
@) [lz+yll* < l=l* + 2(y, 2 + v);

(i) [ftz + (1 = )yl* =tz]* + 1 = Ollyl* =@ =)z — y[?, t € (0,1);

(iii) [l —yl?* = ll=l* — 2{z, y) + [ly]|*.
Lemma 2.2 (Demiclosedness principle in [38]). Let C be a nonempty, closed and
convex subset of a real Hilbert space H and S: C' — C be a nonlinear mapping
with F(S) # 0, then I — S is said to be demiclosed at 0 if x, — z* € C and
T, — Sz, — 0, then z* = Sz*.

For solving the equilibrium problem, we assume that the bifunction F :
C x C — R satisfy the following:

(L1) F(x,2) =0, Vx e C;

(L2) bifunction F' is monotone, i.e. F(z,y) + F(y,x) <0, Va,y € C;

(L3) for each x,y € C, limy_,o F(ty + (1 — t)z,y) < F(z,y);

(L4) for each x € C, y — F(x,y) is convex and lower semi-continuous.

Lemma 2.3 ([29]). Let C' be a nonempty closed and convex subset of a real
Hilbert space H. Let F': C' x C'— R be a bifunction which satisfies assumption

283
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(L1)—(L4), ¢: C — Hy be a nonlinear mapping and let U: C — R U {oco} be
a proper lower semicontinuous and convex function. For r > 0 and x € Hy, define
a resolvent function

TF(z) = {z cC: F(z,y)—i—(q’)(z),y—z}—&—U(y)—U(z)—&-%(y—z,z—x} >0,Vye C}

for all x € H. Then the following conclusions hold:
(i) for each x € H, TF () # 0;
(ii) function T is single-valued;
(ili) function TF is firmly nonexpansive, i.e. for any x,y € H,

1T e — TFyll> < (TFx =T y,x —y),

(iv) F(TF) = GMEP(F, U, ¢),
(v) GMEP(F,U, ¢) is closed and convex.

Lemma 2.4 ([28]). Let M: H — 2 be a maximal monotone mapping and
f: H — H be a Lipschitz continuous mapping. Then the mapping G := f +
M: H — 2 is a maximal monotone mapping.

Lemma 2.5 ([33]). Let {a,} and {~,} be sequences of nonnegative real numbers
such that
Op41 < (1_9n)an+ﬁn+7na n>1,

where {©,,} is a sequence in (0,1) and {B,} is a real sequence. Assume that
>0 o Bn < oco. Then, the following results hold:

(i) If B, < ©,M for some M > 0, then {«,} is a bounded sequence.
(ii) If 327, On =00 and limsup,,_, Bn/On < 0, then lim, o a, = 0.

Lemma 2.6 ([36]). Assume that {s,} is a sequence of nonnegative real numbers
such that
Sn+1 S (1 - an)sn + 0n5n7 n Z Oa

(2.1)
Sn41 < Sy — Tp + On,y n >0,

where {0, } is a sequence in (0, 1), {7, } is a sequence of nonnegative real numbers
and {6, } and {0, } are two sequences in R such that
(i) 22020 On = 005
(ii) limy, oo 0p = 0;
(iii) limg—oo 7o, = 0 implies that limsup,_,.. dn, < 0 for any subsequence

{nx} < {n}.

Then lim,, o S, = 0.
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Lemma 2.7 ([34]). Let {a,} be a sequence of real numbers such that there exists
a subsequence {n;} of {n} with a,, < an,4+1 for all i € N. Consider the integer
{my} defined by

my = max{j < k: a; < ajy1}.

Then {my} is a nondecreasing sequence verifying lim,,_,., m, = oo, and for all
k € N, the following estimates hold:

G and ar < Ay 41-

3. Main results

In this section, we give a precise statement of our propose algorithm and discuss
its convergence analysis. We first state the assumptions that we assume to hold
through the rest of the paper.

(a) Let Hy, Hy and Hj are real Hilbert spaces, C' and @ are nonempty,
closed and convex subsets of H; and Hs, respectively, and A: Hy — Hj
and B: Hy — Hj3 are bounded linear operators.

(b) Let F: CxC — Rand G: @xQ — R are bifunctions satisfying conditions
(L1)—(L4), ¢: C — H; and ¢: Q — Hy are inverse strongly monotone
operators with coeflicients 7, and 7, respectively, Uy: Hy — (—o00, 0]
and Uy: Hy — (—o00,00] are proper, convex and lower semicontinuous
functions.

(c) For 1l =1,2, f;: H — H, is py-inverse strongly monotone, M;: H; — 2
is multivalued maximal monotone and h;: H; — H; contraction mapping
with coefficient k; € (0,1).

(d) Let {S;}2, and {T}}52, are infinite families of quasi-nonexpansive map-
pings on H; and Hs, respectively, satisfying demiclosedness principle.

(e) The solution set I' := {(z*,y*) € Hy x Hy: z* € EP(F,U1,¢) N
VI(Ml, fl) N n;.il F(Sl), y* € EP(G, Us, Lp) N VI(MQ, fg) N mj (Tj)
and Az* = By*} is nonempty.

We next give a precise statement of our iterative algorithm.

Algorithm 3.1. Step 1: Take xg,x1 € H1, yo,y1 € Ho arbitrarily. Choose &, €
(0 1) and {Bn,i}720, {0n.j }520 C [0,1) such that B, ; # 0 for all i < n and
On,j 70 forall j <n. Set n = 1.

Step 2: Given the nth and the (n — 1)th iterates, calculate the (Zyp41,Yn+1) by
the following process:
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(Zn,Yn) = (Tn, Yn) + an(@n — Tn—1,Yn — Yn-1),
w = ST = Af1) (@0 = 1A (A% — Bya)),
2n = IV = Af2) (G + 10 B (AZ — BYn)),

F(up,w) + (p(wy), w — up) + Uy (w) — Uy (wy,)

+%<w—un,un—wn>20, Yw e C,
(3.1) G(vn, 2) + (@(2n), 2 — vn) + U2(2) — Uz(zn)

1
+*<Z—’Un,1}n—2n>207 VZEQ,
Tn

Tn+l = gnhl(xn) + (]- - fn) (Bn,()un + Zﬁn,zsz(un))a

i=1

Yn+1 = gnh2(yn) + (1 - gn) (6n,O'Un + Z 6n7jTj (Un)>a

j=1

where «,, is chosen such that

Wn .
(32) Ay = {“wybwnllH"ynynll’ if (xnayn) 7é (xn_l’yn_l)’

9, if (xnuyn) - (xnfhynfl)

for @ > 0 and w,, € [0,1). The stepsize =y, is chosen such that

n € Q,

2||AZ,, — Byn|?
63 & (O o m, =By P 5 (A = B

otherwise, 7, = v (v being any nonnegative value), where the set of
indexes Q) = {n: Az,, — By, # 0}, A* and B* are adjoints of A and B,
respectively, X € (0,2u) where p = max{p1, po} and {r,} C (0, 00).

Since the convergence of our algorithm depends on the choice of the sequences
{rn}, {an}, {Bn,i} and {0, ;}, we make the following assumption regarding these
parameters.

Assumption 3.2. Suppose that {r,},{an},{Bn,:} and {3, ;} satisfy the follow-
ing conditions:
(C1) limy, oo & =0 and Y2 | &, = oo;
(C2) wy, =o0(&), Le., limy, oo wy/En = 0;
(C3) >0 o Bni=1and liminf, o B,; >0, Z?:o 6n; =1 and
liminf, ;o 6y ; > 0;
(C4) 0 < liminf, o0 1y < 21, where n = max{n, n2}.
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Remark 3.3. We remark that the first line in Step 2 can easily be implemented
in numerical computation since the values of ||z, — 1| and ||y, — yn—1|| are
known before choosing ,. Also observe that condition (C2) implies that

lim o, (|Tn — Tn-1ll + |Yn — yn-1l]) =0,
n— 00

.«
lim —=([lzn = zn-1l + [[yn — yn-ll) = 0.
n

n—oo &

Now, we show the boundedness of the sequence {(z,,y,)} generated by Algo-
rithm 3.1.

Lemma 3.4. The sequence {(x,,y,)} generated by Algorithm 3.1 is bounded.

PRrROOF: Let (z*,4*) € T. This implies that «* € EP(F,Uy,¢) N VI(f1, M1) N
Niey F(S;) and y* € EP(G,Us, p) N VI(f2, M) N ﬂjoil F(T}). Then, from Step 2
in Algorithm 3.1 and Lemma 2.1 (iii), we have

[0 — 212 = e — 2) + auea — 20|

= ||33n - x*||2 + 2an<$n — ", Ty — Tpo1) F ainn - xn_1||2
= [lzn — 2" + an(llen — 2|* — lea_r — 2|2
+llzn = zn-1l?) + o} llzn — 21|
< zn — 21 + anlllen — 2* — flan-r —2*[?)
(3.4) + 20|20 — Tn1|)?
< zw = 2*1? + anlllen — 2| + llzn1 — 2 [)l|lzn — 21l
+ 20|20 — Tt |)?
= [lzn — 2*)? + an(lzn — 2*|| + [l2n_1 — 27|
+ 2an[|zn — zn—1|Dllzn — -1l

< lan = 2™ + ancrllzn — wn-al,

where

c1 = sup{lzn — 2" + lzn-1 — 2" + 20 |20 — 20|}
n>1
Similarly, we get
(3.5) 10 = 4 1% < llyn = v*II” + ancallyn = yn-ll,

where
co = Sgl;{\lyn =Y + [lyn—1 — ¥ | + 2 lyn — yn-1|l}-
nz

287
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Hence from (3.4) and (3.5), we obtain

10 = 212 + 10 =y 1 < N2 — 2™ + [y — v

(3.6) *
+anc(|zn — zn-1|l + [|[yn — Yn-1ll)s

where ¢* = max{cy, ca}.
Since (z*,y*) € VI(f1, M1) x VI(fa, Ma), then z* = JM (I — Af1)z* and y* =
Ji‘/f"’ (I —Af2)y*. Then by the nonexpansivity of JiVI‘ (I—=Af;) forl = 1,2, we have

[wn — 2| =[|JX (I = A1) (Zn — Y A (AZy — Byn) — 3 (1 = fr)2" |
< & — A" (AZy — Byn) — 27|
= &, — " ||> + 12l|A*(AZ,, — Byn)|
— 29, (AZ,, — Ax™, AZ,, — Byy).

(3.7)

But
(3.8) 2(Az,— Az*, Az, — Byy,) = || A%, — Az*||*+|| A%\, — Byy ||> — || Byn — Az*||°.
Substituting (3.8) into (3.7), we have

lwn = 2*[|* < (|20 — 2*[|* + A" (AT — BEa) | — Yl AZn — Az™|?

(3.9) ~ - ~ .
— Tl AZpn — BynH2 + Y| Byn — Az ”2
Similarly,
(3.10) 20 = ¥*11> < g0 — y*II> + 72 I B*(AZn — Bn)[I* + vallAZ — By*|?

- ’YnHBgn - By*”2 - ’Yn”Ai'n - Bgnuz
Adding (3.9) and (3.10) and noting that Az* = By*, we have

[wn = a2 + |20 = y*|1> < |Z0 — 2*[” + |70 — v*[I7
(3.11) — Y (2] A%y, — v (2| AZr, — B
- 'Yn(HA*(Afn - Bgn)Hz + HB*(Ai'n - Bgn)”2))7

and from (3.3), we get

(3.12) lwn = 2*[|* + 20 — |

IN

1% = 2*[|* + 170 — " 11*.

Observe that from Algorithm 3.1, u,, = TF (w, — rp¢w,) and v, = TTCjL (zn —

Tn
TnPZn)-
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Since (z*,y*) € EP(F, Uy, ¢) x EP(G, Us, ¢), then
lun — &[> = 1T (wn = rndw,) — 2*||?
= T (wn — radwn) — T (2" — rada”)||?
< = ra@)wn — (I = rng)a™|?
(3.13) < wn = 2%) = ra(wn — da™)|?
= [lwn — 2| = 2 (wn — 2%, pwy — $x*) + 17 || Ppwy, — P
< lwn = 2*|* = 2ram || pwn — ¢a*||* + 73 | gwy — p*||?
= [lwn — 2| = ra(2m — o) ll$wn — g%
Similarly, we have
(3.14) lon = 5117 < llzn = " 17 = ro (202 — ) 020 — 097",
Thus, from (3.12), (3.13) and (3.14), we have
lun = @[ + llon =y 1* < llwn = 2|7 + 120 = y* | = (20 — 1)
(3.15) X (|¢wn — ¢z* (1> + llpzn — y*|I)
<Nz — 2|7 + 150 — v,

where 1 = max{n, n2}.
Furthermore, since (z*,y*) € i, F(S;) x ﬂ;il F(Tj), then

2
21— |* =

gnhl(xn) + (1 - gn) (Bn,oun + Z 5n7i5iun> —z*

i=1

2

En(hi(wn) —2%) + (1 = &) (Bn,0u+ Z Br,iSitn — 33*)
=1

2

o0
B0t + Z Br,iSitty, — x*

i=1

(3.16) = &allhi(z) — hy(2*) + ho(2*) — 2|2 + (1 = &) (ﬁ”,oHun —z*|?

< Enllha(@n) — 2|7 + (1~ &)

o0 o0
+3 BuillSitn — 22 Bup’ S Bl Sitin — un|2)

=1 i=1

< &nlllha(wn) — (@) + 7 (2®) = 2" )* + (1 = &) llun — 27|

- (1 - gn)ﬁn,o Z Bnﬂ”szun - unH2

=1

< Enkian — 2" + Eallha (@) — 2" + (1 = &) llun — 2|1

289
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Similarly, we have

yn+1 = ¥ I1* < Eak3llyn — ¥ II° + Eallha(y®) — y* 17 + (1 = &)
(3.17) . =
X lon =y = (1= &n)0n,0 Z‘Smj”TjUn — vnl[%.

j=1
Hence from (3.15), (3.16) and (3.17), we get

Znt1 = 2”4 Iyt — v*1* < En(kTlln — 2|12 + K2 llyn — v*[I7)
+ &P (@) — 2% + [ha(y™) — v [1?)
+ (1= &) (lun = 2% + [lon — y*[1?)
<&k (ln — 212 + lyn — y*11?)
+ (b (™) = %> + ha(y™) — v %)
+ (1= &) (120 — 2P + |50 — ¥* %),

(3.18)

where k = max{ky, k2}. Therefore from (3.6) and (3.18), we have

Zn1 = 212 + [ynr1 = y*I1° < &ak* (2 — 21 + llyn — y*II°)
+&n([[ha (z™) = 2*|* + [lha(y*) — y*])
+ (@ =&)llen — 21 +llyn — v [1%)
+ anc (1= &) (|2 = znall + llyn — yn-all)
= (1= &1 = k) (lzn — 2" + g — y*[1%)
(3.19) +&n(llha(z™) = 2™|* + [lha(y™) = y"I1*)
+ anc™(|2n — o1l + [lyn — yn-1ll)
— anc&n([[on — znall + lyn — yn-1l)
< (=& = k) (len — 2” + llyn — y*II*)
+&n([lha(z™) = 2™|* + [lha(y™) — y*[1?)
+ anc*([|zn — zn-1ll + lyn — Yn-1])-

Putting on(2*,y*) = [[&n — 2*[I” + [lyn — y*|1?, then we have

on+1(2",y") < (1= &u(1 — kQ))Qn(x*v y)

) ox|[2 o2
(3.20) +£n(1—k2)[”h1(x )~z ||1 _+k||2h2(y ) -yl

OénC*(HJCn - xn—l” + ”yn - yn—l‘l)
En(1—K2)
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Note that supn21{oznc*(||xn — T 1|l + lyn — Yn_1l])/(&n(1 — k?))} exists by Re-
mark 3.3. Let

30 e e { W) =P )~
sup { anc([[zn —;n(llﬂ ;I)Iyn — Yn-1l) }}
then from (3.20), we have
(3.21) on+1(2”,y") < (1= &1 = k%))on(a,y") + &a(1 — k%) M.

Then using Lemma 2.5 and (3.21), we obtain that {o,(z*,y*)} is bounded. This
implies that {(z,,y,)} is bounded. Consequently, {x,} and {y,} are bounded.
(I

Next, we show an important result which is crucial in establishing the conver-
gence of Algorithm 3.1.

Lemma 3.5. The sequence {(zn,yn)} generated by Algorithm 3.1 satisfied the
following estimate:

(322) Qn—‘—l(x*ay*) g (]- - @n)gn(x*ay*) + @no—na

where
* ok * * 2§n 1—-k

(323)  ou@y) = o= Pt g — 72, O = 2L

1-&.k
and
(@) =2 wpgn — @) + (he(Y") — ¥ Y1 — Y) &n -
o, C*
+ m(\\xn = ZTp-1|l + [|Yyn — Yn-1ll),

for some ¢* > 0, and (z*,y*) € T
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PROOF: Set @, = Bnoun + Y soq Bn,iSitn and 0, = 6y ovpn + Z;)i1 O, i T Vn.
Let (z*,y*) € T, then

2

oo
Up — T = n,0Un n,irilln — T
| 2= |8 + > BniS :
=1
oo
= Brollun =" 1> + > Buill Sittn — Siz*|)?
=1
o0
= B0 Y BrillSittn — un?
1=1
oo
< lun = 2** = Buo Y BriillSittn — ua*.
=1
Similarly,
oo
15 = y* 12 < llon = 57 (1% = Gn0 Y O s Tyvn — val®
j=1
Hence
[t = 2*|* + ([0 = y*II” < flun — 2% + [Jun — 212
Also

241 = 2| < (1= &) [lan — 2*[|* + 26n(ha(2n) — 2%, Tps1 — 27)
= (1= &)?||tn — «*[|* + 260 (ha (20) — ha(2¥)
+ hi(z") + 2", xpp1 — 2F)
= (1= &) an — a*|* + 260k l|lzn — 2*|| [|2ngr — ||
+ 260 (h1(z") — 2%, 2ppq — @)
< (1= &)?[lan — ™)1 + &nk(lzn — 2*[* + [lznsa — 2*|%)
+ 28, (hi(z") — 2", xp1 — 7).

Similarly,

[yn1 — y* 1> < (1= &) o0 — y* I + &k (llyn — v*|?
+ [yna1 = y* 1) + 260 (P2 (y*) = ¥* Y1 — ¥7)-

Then
ont1(z",y%) < (1= &) (an — 21> + [|on — v [1?) + Enk(on(z*,y")
(3.24) + on+1(x*,y*)) 4+ 26, ((hy (%) — 2%, 2py1 — ™)
+(h2 (") =¥ Yn1 — ¥))
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< (1 =&)* (12 — ™1 + 150 — y*11?) + Enk(on (=, y")
+ ont1(z%, ")) + 260 ((ha (27) — 2%, wngy — 27)
+ (ha(y") =¥ ynt1 —¥"))-
Using (3.6) in (3.24), we have

on1 (2", y") < (1= 28, + €0 on (2", y) + Enklon (™, y")
+ on41(2,y")) + 260 ((ha(27) — 2%, Tngr — 77)
+ <h2(y*) - y*7yn+1 - y*>) + anC*(Hxn - xnfln + ||yn - ynle)

Therefore we get

1 -2, + &k &

* *) < * * * *
ont1(z™,y") < 1-&.k Qn(l’,y)+1_€nkgn($ Y)
2%, . )
+ 1 _é—nk(<h1(x ) —T ,Tnt1 — T >
+ (ha(¥™) = 4" Y1 — ¥"))
a,c*
1 e lon = anll =+ llyn = ynal)
-( 1— &k Jenla"y) + 1= &k
% (<h1(1’*) - $*7$n+1 - ZL'*> + <h2(y*) — y*’ynJrl _ y*>
1—k
&n " anC*

+ & =21l + lyn = yn-sll)

2R R

This establishes (3.22). O

In the next lemma, we show that every weak cluster point of {(x,,, y,)} belongs
to the solution set I'.

Lemma 3.6. Suppose that g, (z*,y*)—0n+1(x*,y*) = 0 as n — oo. Let (p,q) €
H, x Hy denotes the weak subsequential limit of {(2,,y,)}. Then (p,q) € T.

PRrOOF: We divide the proof of this result into three steps:
Step 1: Let Y, = ||A*(AZ,, — BYyn)||? + || B*(AZ,, — Byy,)||?>. Then we show that

(3.25) lim Y, =0, and lim ||AZ,, — Byy,| = 0.
n—oo

n—oo
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From (3.16) and (3.17), we have

0nt1(2",y") < &ak®on (@™, y") + &ulllha (2™) — 2| + [[h2(y™) — 7 I1%)

3.26
(320 + (1= &) ([un = "I + llon = y*[1?),

and from (3.15) and the last inequality, we get

on+1(2",y") < EakPon (@™, y*) + Enlllha(z) — 2™ + [[h2(y”) — y*II*)

3.27
320 + (1= &) (lwn = 2™ + llzn — y*[1?).

Also from (3.11) and the above inequality, we have

Qn-i—l(x*,y*) S fnkQQn(x*,y*) +§n(||hl(-r*) _ l'*HQ
(3.28) +lh2(y) =y I17) + (1 = &) (|20 — 2™ + |5 — 712
— (2| AZ;, — B@n||2 — L))

Hence from (3.6) and (3.28), we have

ont1(2%,y") < (1= &u(1 = k*))on(z*,y*) + &a([[ha (™) — 2*[° + [ ha(y™) — v*[I*)
+ (1 = &) (e (lzn — znall + llyn — yn-1l))

This implies that

(1= &)W 2l AZn — B> = 70 Tn) < (1 = &u(1 = k7)) on(2*, y")
+ &P (z*) — 2*|1® + lha(y*) — v*I1%)
+ anc™([[2n — o1l + 1Yn — yn-1ll)
= On+1(z",y").

Since &, — 0 and the fact that o, (||zn — Tn-1] + |Yyn — Yn-1l]) = 0 as n — oo,
we have

(3.29) lim 7, (2| AZ, — Bfnl|* — 72 Tn) = 0.

By the choice of =, in (3.3) for a very small € > 0, we have
2”‘45771 — Bgn||2
< S
Y Tn €
which implies that
YL < 2||AZy,, — Byn||* — €Y,
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and then from (3.29), we have

T, n
(3.30) 52 < || Azn — Bin|® — %Tn 0.
Hence
(3.31) lim T, = 0.
n—oo
Consequently
(332)  lim |A*(AZ, — By.)| = lm |B*(Az, — By.)| =0.
Also
(3.33) lim ||AZ, — Bg,| =0.
n— oo

Step 2: We show that the following limits hold:

Jim ([l = wall + |y — 2all) =0,
(3.34) Jim (Jlzn = un ] + lyn = vall) =0,
i (St = wnl] + | Tyen = wn])) = 0.

Observe that

(335) 1 (I —2all + 170~ yal) = 1m0 atn (1~ Zuoal + 19— ps])) = 0

Also
[wn = 2*|> < [|JY (T = A1) (@ — WA (AT, — Byn)) — 2*|?
< (wn — 2%, Ty — 1 A" (AT, — Byp) — 27)
= S llhwn = 2"+ [ — 70 A" (AT, — B) — |
— |lwn — & — Yn A*(AZn — Ba)|°].
Hence

wn — 2*[|* < |20 — ¥ + 42| A" (AZ — Byn)|?
— 2v,(AZ,, — Ax™, AZ,, — Byy,)
- ”wn - fn”2 - 'YZ”A*(Ajn - Byn)”2
+ 2y, (Aw,, — AZy, AT, — Bip)

< @ = 2% = llwn = Znl|* + 290]| Awy — Aa™|| | AZn — Bl

295
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Similarly, we have
lzn = y* 1% < 1190 = ¥*I1” = 120 = Gnll® + 29| Bzn — By*|| [|AZ, — Biall.
Therefore

lwn = 22 + 20 — ¥ 12 < @0 — 2| + 1|F0 — v7]|?
= (lwn = Zall* + 120 — Full®)
+ 29, (| Aw,, — Az*|| + || Bz, — By*||)
X ||AZy, — BYn||.

(3.36)

Therefore from (3.6), (3.27) and (3.36), we get

ont1(2",y") < (1= &u(L = k))en(@”,y") + &n(llha(a”) — 27|
+ k() =y 1?) = (lwn = Zall® + 120 = Fal®)
+ 2 ([[Awn — Az™|| + |[Bzn — By™ )| AZn — By,
+ anc([2n = Znal + [y = yn-al)-

This implies that

lwn =&l + 20 = Gull? < (1= €a(1 = k*))n(a",y") = onra (2™, y")
+ &l (@) = 2™ )* + ha(y") — v 1)
+ 29 (|| Awn — Az*|| + [[Bzn — By™|)|| A%, — By ||
+anc(|zn = znall + lyn = yn-ll)-

Since &, — 0 as n — oo and using (3.33), we have

i (s, — Fall? + 120~ 7all?) = 0.
which implies that
(3.7 Tl = | = T2 = 7] = 0
Therefore from (3.35) and (3.37), we get

(3.38) lim [|w, — z,|| = lm ||z, —yn| =0.
n—oo Tn—>00
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Furthermore, from (3.6), (3.15) and (3.26), we have
ont1(2 ") < (1= &u(1 = K?))on(a",y")
+ ([P (™) = 2** + ha(y™) — v |1%)
+ anc™([|[2n — a1l + Y0 — yn-1ll)
— (20 = r0) ([dwn — 2™||* + [lpzn — 0y™|?).
Hence
(20 = ) ([|pwn — ¢2* 12 + [0z — @y*[1?) < (1= & (1 = k*))on (", y")
= o1 (@ ") + &a(lha (2%) — 2* )12 + [[ha(y*) — v [1%)
+ anc™([[2n = Tn-1|l + |Yn = yn-1l))-
Therefore
(339)  lim ra(2y—ra)([lwn — 627 + oz — ey [?) = 0.
Since 0 < liminf,,_, r, < 27, then
Tim ([[gwn — 62" |> + llpzn — 0y”[I?) = 0,
which implies that
(3.40) lim |pw, — ¢z*|| = lim |¢z, — py*| = 0.
n—oo n—oo
Again from (3.1), we have
[un = 2*|* = | T, (wp = rngwn) — «*||®
< ”Tf; (wn - rn(bwn) - Trlz (.’L'* - rn¢x*)||2
< (up — 27, (Wp — rpdwn) — (2% — rpda™))
1
2
- ”wn — TnWy — (33* —Tpor") — (un - x*)HQ}

[”un - x*HQ + [(wn = rngwn) — (2% — Tn¢$*)||2

Hence
l|wn — x*H2 = [Jwn — $*||2 — [[(wn — rpdwy)
— (2" = rpga*) = (up — 2")|?
= [Jwn — $*||2 = [lwn — un||2
+ 27"n<wn — Un, d)wn - ¢$*> - r721||¢wn - d)x*”Q

< lwy, — x*||2 = [lwn — un||2 + 21 ||wn — un || |pwn — dx*|.

297
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Similarly, we have
|vn — y*||2 <llzn — y*HQ — |lzn — Un||2 + 2rull2n — vall lozn — 0y

Then we obtain

[, — 2|2 + [Jon — y*|1* < lwn — 2% 20 — y*||
= (lwn — Un||2 + [l2n — Un||2)
+ 27 |lwn — un || ||¢)wn - (bx*”
+ 27|20 — vnll |20 — 0y*|-

(3.41)

Therefore from (3.6), (3.26) and (3.41), we get

on+1(2”,y") < (1= &1 = k))on(z", y") + &l (™) — 27|
+lha () =y I1?) = (lwn = unl® + 120 = val®)
+ 2 [wn — unl| [|pwn — o7
+ 2rpllzn — vall llozn — y”||
+ anc([[en = 2ol + 1yn = yn-ll)-

Thus

[wn = unl® + |20 — val® < (1= &0 (1 = k*))on (2™, ") — ons1 (2", y")
+ &P (@) — 2** + [ha(y™) — v %)
+ 2rp |lwn — un || [gwn — oz
+ 2rpl[2n — vnll [lpzn — 0y |
+ anc (2 — zn-1ll + [lYn — Yn-1l)-

Also from (3.40) and the fact that &, — 0, we get
; 2 a2 —
nh_{r;o(”wn Un||* + [[2n — val%) = 0.
This implies that
(3.42) nh_}rr;o lwn — un|| = nh_}n;O |z, — vnll = 0.

Hence from (3.38) and (3.42), we have

(3.43) lim |2, — upll = lim [jy, —vall = 0.
n—oo n—oo
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Again from (3.16) and (3.17), we have

Ony1(z",y") < fnkZ(Hxn - x*”Q + |yn — y*Hz)
+ &l (@) = 2*|P + [|h2(y*) — v* )
+ (lun = 2*|* + [lva — y*[1?)

3.44 >
( ) - (1 _gn) (671,02571,1”51”71 _un||2
=1

e}
+ 5n,0 Z 5n,j HTjUn — ’Un||2> .

j=1

Hence from (3.6), (3.15) and (3.44), we have

(1-&) <Bn,0 S B llSettn — tn 2+ 60> G | Ty0m — vnn?)

i=1 j=1
< (1= &1 = k))on(",y*) + En(|[ha (2¥) — 2*|?
+ ko (y*) =y 1) + anc* (20 — znall + [yn = yn-1l)-

Using the fact that &, — 0, we have

Jim (5n,0 > Bui

|Siun - un||2 + 571.,0 Z(Sn’J”ijn - ’Un|2) =0.

i=1 j=1
Also, by using condition (C3), we have
(3.45) nhﬁn;() 1Siwn — uy|| = nhﬁrrolo | Tjvn — vp]| = 0.

Step 3: Let {(@n,,, yn, )} be a subsequence of {(x,,y,)} such that (2, ,yn, ) —
(p,q). Note that the existence of (p, q) is guaranteed since {(x,,y,)} is bounded,
see Lemma 3.4. We now show that (p,q) € T.

First, we show that (p,q) € EP(F, Uy, ¢) x EP(G, Us, ). Since u,, = TTIZ (wy, —
Tnowy), n > 1, we have for any z € C

Fun,z) + (d(un), x — un) + Ur(x) — Uy (un) + i<:v — Uy, Uy, — Wp) > 0.

n

It follows from the monotonicity of F' that

($(1n), T — ) + U (@) — Us (1) + (@ — s — w5) > F(z, ).

T'n
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Replacing n by ng, we get
1
(346> <¢(unk)7x_unk>+U1(‘/L.)_U1(unk>+7<m_unk7unk _wnk> > F(x7unk:)’

Tny,

For any ¢t € (0,1] and « € C, let 2y = tx + (1 — t)p. Since p € C and x € C, then
x¢ € C. So from (3.46), we have

<xt - unkvﬁb(wt» > <xt - Unk,¢($t)> - <$t - unk7¢(unk)>

(3.47) + F(21, un,,) + Ui (un,) — Ur(22)
= (=t §(0) = Olotny)) = (0 =, )
+ F(Z‘h unk) + Ul(unk) - Ul(xt)'

- <xt - unka

Since ¢ is monotone, then (r; — un,, ¢(xr) — ¢(up,)) > 0. Therefore by (L4)
and the weak lower semicontinuity of Uy, taking the limit of (3.47) (noting that
|ttn,, — Wn, || = 0 and u,, — p) as k — oo, we get

(3.48) (xt —p,d(21)) = F(zt,p) + Ur(p) — Ur(ay).
Hence from (L1) and (3.48), we get

0= F(x,z) + Ur(z) — Uz ()
< tF(xg, ) + (1 — ) F (2, p) + tUr(z) + (1 — )Uy(p
=t(F(ze,z) + Ur(z) — Ur(ze)) + (lft)(F(fvt, p)+
S UEF(z,2) + Ur(z) — Ur(ze)) + (1 = t){xe — p, d(
) — t) + (

=t(F(xy,x) + Ur(x) — Uy (x (1 —t)t{x —p, (;5 Ty

) = Ui(zy)
Ui(p) — Ui(z))
t))
))s

which implies that
F(zy, ) + (1 —t){(x — p, d(xe)) + Ur(z) — Ur(z¢) > 0.
Letting ¢t — 0, we have
F(p,z)+ (x —p,¢(p)) + Ur(z) —U1(p) >0, VazeC.

This means that p € EP(F, Uy, ¢). Similarly, we can show that ¢ € EP(G, Us, ¢).

Next, we show that (p, q) € VI(f1, M) x VI(fa, Ms). Since M is /711_ Lipschitz
monotone and the domain of M7 is Hi, we obtain from Lemma 2.5 that f; + M,
is maximal monotone. Let (u,w) € G(f1, My), i.e., w — fiu € My(u) and put
W, = Tny, — Y A (AX . — Bp, ). Then w,, = J)]\V[1 (I — f1)wy, , which implies



Approximating solutions of split equality of some nonlinear optimization problems 301

that (I —\f1)Wy, € (I+AM;1)w,,. Using the maximal monotonicity of ( f1 + M),
we get

1

<u—wnk,w—flu—

and so

1
<U _wnkaw> > <U_wnk7f1u+ 7(1TJ’I'Lk - )‘flwnk - wnk)>

A

= <U_’wnk7f1u— flw’ﬂk +f1wn1«

(3.49) X
- flwnk + X(’wnk - wnk>>
_ 1 _

> (U — Wy, fiwWn, — filn,) + <u — Wn,, X(wnk - wnk)>.

Note that
Hwnk - i‘nk” = 'YmcHA*(Aink - Bgnk)” — 0, as k — oo,
and
||wnk - @nk” S ||wnk - fnk” + ||‘ink - wnk” — 07 as k — oo.

Therefore, taking limit of (3.49), we have

lim (u — wy, , w) = (u — p,w) > 0.

k— o0
Since f; + M; is maximal monotone, hence 0 € (f; + M;)p. Therefore p €
VI(f1, My). Similarly, we can show that ¢ € VI(fa, My).

Finally, we show that (p,q) € (N2, F(S;)) x (ﬂ;’il F(T;)) and Ap = Bq.
Since ||S;un — up|| — 0 and ||u, — z,]| — 0 as n — oo, using the demiclosed-
ness principle, p € F(S;) for each i € N. Hence p € (;2, F(S;). Similarly,
q € ﬂ;”;l F(T;). Also, A and B are bounded linear operators, then Az, — Ap
and By, — Bq. By the weakly lower semicontinuity of the squared norm and
(3.33), we have

|Ap — BQH2 < linrggf |AZp,, — Bn,, H2 =0.

Therefore, Ap = Bq. Thus, we have shown that (p,q) € T. O
We now show the main strong convergence result.

Theorem 3.7. The sequence {(zn,y,)} generated by Algorithm 3.1 strongly
converges to a solution (p*,q*) € I' which solves the variational inequality

(I =hy)p*,p—p*) 20,

(3.50) (I —=h2)q",q—q") >0,

for all (p,q) € T.
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PRrROOF: Let (p*, ¢*) € T be the solution of the variational inequality (3.50) , from
Lemma 3.5, we see that

(3'51) Qn+1(p*7 q*) < (1 - Gn)Qn(p*vq*) + 0,05,

and

0n (0", q") = |z — 2" |* + Iy — ¢*II%

@nzw7
17€nk
_ @) =P ana = p*) + (ha(q") = ¢ Ynta — )
" 1—k
o )+ =2 (e — B
+ 2(1_k)9n(p q07) + 2£n(1—k)(”$" Tt |l + Y — Yn1l)

for some c* > 0.
Secondly, from (3.1) and (3.6), we have

on+1(P",q")
< (1= &)l — p*|I” + lon — ¢ |1?)
+ &P () = p*I* + halya) — ¢*[1%)
< (1= &) (lun = p*II” + llon — %)
- (1 - gn) (IBn,O ZBn,z' Sitty, — Un||2 + 5n,0 Z 6n7jHTj'Un - Un”z)

i=1 j=1

+&n(llha(@n) = pII* + [1h2(yn) — ¢*%)
(352) < lun = p I+ llon — ¢

- (1 - gn) <5n,0 Z 5n,z”szun - un||2 + 571,0 Z 5n,j Hijn - vn”z)

=1 7j=1
+ &l (@n) = p*I1* + [[h2(yn) — ¢"11%)
S Qn(p*vq*) + anC*(Hxn - xnflu + Hyn - ynle)

- (1 - gn) <5n,0 Z 5n,z|
=1

+&allha(@n) = p"II1” + lha(yn) — a|%).

Sttt — tin 2+ 80> G [ Ty0m — vnn?)

Jj=1
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By setting

Ao = En([ha(zn) = p* 11> + 1ha(yn) — ¢ %)
+ anc (|7 — 1l + lyn — yn-1ll),

Tn = (1 - gn) (ﬁn,o Z Bn,z| Szun - un||2 + 511,0 Z 6n,j

i=1 j=1

(3.53)

|Tjvp, — vn||2>,

(3.53) can be rewritten in the form

(3.54) 0n+1(p",4") < 0n(p*, q*) — Tn + An.

Using condition (C1) of Assumption 3.2 in (3.51) and (3.54), it is easy to see that
{6,} c (0,1),0, =0, > 2,0, =00 and A\, — 0. In order to use Lemma 2.6,
it suffices to verify that for each subsequence {n;} C {n}, lim;_, 7,,, = 0 implies
that limsup;_, ., 0, <0. Note that from Remark 3.3 and the fact that &,; — 0,
we have

&,
2(1— k)

ap,;c*

(3.55) EETa )

On; (p*aq*) (||zng - xnj—IH + ||yn7 - ynj—1||) — 0,

as j — 0o. Now we show that

limsup((h1(p*) = p*, Tn;41 — ") + (h2(¢") = ¢", Yn;41 — ¢*)) < 0.

j—o0
Indeed

limsup((h1(p*) = p* Tn;+1 = P*) + (h2(¢") = ¢", Yn;+1 — 7))
(3.56) 77 o . . . .
= —liminf(((I — h1)p*, Tp, 41 — p*) + (I — h2)q"  Yn,+1 — 47)).

J—00

We can take a subsequence of {(zy,,¥x,)} still denoted by {(xn,,yn;)} such that
(Tn;,Yn,;) = (p,q) as j — oo. Then

- 11],Igi£f(<(f = h)p*, Tnj41 — ) + (I = h2)q" Yn,; 41 — 47))
(3.57) = - jlggo(<(f —h)p" 1 — P7) (L = h2)q", Yny41 — 47))
= — (I =h)p",p—p") + (I — h2)q",q — q7)).

Since (p*,q*) is the solution of the variational inequality (3.50), then (3.56)
and (3.57), we have

(3.58) limsup((h1(p*) — p*, n; 41 — P°) + (h2(q”) — ¢", Yn;+1 — ¢7)) < 0.

j—o0

303
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Hence from (3.55) and (3.58), we have limsup;_,,, 0,, < 0. Therefore from
Lemma 2.6, it follows that

lim (lzn = p* |1 + llyn — " [I*) = 0,
n— oo

which implies that (2,,y,) — (p*,¢*). Hence, the sequence {(x,,y,)} converges
strongly to the solution (p*,¢*). This completes the proof. ([

4. Numerical example

In this section, we consider a numerical example to demonstrate the efficiency
and accuracy of our Algorithm 3.1. We compare the inertial Algorithm 3.1 with
non-inertial algorithm by taking «,, = 0 in Algorithm 3.1.

Example 4.1. Let H; = H, = R3 and H3 = R%. Let C be an Euclidean ball
defined by
= {x = (1‘1,%‘2,333) S RSZ ||]}||2 S 4}

and @ is the half-space defined by

Q = {y = (y17y23y3) € R?): <yab> S 0}

where b = (—1,2,—3). We define the bifunction F: C x C — R by F(x,u) =
—22?+ 1u? ¢: C — Hy by ¢(z) =2z and Uy : C — RU {oo} by Uy (z) = 322, It
is easy to see that

Also, we define the bifunction G: Q x Q@ — R by G(y,v) = —3y* + 2yv + v?,
©: Q — Hy by ¢(y) =2y and Uy: Q — RU {oo} by Us(y) = >. Then

y
W) =& 5 Yyee

Let M12 H1 — H1 be defined by Ml(xl,LEQ,I’g) = (725617731’2,173) and f12
H, — H; be defined by fi(x1,x2,23) = (221, 222, 223). After a simple calcula-
tion, we see that

1 0 0 T

BT =Mz=| 0 =3 0 z3
—2)

0 0 11+2/\ x3

for x = (1‘1,172,1‘3) € H;. AAISO7 let Msy: Hy — Ho be defined by Mg(yl,y27y3) =
(4y1,4y2, 2y3) and fo: Ha — Ha be defined by fo(y1,v2,¥3) = (Y1 — 2, 3y2,y3/4).
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Then we get
1—-X A 0
" T+4X }féﬁ n
REI=Mpy=| 0 R0 2
4—)
0 0 I(1+2X) Y3

for y = (y1,92,y3) € Ha. The bounded linear operators A: R® — R5 and
B: R? — R® are defined by

1
3

T o
Ax1,x2,23) = (2331 + xg — x3,4x1 — T2 + 373, , Tg + 563,962)

and

+
B(y17y27y3) = <y1 ) y2ay273(y1 +y3)7291 - 3y2 +4y37y1 +y2 +y3> .

Now for each 4,5 € N, let S;: Hy — Hy and T}: Hy — Hy be defined by

0, if <0,
SiJZ:
i%, if x>0,
and
I3y . .
1, if 3y>j+2.

It is not difficult to see that \S; and T} are quasi-nonexpansive mappings. For each
n €N, i =7 >0, define

0, it n<i,
o 1
0 . .
(4.1) Bri=1<1— Wl(k_l ﬁ>’ if n=1,
1 . .
7o (7)), if n>i,

and 0, ; = By,;. It is easy to see that lim, oo Bn; = 1/27 and Y00 Bni =1 =

E;io On,j-
We choose A =0 =1/4, r, =2n/(4n+1), &, =1/(n+ 1)P, w, = 1/(n+1)%,
and take different choices of p as follow:

Choice (i): p=10.3. Choice (ii): p = 0.5. Choice (iii): p=1.

We define the contraction mappings h;: H; — H; by h;(w) = w/(4i) for all
w € H;, i =1,2. Tt is easy to verify that all conditions (C1)—(C4) are satisfied
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and Algorithm 3.1 becomes:

(jnagn) = (xnvyn) + an(xn —Tn—1Yn — yn—l)a
wy = Sy (I = M) (# — YA (AZ,, — Bin)),
Zn = JY2 (I = Mf2)(n + 1 B* (AZ, — Bin)),

u, = —2n

"3, + 1

v, = — "

" 6, + 17
4.2 = _
(4.2) g = Eui () + (1 gn>[2 : 2( St

n—1
1

i=1

1
+ Z E(ijn - Tnvn)> + Tnvn} ,

j=1
where a, and ~, are as defined in (3.2) and (3.3), respectively. Using

[ Znt1 — anQ + ||yn+1 - yn||2
|22 —21% + [ly2 — 912

<1074

as the stopping criterion, we consider various values of the initial points (z, yo)
and (z1,y1) as follows:

Case I: o =(2,2,0), yo = (2,1,1),

$1=(171a1),y1—( 1;1,2)7
Case II: 2o = (1,0,1), yo = (1,1,2),

T = (%,2,—3) v = (2,0,2),
Case III: zo = (—2,2,2), yo = (3,1,2),

T = (%7 iv %0)3 Y1 = (177230)7
Case IV: zy = (1, 1, 1), Yo = 1, —4,2),

The numerical results are reported in Table 1 and Figures 1-4.

Remark 4.2. From the example above, we conclude that

(1) The inertial Algorithm 3.1 performs better than the non-inertial algo-
rithm, i.e., when «,, = 0.
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—e—Algorithm. 3.1
-~ Non-inertial Alg.

—e—Algorithm. 3.1
Non-inertial Alg.

0 2 4 6 8 10 12 6 8 10 12

Iteration number (n) Iteration number (n)
102 ‘
—e—Algorithm. 3.1
-~ Non-inertial Alg.
10 20 30 40

Iteration number (n)

FiGURE 1. Example 4.1 Case I:
Top Left: Choice I; Top Right: Choice II; Bottom: Choice III.

(2) Tt is evident that the change in the initial data does not have any sig-
nificant change in the number of iterations nor the cpu-time taken for

computation.
Choice I Choice IT Choice III

Case Alg. 3.1 Non-in. Alg. 3.1 Non-in. Alg. 3.1 Non-in.

I No. Iteration 5 12 4 14 6 40
Time (Sec.)  0.0078  0.0294  0.0021 0.0503  0.0056 1.2390

11 No. Iteration 5 13 6 13 7 40
Time (Sec.)  0.0043  0.0974 0.0023  0.0635  0.0049 1.0164

IIT  No. Iteration 5 13 5 13 7 40
Time (Sec.)  0.0180  0.6764  0.0852 0.1597 0.1870  0.7870

IV No. Iteration 5 13 5 18 9 57
Time (Sec.)  0.0099  0.0941 0.0213  0.0579  0.1464 1.0794

TABLE 1. Table showing computation results for Example 4.1.
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107" ; ‘ : :
—e—Algorithm. 3.1 —e—Algorithm. 3.1
«~ Non-inertial Alg. ~ -~ Non-inertial Alg.
= = 402
> 102 >
¥ ¥
= (=
= =
= 3 =
+ 10 +
o o 4
= =10
o X
£ 10 2
x x
107 ; : : : . 108 ‘ ‘
0 2 4 6 8 10 12 14 0 5 10 15
Iteration number (n) Iteration number (n)
10% -
—=—Algorithm. 3.1
Non-inertial Alg.
N _
;:
- 100
—
+
(=
=
+
o 1072
=
x
I-—!
7
o
= 104
10 20 30 40

Iteration number (n)

FiGURE 2. Example 4.1 Case II:
Top Left: Choice I; Top Right: Choice II; Bottom: Choice III.

Acknowledgement. The authors thank the referee of this paper whose valuable

comments and suggestions have improved the presentation of the paper.

REFERENCES
1

Attouch H., Bolte J., Redont P., Soubeyran A., Alternating prozimal algorithms for weakly
coupled convexr minimization problems. Applications to dynamical games and PDE’s,
J. Convex Anal. 15 (2008), no. 3, 485-506.

Attouch H., Cabot A., Frankel P., Peypouquet J., Alternating prozimal algorithms for lin-
early constrained variational inequalities: application to domain decomposition for PDE’s,
Nonlinear Anal. 74 (2011), no. 18, 7455-7473.

Attouch H., Czarnecki M. O., Asymptotic control and stabilization of nonlinear oscillators
with non-isolated equilibria, J. Differential Equations 179 (2002), no. 1, 278-310.

Attouch H., Goudou X., Redont P., The heavy ball with friction. I. The continuous dynam-
ical system: global exploration of the local minima of a real-valued function by asymptotic
analysis of a dissipative dynamical system, Commun. Contemp. Math. 2 (2000), no. 1,
1-34.

Attouch H., Peypouquet J., Redont P., A dynamical approach to an inertial for-
ward-backward algorithm for conver minimization, SIAM J. Optim. 24, (2014), no. 1,
232-256.

3

[4



Approximating solutions of split equality of some nonlinear optimization problems 309

10° _ i :
(——Algorithm. 3.1 —e—Algorithm. 3.1
Non-inertial Alg. ~~Non-inertial Alg.
= = 102
=3 =
> 9 >
10 '
o -
+ +
=] =
) =
+ ) +
o 10" N 4
= =10
x x
ol ol
+ +
X: ><C
= 0% =
106 . | L |
10 20 30 40 0 2 4 6 8 10 12 14
Iteration number (n) Iteration number (n)

107!

——Algorithm. 3.1
~—Non-inertial Alg.

2 2
1%, 1% 12+ 1Y - Yl

0 2 4 6 8 10 12 14
Iteration number (n)

FiGUure 3. Example 4.1 Case III:
Top Left: Choice I; Top Right: Choice II; Bottom: Choice III.

[6] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems,
Math. Student 63 (1994), no. 1-4, 123-145.

[7] Bot R.1., Csetnek E.R., A hybrid prozimal-extragradient algorithm with inertial effects,
Numer. Funct. Anal. Optim. 36 (2015), no. 8, 951-963.

[8] Bot R.I., Csetnek E.R., An inertial forward-backward-forward primal-dual splitting al-
gorithm for solving monotone inclusion problems, Numer. Algorithms 71 (2016), no. 3,
519-540.

[9] Bot R.I., Csetnek E.R., Hendrich C., Inertial Douglas—Rachford splitting for monotone
inclusion problems, Appl. Math. Comput. 256 (2015), 472-487.

[10] Bot R.I., Csetnek E.R., Laszlé S. C., An inertial forward-backward algorithm for the min-
tmization of the sum of two nonconvex functions, EURO J. Comput. Optim. 4 (2016),
no. 1, 3-25.

[11] Byrne C.L., Moudafi A., Extensions of the CQ algorithm for the split feasibility and split
equality problems, J. Nonlinear Convex Anal. 18 (2017), no. 8, 1485-1496.

[12] Censor Y., Parallel application of block-iterative methods in medical imaging and radiation
therapy, Math. Programming 42 (1988), no. 2, (Ser. B), 307-325.

[13] Censor Y., Bortfeld T., Martin B., Trofimov A., A unified approach for inversion problems
in intensity-modulated radiation therapy, Phys. Med. Biol. 51 (2006), no. 10, 2353-2365.

[14] Chang S.-S., Wang L., Wang X.R., Wang G., General split equality equilibrium problems
with application to split optimization problems, J. Optim. Theory Appl. 166 (2015), no. 2,
377-390.



310 L. O. Jolaoso, O.T. Mewomo

107" T - - 10° .
—e—Algorithm. 3.1 —e—Algorithm. 3.1
Non-inertial Alg. -~ Non-inertial Alg.
o o
>5 102 >
\ '
-2
T < 10
= =
= =
T 10° x
o o
" %107
-, 4 -
£ 10 3
X x
10 10

0 2 4 6 8 10 12 14 5 10 15 20
Iteration number (n) Iteration number (n)

—=—Algorithm. 3.1
Non-inertial Alg.

o

10?

=
(=]
o

=
=)
S

2 2
1%, g% 12+ 11, - Yl

i
<
S

10 20 30 40 50 60
Iteration number (n)

FIGURE 4. Example 4.1 Case IV:
Top Left: Choice I; Top Right: Choice II; Bottom: Choice III.

[15] Chen C., Chan R.H., Ma S., Yang J., Inertial proximal ADMM for linearly constrained
separable convex optimization, SIAM J. Imaging Sci. 8 (2015), no. 4, 2239-2267.

[16] Cholamjiak W., Pholasa N., Suantai S., A modified inertial shrinking projection method for
solving inclusion problems and quasi-nonezrpansive multivalued mappings, Comput. Appl.
Math. 37 (2018), no. 5, 5750-5774.

[17] Chuang C.-S., Hybrid inertial prozimal algorithm for the split variational inclusion problem
in Hilbert spaces with applications, Optimization 66 (2017), no. 5, 777-792.

(18] Dong Q.-L., Lu Y.-Y., Yang J., The extragradient algorithm with inertial effects for solving
the variational inequality, Optimization 65 (2016), no. 12, 2217-2226.

[19] Guo H., He H., Chen R., Strong convergence theorems for the split equality variational
inclusion problem and fized point problem in Hilbert spaces, Fixed Point Theory Appl.
(2015), 2015:223, 18 pages.

[20] He Z., The split equilibrium problem and its convergence algorithms, J. Inequal. Appl.
(2012), 2012:162, 15 pages.

[21] Jolaoso L. O., Abass H. A., Mewomo O. T., A viscosity-proximal gradient method with iner-
tial extrapolation for solving certain minimization problems in Hilbert space, Arch. Math.
(Brno) 55 (2019), no. 3, 167-194.

[22] Jolaoso L. O., Alakoya T.O., Taiwo A., Mewomo O.T., A parallel combination extragradi-
ent method with Armijo line searching for finding common solutions of finite families of
equilibrium and fized point problems, Rend. Circ. Mat. Palermo (2) 69 (2019), 711-735.



23]

24]

[25]

[26]

27]

28]

[29]

[30]

(31]

[38]
[39]
[40]
[41]
[42]

[43]

Approximating solutions of split equality of some nonlinear optimization problems

Jolaoso L. O., Ogbuisi F. U., Mewomo O.T., An iterative method for solving minimization,
variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl.
Math. 9 (2018), no. 3, 167-184.

Jolaoso L. O., Oyewole K. O., Okeke C. C., Mewomo O.T., A unified algorithm for solving
split generalized mized equilibrium problem, and for finding fized point of monspreading
mapping in Hilbert spaces, Demonstr. Math. 51 (2018), no. 1, 211-232.

Jolaoso L. O., Taiwo A., Alakoya T.O., Mewomo O.T., A self adaptive inertial subgradient
extragradient algorithm for variational inequality and common fized point of multivalued
mappings in Hilbert spaces, Demonstr. Math. 52 (2019), no. 1, 183-203.

Kazmi K. R., Rizvi S.H., An iterative method for split variational inclusion problem and
fized point problem for a monexpansive mapping, Optim. Lett. 8 (2014), no. 3, 1113-1124.
Latif A., Eslamian M., Split equality problem with equilibrium problem, variational inequal-
ity problem, and fized point problem of nonexpansive semigroups, J. Nonlinear Sci. Appl.
10 (2017), no. 6, 3217-3230.

Lemaire B., Which fized point does the iteration method select?, Recent Advances in Opti-
mization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin,
1997, pages 154-157.

Li S., Li L., Cao L., He X., Yue X., Hybrid extragradient method for generalized mized
equilibrium problem and fixed point problems in Hilbert space, Fixed Point Theory Appl.
(2013), 2013:240, 13 pages.

Lin L.-J., Chen Y.-D., Chuang C.-S., Solutions for a wvariational inclusion problem with
applications to multiple sets split feasibility problems, Fixed Point Theory Appl. (2013),
2013:333, 21 pages.

Lépez G., Martin-Marquez V., Wang F., Xu H.-K., Solving the split feasibility problem with-
out prior knowledge of matriz norm, Inverse Problems 28 (2012), no. 8, 085004, 18 pages.
Ma Z., Wang L., Chang S.-S., Duan W., Convergence theorems for split equality mized
equalibrium problems with applications, Fixed Point Theory Appl. (2015), 2015:31, 18 pages.
Maingé P.-E., Approzimation methods for common fized points of nonexpansive mappings
in Hilbert spaces, J. Math. Anal. Appl. 325 (2007), no. 1, 469-479.

Maingé P.-E., Strong convergence of projected subgradient methods for monsmooth and
nonstrictly conver minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899-912.

Marino G., Xu H.-K., Weak and strong convergence theorems for strict pseudo-contractions
in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336-346.

Matinez-Yanes C., Xu H.-K., Strong convergence of the CQ) method for fized point iteration
processes, Nonlinear Anal. 64 (2006), no. 11, 2400-2411.

Mewomo O.T., Ogbuisi F.U., Convergence analysis of an iterative method for solving
multiple-set split feasibility problems in certain Banach spaces, Quaest. Math. 41 (2018),
no. 1, 129-148.

Moudafi A., A note on the split common fized-point problem for quasi-nonexpansive oper-
ators, Nonlinear Anal. 74 (2011), no. 12, 4083-4087.

Moudafi A., Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011),
no. 2, 275-283.

Moudafi A., Alternating CQ-algorithms for convex feasibility and split fixed-point problems,
J. Nonlinear Convex Anal. 15 (2014), no. 4, 809-818.

Moudafi A., Al-Shemas E., Simultaneous iterative methods for split equality problems and
applications, Trans. Math. Program. Appl. 1 (2013), 1-11.

Ochs P., Brox T., Pock T., iPiasco: inertial proximal algorithm for strongly convexr opti-
mization, J. Math. Imaging Vision 53 (2015), no. 2, 171-181.

Rahaman M., Liou Y.-C., Ahmad R., Ahmad I., Convergence theorems for split equality
generalized mized equilibrium problems for demi-contractive mappings, J. Inequal. Appl.
(2015), 2015:418, 25 pages.

311



312

[44]
[45]

[46]

[52]

[53]

[54]

L. O. Jolaoso, O. T. Mewomo

Rockafellar R.T., Monotone operators and the proximal point algorithm, STAM J. Control.
Optim. 14 (1976), no. 5, 877-898.

Shehu Y., Mewomo O.T., Further investigation into split common fixzed point problem for
demicontractive operators, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 11, 1357-1376.
Shehu Y., Mewomo O. T., Ogbuisi F. U., Further investigation into approzimation of a com-
mon solution of fized point problems and split feasibility problems, Acta Math. Sci. Ser. B
(Engl. Ed.) 36 (2016), no. 3, 913-930.

Shukla R., Pant R., Approzimating solution of split equality and equilibrium problems by
viscosity approzimation algorithms, Comput. Appl. Math. 37 (2018), no. 4, 5293-5314.
Taiwo A., Jolaoso L. O., Mewomo O.T., A modified Halpern algorithm for approximating
a common solution of split equality convexr minimization problem and fized point problem
in uniformly convex Banach spaces, Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77,
28 pages.

Taiwo A., Jolaoso L. O., Mewomo O. T., Parallel hybrid algorithm for solving pseudomono-
tone equilibrium and split common fized point problems, Bull. Malays. Math. Sci. Soc. 43
(2020), no. 2, 1893-1918.

Thong D. V., Hieu D. V., An inertial method for solving split common fized point problems,
J. Fixed Point Theory Appl. 19 (2017), no. 4, 3029-3051.

Thong D.V., Hieu D.V., Inertial subgradient extragradient algorithms with line-search
process for solving variational inequality problems and fized point problems, Numer. Algo-
rithms 80 (2019), no. 4, 1283-1307.

Zegeye H., Shahzad N., Convergence of Mann’s type iteration method for general-
ized asymptotically nonexpansive mappings, Comput. Math. Appl. 62 (2011), no. 11,
4007-4014.

Zhao J., Solving split equality fixed-point problem of quasi-nonexpanive mappings without
prior knowledge of operators norms, Optimization 64 (2015), no. 12, 2619-2630.

Zhao J., He S., Strong convergence of the wviscosity approximation process for the split
common fized-point problem of quasi-nonezpansive mappings, J. Appl. Math. 2012 (2012),
Art. ID 438023, 12 pages.

Zhao J., Wang S., Viscosity approzimation methods for the split equality common fized
point problem of quasi-nonexpansive operators, Acta Math. Sci. Ser. B (Engl. Ed.) 36
(2016), no. 5, 1474-1486.

Zhao J., Yang Q., A simple projection method for solving the multiple-sets split feasibility
problem, Inverse Probl. Sci. Eng. 21 (2013), no. 3, 537-546.

L. O. Jolaoso:

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE,
UNIVERSITY OF KWAZULU-NATAL, PRIVATE BAG X 54001, 4000 DURBAN,
SOUTH AFRICA

E-mail: 216074984@stu.ukzn.ac.za

E-mail: lateefjolaoso89@gmail.com

O.T. Mewomo:

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE,
UNIVERSITY OF KWAZULU-NATAL, PRIVATE BAG X 54001, 4000 DURBAN,
SOUTH AFRICA

E-mail: mewomoo@Qukzn.ac.za

(Received January 28, 2019, revised August 26, 2019)



		webmaster@dml.cz
	2021-02-25T13:23:52+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




