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K Y B E R N E T I K A — V O L U M E 5 6 ( 2 0 2 0 ) , N U M B E R 5 , P A G E S 9 4 8 – 9 7 8

FACTORIZED MUTUAL INFORMATION
MAXIMIZATION

Thomas Merkh and Guido Montúfar

We investigate the sets of joint probability distributions that maximize the average
multi-information over a collection of margins. These functionals serve as proxies for
maximizing the multi-information of a set of variables or the mutual information of two
subsets of variables, at a lower computation and estimation complexity. We describe
the maximizers and their relations to the maximizers of the multi-information and the
mutual information.

Keywords: multi-information, mutual information, divergence maximization,
marginal specification problem, transportation polytope

Classification: 94A17, 62B10

1. INTRODUCTION

The mutual information (MI) is a measure of mutual dependence between two
random variables that plays a central role in information theory and machine
learning. The multi-information is a generalization to composite systems with
an arbitrary number of random variables. The problem of maximizing the multi-
information was proposed and studied in [2], motivated by infomax principles.
It was shown, in the setting of finite valued random variables, that the op-
timizers of the unconstrained maximization problem are attained within low
dimensional exponential families of joint probability distributions. A character-
ization of the optimizers was obtained in [5]. Maximizing the multi-information
can be regarded as a special instance of the more general problem of maximiz-
ing a divergence from an exponential family. Indeed, the multi-information of
a joint probability distribution is equal to its Kullback-Leibler divergence from
an independence model. The problem of maximizing the divergence from an
exponential family has been advanced by Matúš [25, 26], Matúš and Ay [27],
Matúš and Rauh [28], Rauh [36]. The divergence maximization problem can
also be asked for more general classes of probability models, such as proba-
bilistic graphical models with hidden variables and stochastic neural networks.
Works in this direction include [34, 31] and the short overview [35].
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Numerous machine learning applications involve optimizing the MI over a
restricted set of joint probability distributions. Examples include the informa-
tion bottleneck methods [48, 45, 1], the computation of positive information
decompositions [10], the implementation of information theoretic regularizers in
robotics and reinforcement learning [50, 33], the analysis of deep networks [18],
and unsupervised representation learning in deep learning [20]. A parametrized
set of distributions may or may not contain the unconstrained maximizers of a
given functional. In some cases, the distributions are constrained by structures
in addition to the chosen parametrization. For instance, in Markov decision pro-
cesses the joint distributions between time consecutive states are governed not
only by a parametrized policy model but also by the state transition mechanism;
see, e. g., [32]. In order to optimize the mutual information in such cases, we
usually need to resort to iterative parameter optimization techniques. Comput-
ing the parameter updates can quickly become intractable, even for a moderate
number of variables, since the number of possible joint states grows exponen-
tially in the number of variables. The estimation and computation of the mutual
information is often a bottleneck in the implementation of algorithms that are
based on it. For reference, the estimation of the MI from observations has been
studied in [39, 24, 41, 19], and recently also using neural networks in [9].

We are interested in proxies that are easier to estimate from samples and
easier to compute than a given functional, and which might provide a signal for
optimizing it, possibly having the same optimizers, or a structured subset of the
optimizers.

We consider measures defined as averages of the multi-information over sub-
sets of all random variables in a composite system. This type of local quanti-
ties and averages have appeared in different contexts and under various names,
including intricacies [13], mean information paths [7], and local stochastic in-
teractions [3]. Based on previous investigations of the maximizers of multi-
information [5, 2], we can expect that the maximizers of local multi-information
averages will satisfy several properties. First, they may be contained within
the closure of a low dimensional exponential family. Second, like many other
instances of divergence maximizing distributions, they may exhibit reduced sup-
port. Last, if the measures are symmetric under the exchange of indices, the
maximizing distributions are expected to display the same degree of symme-
try. We characterize the sets of maximizers of various factorized measures and
describe their relation to the maximizers of the multi-information and the max-
imizers of the mutual information of two subsets of variables.

As a motivating application, we have in mind the estimation and maximiza-
tion of the mutual information between time consecutive sensor readings of a
reinforcement learning agent acting in an environment. The mutual information
is the 1 time step version of a notion called predictive information, which has
been considered in the literature [11, 40, 4, 51, 15]. In [33], a factorized mutual
information (here called SFMI) was used in place of the mutual information
as an intrinsic reward signal to encourage more robust walking behaviors for a
multi-legged robot. A similar approach was also used previously in [50] for a
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chain of robots. Maximizing the mutual information between time consecutive
measurements of a given variable should encourage behaviors that are diverse
and, at the same time, predictable. This intuition comes from writing the mu-
tual information between X,Y as I(X,Y ) = H(X)−H(X|Y ), where H is the
entropy. In this context, the mutual information serves as a regularizer that is
added in order to ease the task-objective optimization problem and also to assign
preferences to specific types of solutions. Some references to such regularizes,
also known as intrinsic motivation, include [6, 30, 43, 14, 23, 11, 12].

This article is organized as follows. In Section 2 we review definitions and in
Section 3 relevant existing results around the multi-information. In Section 4
we define notions of factorized multi and mutual information. The FMI of a
set of random variables is defined as an average multi-information of subsets of
variables. The SFMI of two random vectors is defined as an average mutual
information of non-overlapping pairs with one variable from each vector. In
Section 5 we study the maximizers of the FMI and characterize the cases when
they coincide with the maximizers of the multi-information. In Section 6 we
characterize the maximizers of the SFMI, which build a union of transporta-
tion polytopes that contain all maximizers of the multi-information and some
maximizers of the mutual information. Section 7 describes partitions of sets of
strings that we use for the characterization of SFMI maximizers. In Section 8
we offer a summary and discussion of our results.

2. MULTI-INFORMATION AND MUTUAL INFORMATION

We consider discrete probability distributions supported on a finite set X . The
set of all such distributions is a (|X | − 1)-simplex denoted ∆X . Let D(p‖q) be
the Kullback-Leibler divergence between the probability distributions p and q,
which is defined as

D(p‖q) :=
∑
x∈X

p(x) log

(
p(x)

q(x)

)
. (1)

If C is a family of probability distributions, then let D(p‖C) denote the infimum
divergence between p and any distribution in C,

D(p‖C) := inf
q∈C

D(p‖q). (2)

We are concerned with joint probability distributions of n variables, so that
x = (x1, . . . , xn) and X = X1×· · ·×Xn. We denote F the set of fully factorizable
joint distributions, i. e., those p ∈ ∆X which can be written as

p(X1, . . . , Xn) = p1(X1)p2(X2) · · · pn(Xn), pi ∈ ∆Xi , i = 1, . . . , n. (3)

The set F is also referred to as the independence model of X1, . . . , Xn. It is a∑n
i=1(|Xi|−1)-dimensional manifold in ∆X . The multi-information of n random

variables with joint distribution p is then defined as

Ip(X1, X2, . . . , Xn) := D(p(X1, X2, . . . , Xn)‖F). (4)
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It has a natural interpretation as the distance of p from being independent. Fol-
lowing standard notation we drop the subscript p, and write simply I(X1, . . . , Xn).
The minimum Kullback-Leibler divergence from a joint distribution p to the set
of factorizable distributions is attained uniquely by the product of its marginals,

arginfq∈F D(p‖q) = p(X1) · · · p(Xn), (5)

where p(Xi = xi) =
∑
xj : j 6=i p(x1, . . . , xn), xi ∈ Xi, for i = 1, . . . , n. The

product of marginals is the maximum likelihood estimate of a joint distribution
as a product distribution.

The multi-information can be written equivalently in terms of entropies, as

I(X1, X2, . . . , Xn) =

n∑
i=1

H(Xi)−H(X1, . . . , Xn). (6)

Here H(X) = −
∑
x p(x) log p(x) denotes the entropy of X. If |X | = N , then

direct computation shows that the entropy is bounded above by log (N). There-
fore, the maximum value of multi-information of n N -ary variables is bounded
by n log (N). However, as noted in [5, Lemma 4.1], this bound is never attained,
with a sharp bound being

I(X1, X2, . . . , Xn) ≤ (n− 1) log (N). (7)

The set of all distributions which maximize multi-information for n variables
will be denoted byMn, orM when n is understood. We note the chain rule of
entropy,

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|X1, . . . , Xi−1). (8)

From this, we see that maximizing the multi-information (6) can be interpreted
as maximizing the marginal entropies while at the same time minimizing the
conditional entropies. In turn, the maximizers of the multi-information are
joint distributions where each individual variable is diverse (high entropy), but
predictable from the values of the other variables (low conditional entropy).

The multi-information of two variables is called mutual information. We will
consider the mutual information of two random vectors X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn), which is given by

MI(X,Y) := D(p(X,Y)‖p(X)p(Y)), (9)

where p(X = x) =
∑

y p(x,y) and p(Y = y) =
∑

x p(x,y) are the marginal
distributions. Note that here the divergence is measured to the set of distribu-
tions that factorize as a product p(X)p(Y), which does not need to factorize
further over the components of each random vector.

3. MAXIMIZERS OF THE MULTI-INFORMATION

In this section we collect relevant existing results on the multi-information that
we will use in the following sections of this article.
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Proposition 1. (Maximizers of the multi-information) [5, Corollary 4.10]
Consider N -ary random variables X1, . . . , Xn. Then

max
p∈∆X

Ip(X1, . . . , Xn) = (n− 1) log(N),

and the maximizers are the uniform distributions on N -ary codes of length n,
minimum Hamming distance n, and cardinality N . The number of such codes
is (N !)n−1.

Here a code refers simply to a subset of strings. The work [5] also character-
izes the maximizers of the multi-information for variables with different state
spaces, which is more technical. We will focus on the case where all variables
are N -ary, i. e. |Xi| = N for all i. Such a collection of random variables are
called homogeneous. We make a few remarks on the inhomogeneous setting in
Appendix D.

Example 2. In the case of binary variables, N = 2, Proposition 1 states
that the set of maximizers of the multi-information consists of all uniform
distributions over pairs of binary vectors of Hamming distance n. Letting
πi : {0, 1} → {0, 1} be one-to-one maps for i = 2, 3, . . . , n, the maximizers
of the multi-information take the form

p =
1

2

(
δ(0π2(0)π3(0)···πn(0)) + δ(1π2(1)π3(1)···πn(1))

)
,

where δx denotes the point measure supported on string x.

The maximizers of the mutual information are obtained from applying Propo-
sition 1 to the special case of two random variables.

Corollary 3. For two N -ary variables X and Y , the maximum mutual infor-
mation is maxp∈∆X MIp(X,Y ) = log(N), and the maximizers are the uniform
distributions on N -ary codes of length 2, minimum Hamming distance 2, and
cardinality N . The number of such codes is N !.

We can apply Corollary 3 not only to pairs of variables, but also to pairs of
random vectors, since random vectors can be regarded as random variables
with states over a product space.

Corollary 4. For two N -ary random vectors X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn), the maximizers of MI(X,Y) are the uniform distributions over
N -ary codes of length 2n, minimum distance 2 when viewed as Nn-ary codes
of length 2, and cardinality Nn. The number of such codes is Nn!.

Example 5. Consider four binary random variables (X1, X2, Y1, Y2); that is,
n = 2 pairs of N = 2 valued variables. The N !2n−1 = 8 maximizers of the
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multi-information of (X1, X2, Y1, Y2) are

1
2 (δ0000 + δ1111), 1

2 (δ0101 + δ1010),
1
2 (δ0001 + δ1110), 1

2 (δ0100 + δ1011),
1
2 (δ0010 + δ1101), 1

2 (δ0111 + δ1000),
1
2 (δ0011 + δ1100), 1

2 (δ0110 + δ1001).

The Nn! = 24 maximizers of the mutual information of X = (X1, X2) and
Y = (Y1, Y2) are

1
4 (δ0010 + δ0100 + δ1001 + δ1111), 1

4 (δ0000 + δ0110 + δ1001 + δ1111),∗∗

1
4 (δ0001 + δ0100 + δ1010 + δ1111), 1

4 (δ0010 + δ0100 + δ1011 + δ1101),∗∗

1
4 (δ0001 + δ0110 + δ1000 + δ1111), 1

4 (δ0011 + δ0101 + δ1010 + δ1100),∗∗

1
4 (δ0000 + δ0101 + δ1011 + δ1110), 1

4 (δ0001 + δ0111 + δ1000 + δ1110),∗∗

1
4 (δ0000 + δ0111 + δ1001 + δ1110), 1

4 (δ0000 + δ0101 + δ1010 + δ1111),∗

1
4 (δ0011 + δ0110 + δ1000 + δ1101), 1

4 (δ0010 + δ0111 + δ1000 + δ1101),∗

1
4 (δ0000 + δ0110 + δ1011 + δ1101), 1

4 (δ0011 + δ0110 + δ1001 + δ1100),∗

1
4 (δ0000 + δ0111 + δ1010 + δ1101), 1

4 (δ0001 + δ0100 + δ1011 + δ1110),∗

1
4 (δ0011 + δ0101 + δ1000 + δ1110), 1

4 (δ0010 + δ0101 + δ1000 + δ1111),
1
4 (δ0001 + δ0110 + δ1011 + δ1100), 1

4 (δ0010 + δ0101 + δ1011 + δ1100),
1
4 (δ0001 + δ0111 + δ1010 + δ1100), 1

4 (δ0011 + δ0100 + δ1010 + δ1101),
1
4 (δ0010 + δ0111 + δ1001 + δ1100), 1

4 (δ0011 + δ0100 + δ1001 + δ1110).

Some maximizers of MI(X,Y) can be expressed as convex combinations of
maximizers of I(X1, . . . , Xn, Y1, . . . , Yn). In the current example, those marked
by ∗ or ∗∗ can. The four distributions marked with ∗ have marginals p(X1, Y1)
and p(X2, Y2) of maximum mutual information. The four distributions marked
with ∗∗ have margins p(X1, Y2) and p(X2, Y1) of maximum mutual information.
We will discuss them further in Example 19.

4. FACTORIZED MEASURES OF MULTI-INFORMATION

We propose alternatives to the multi-information based on averages over sub-
sets of random variables. After presenting the definitions in this section, we
investigate the maximizers in the next Sections 5 and 6.

Definition 6. For a family Λ of subsets of {1, . . . , n}, the Λ-factorized multi-
information of (X1, . . . , Xn) is defined as

IΛ(X1, . . . , Xn) :=
1

|Λ|
∑
λ∈Λ

I((Xi)i∈λ). (10)

Here I((Xi)i∈λ) is the multi-information of the marginal distribution of variables
Xi, i ∈ λ. In particular, I{1,...,n} ≡ I and I{i} ≡ 0.
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X Y X1 Y1

X2 Y2

X1 Y1

X2 Y2

X3 Y3

Fig. 1. Graphical illustration of MI, FMI, SFMI. Graphically, the IΛ
with sets λ ∈ Λ of cardinality |λ| > 2 includes hyperedges, but the

maximizing set can be described equivalently in terms of the edges

contained in elements of Λ.

We will focus on two special cases. The first is the average mutual information
between all pairs of variables. We call this the average mutual information, or
the pairwise factorized multi-information (FMI).

Definition 7. (Factorized multi-information, FMI) For n random vari-
ables X1, . . . , Xn, the FMI is

FMI(X1, . . . , Xn) :=
1(
n
2

) ∑
i 6=j

MI(Xi, Xj). (11)

The second case that we consider is the average mutual information between
pairs of variables with one variable from each of two random vectors. We call this
the separated average mutual information, or the separated factorized mutual
information (SFMI).

Definition 8. (Separated factorized mutual information, SFMI) For
two random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), the SFMI is

SFMI(X,Y) :=
1

n

n∑
i=1

MI(Xi, Yi). (12)

In the reinforcement learning application mentioned in the introduction,
(Xi, Yi) corresponds to time consecutive readings of the ith sensor of the agent.
The average over all sensors, i = 1, . . . , n, is used as a proxy for MI(X,Y). We
will investigate the properties of this choice.

An illustration of the proposed factorized measures is shown in Figure 1. In
this figure, edges correspond to the pair marginals whose mutual-information
is being added in the factorized measure. One natural question which arises
is: how do the distributions with large multi-information compare to those with
large factorized mutual information, under the various choices of margins? Since
the factorized measures average interdependence between subsets of random
variables, they can be less descriptive than measuring the joint interdependence
of all of the variables. In the case where the joint probability distribution can
be written as the product of pairwise interaction terms, the multi-information
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naturally decomposes as the sum over mutual information terms [17]. When
higher order interactions exist, the average of pairwise mutual information can
serve as an approximation to the multi-information. In relation to this, we note
that the exponential family with sufficient statistics computing Λ margins is, by
definition, able to attain all feasible values of these margins, and in particular
it is able to express all possible values of IΛ.

The trade-off between computing averages of mutual information between
pairs of variables and multi-information or mutual information between groups
of variables is that the former can be more easily estimated, since it involves
only pair margins and not the full joint distribution. The computation of the
pairwise factorized multi-information scales with n2 ·N2, where N = maxi |Xi|,
whereas the computation of multi-information scales with Nn.

5. MAXIMIZERS OF THE FACTORIZED MULTI-INFORMATION

The next lemma shows that every marginal of a joint distribution with maximum
multi-information also has maximum multi-information. A related statement,
for pair margins, appeared previously in [5, Remark 4.5 (c)].

Lemma 9. Consider N -ary variables X1, . . . , Xn. If a distribution maxi-
mizes the multi-information of X1, . . . , Xn, then for any subset of indices
{j1, . . . , jk} ⊆ {1, . . . , n} the corresponding marginal maximizes the multi-
information of Xj1 , . . . , Xjk .

P r o o f . Consider a joint distribution p(X1, . . . , Xn) which attains the maxi-
mum of the multi-information. By Proposition 1, this is a uniform distribution
over an N -ary code of length n, minimum Hamming distance n, and cardinal-
ity N . In this case, the marginal p(Xn) is the uniform distribution over Xn.
Moreover, the conditional distributions p(X1, . . . , Xn−1|Xn = xn), xn ∈ Xn, are
N point distributions supported on strings of Hamming distance n − 1. The
marginal distribution of (X1, . . . , Xn−1) can be written as

p(x1, . . . , xn−1) =
∑
xn

p(x1, . . . , xn−1, xn)

=
∑
xn

p(x1, . . . , xn−1|xn)p(xn)

=
1

|Xn|
∑
xn

p(x1, . . . , xn−1|xn),

which is a uniform distribution over N strings of length n − 1 and minimum
Hamming distance n− 1, and hence has maximum multi-information. �

Lemma 9 can be used to show the following theorem, which characterizes the
choices of Λ for which the maximizers of IΛ coincide with those of I.
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Definition 10. A family Λ of subsets of {1, . . . , n} is a connected covering if it
contains a list of sets λt, t = 1, . . . , T , with λt ∩ (∪t−1

s=1λs) 6= ∅ for t = 2, . . . , T ,
and ∪tλt = {1, . . . , n}.

Theorem 11. (Maximizers of FMI vs I) Consider N -ary variables
X1, . . . , Xn with N > 1, and a family Λ of subsets of {1, . . . , n}. The
set of distributions that maximize IΛ(X1, . . . , Xn) = 1

|Λ|
∑
λ∈Λ I((Xi)i∈λ)

coincides with the set of distributions that maximize I(X1, . . . , Xn) if Λ is a
connected covering of {1, . . . , n}, and is a strict superset otherwise.

P r o o f . [Proof of Theorem 11] DenoteM and N the sets of joint distributions
that maximize the multi-information I(X1, . . . , Xn) and the factorized multi-
information IΛ(X1, . . . , Xn), respectively. We prove first that M ⊆ N . Since
the IΛ is a sum of bounded non-negative terms, if each term is independently
maximized, then IΛ will be maximized. Consider p(X1, . . . , Xn) ∈M. Lemma 9
shows that each marginal p(Xλ), λ ∈ Λ, is a multi-information maximizer.
Therefore, p ∈ N and M⊆ N .

We proceed with the if statement. Assume that Λ is a connected covering of
{1, . . . , n}. We need to show that N ⊆ M. Suppose that p ∈ N . Since Λ is a
connected covering, there is a list of sets λt, t = 1, . . . , T , with λt ∩ (∪t−1

s λs) 6=
∅ for t = 2, . . . , T , and ∪tλt = {1, . . . , n}. By the above arguments, each
λt-marginal has maximum multi-information. This means that each marginal
p(Xλt) is one of N !|λt|−1 possible distributions (this is the number of N -ary
codes of cardinality N , minimum distance |λt|, and length |λt|). Each marginal
fixes the joint states of |λt| variables to one of N possible choices. Marginals
with overlapping variables need to be compatible on the overlap. For a given
choice of the λs-marginals, s = 1, . . . , t − 1, there is exactly one compatible
choice of the λt-marginal. Since each variable appears in at least one marginal
and there is a sequence of overlapping marginals that cover all variables, the
joint states of all variables are fixed to one of N possible strings which have
distance n from each other. Therefore, p ∈M and N ⊆M.

It remains to show the only if statement. For this, we need to show that
M 6= N if Λ is not a connected covering. If Λ is not a connected covering, then
one of the following is true: 1) there is an i ∈ {1, . . . , n} which is not contained
in any λ ∈ Λ, or 2) Λ consists of two (or more) subfamilies of sets that are
mutually disjoint.

In the first case, IΛ is independent of the marginal distribution of Xi. On the
other hand, for any maximizer of the multi-information the marginal of Xi is a
uniform distribution. Hence, provided that N > 1 (which we always assume),
M 6= N .

In the second case, let λ1 and λ2 be two disjoint subsets of {1, . . . , n} which
contain all sets from the family Λ. If λ1 or λ2 only contains one point i ∈
{1, . . . , n}, then IΛ is independent of the marginal distribution of Xi (since
I(Xi) ≡ 0), and we are in the same situation discussed in 1). Assume therefore
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that λ1 and λ2 each contain at least two points. By definition, IΛ only depends
on the values of the marginal distributions p1 of (Xi)i∈λ1 and p2 of (Xi)i∈λ2 .
Each choice of the two marginals is realized by a set of joint distributions that
is known as a 2-way transportation polytope. If the margins take positive value
over m1 and m2 entries, respectively, then the dimension of this polytope is
(m1 − 1)(m2 − 1). The dimension of such 2-way transportation polytopes is
known in the literature; see [49]. We will encounter a generalization later in
this paper. For any p ∈ M, Lemma 9 shows that the margins p1 and p2

are maximizers of the multi-information, and so, by Proposition 1, both have
positive uniform value over N entries. Since p ∈ N , N also contains a polytope
of dimension (N − 1)(N − 1) > 0. On the other hand,M is a finite discrete set
and has dimension zero. Therefore, M 6= N . This completes the proof. �

Theorem 11 states that maximizing the multi-information of sufficiently
many margins imposes enough restrictions on the joint distributions to ensure
that they also have maximum multi-information. Moreover, it characterizes the
minimal families of marginals that are sufficient.

In particular, since the set of pairs in {1, . . . , n} defines an overlapping cov-
ering, we have the following corollary.

Corollary 12. (Maximizers of the FMI) Consider N -ary variables
X1, . . . , Xn with N > 1. The maximizers of the FMI (11) agree with
the maximizers of the multi-information (4).

In fact, Theorem 11 shows that specifying n − 1 pair margins suffices. In
particular, the exponential family with sufficient statistics computing n−1 pair
margins contains in its closure all maximizers of the multi-information. This
relates to the result from [5, Theorem 5.1], which shows that the closure of an
exponential family of n−1 pure pair interactions contains all maximizers of the
multi-information.

Example 13. Consider the case of three binary variables, Λ = {{1, 2}, {2, 3}},
and the following two mutual information maximizing marginals:

p(X1, X2) =
1

2
(δ00 + δ11), (13)

p(X2, X3) =
1

2
(δ00 + δ11). (14)

These marginals fix the joint states of (X1, X2, X3) in the following way. Write
the joint distribution as a convex combination of point distributions,

p(X1, X2, X3) = p000δ000 + p001δ001 + · · ·+ p111δ111. (15)

Eqn. (13) imposes following linear constraints on the joint distribution:

p000 + p001 = 1
2 , p110 + p111 = 1

2 ,

p010 + p011 = 0, p100 + p101 = 0.
(16)
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Eqn. (14) imposes following linear constraints:

p000 + p010 = 1
2 , p101 + p111 = 1

2 ,

p001 + p011 = 0, p100 + p110 = 0.
(17)

Since probabilities are non-negative, the last two constraints in each case imply
p010 = p011 = p100 = p101 = 0 and p001 = p011 = p100 = p110 = 0. Therefore, it
must be that p000 = p111 = 1

2 , showing that specifying two overlapping marginal
distributions to be maximizers is sufficient to conclude that the joint distribution
is also a multi-information maximizer.

When Λ is not a connected covering, the set of maximizers of IΛ has di-
mension larger than zero. In this case, the exponential family with sufficient
statistics computing Λ margins still contains in its closure one joint distribution
that expresses each choice of the margins, and in particular it contains maxi-
mizers of IΛ, but in general it does not contain all of them. We will discuss
the setting of not connected coverings in more detail in the next Section 6. We
conclude this section with the following remark.

Remark 14. We observe that, while there always exists a joint distribution
each of whose marginals maximizes the multi-information, in general there
are compatibility requirements among the marginals. For example, choosing
p(X1, X2) = 1

2 (δ00 + δ11) and p(X2, X3) = 1
2 (δ01 + δ10) means that p(X1, X3)

must be exactly 1
2 (δ01 + δ10).

Verifying that a certain specification of margins is indeed feasible, meaning
that there exists a joint distribution with those margins, is known as the margin
specification problem. Given a family Λ of subsets of {1, . . . , n}, the set of
margins (pλ)λ∈Λ that are feasible, is known in the literature as the Λ-marginal
polytope, which can be obtained as the convex hull of the vectors

F (x) = (Fλ,x̃λ(x))λ∈Λ,x̃λ∈Xλ , x ∈ X , (18)

where for each λ and x̃λ there is a coordinate taking value one if xλ = x̃λ and
value zero otherwise. These vectors form the columns of a matrix of sufficient
statistics, computing the Λ-margins, for the exponential family known as the
Λ-interaction model.

For a given vector (pλ)λ of λ-margins, λ ∈ Λ, the set of joint distributions
that express these margins is known as a linear Λ-family at p (where p is a
compatible joint distribution) [37], or also as the n-way transportation poly-
tope T (pλ, λ ∈ Λ) [49]. This is obtained by intersecting the simplex of joint
probability distributions with the orthogonal complement of the row span of F
at p. We will encounter this type of structures in the next section. More details
are provided in Appendix B.

6. MAXIMIZERS OF THE FACTORIZED MUTUAL INFORMATION

We have seen that the maximizers of any factorized multi-information measure
with connected covering, like the ones shown in Figure 2, coincide with the
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X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

Fig. 2. At first sight, the factorized measures with these graphs

might appear to be closely related to the mutual information

MI(X,Y). However, by Theorem 11 the maximizers coincide with

the maximizers of the multi-information. As illustrated by Example 5,

they differ significantly from the maximizers of MI(X,Y).

maximizers of the multi-information. These distributions are very different from
the maximizers of the mutual information of two random vectors of length n ≥ 2.
If we want to maximize MI(X,Y) by maximizing a factorized measure IΛ, then
we should choose a Λ that is not a connected covering.

The SFMI (12) only considers the mutual information of pairs (Xi, Yi), i =
1, . . . , n, which is not a connected covering. Theorem 11 shows that the SFMI
maximizers are a strict superset of the multi-information maximizers:

Corollary 15. Consider N -ary variables X1, . . . , Xn, Y1, . . . , Yn with N > 1.
Let n ≥ 2. The maximizers of I(X1, . . . , Xn, Y1, . . . , Yn) are a strict subset of
the maximizers of SFMI(X,Y).

In the following we present a characterization of the set of maximizers of
SFMI for homogeneous variables. We start with the next theorem, which de-
scribes the number of connected components, dimension, support sets.

Theorem 16. (Maximizers of SFMI vs I) Consider N -ary variables
X1, . . . , Xn, Y1, . . . , Yn with N > 1. The set of maximizers of the SFMI is a
superset of the maximizers of the multi-information. It consists of the joint
distributions with marginals p(Xi, Yi) maximizing MI(Xi, Yi), for i = 1, . . . , n.
This is the disjoint union of N !n transportation polytopes of dimension
Nn − 1− n(N − 1) and whose interiors consist of distributions with support of
cardinality Nn.

The SFMI maximizing polytopes are the sets of joint probability distributions
that are compatible with the specification of n pair margins as distributions
with maximum mutual information. We provide some comments on multi-way
transportation polytopes in Appendix B. Since the pair margins have disjoint
variables, the polytopes can be regarded as orthogonal linear families of an
independence model of n N2-ary variables. But since the specified margins are
uniform distributions with support of cardinality N , the polytopes have the
structure of orthogonal linear families of an independence model of n N -ary
variables at the uniform distribution. In this perspective, the elementary events
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of the ith variable are pairs (xi, yi) forming an N -ary code of length 2, minimum
Hamming distance 2, and cardinality N .

P r o o f . [Proof of Theorem 16] If we consider a subset λ of variables, fixing a
marginal distribution p(Xλ) with support X̃λ ⊆ Xλ defines a linear set in the
joint probability simplex of dimension |X̃λ|(|Xλc | − 1). This is namely the set
of distributions of the form p(Xλ)q(Xλc |Xλ). The dimension count comes from
the fact that for each xλ ∈ X̃λ, the conditional distribution q(Xλc |Xλ = xλ)
can be chosen independently as an arbitrary point in a (|Xλc | − 1) dimensional
simplex.

For variables (X1, . . . , Xn, Y1, . . . , Yn), the set of maximizers of the MI of a
given pair (Xi, Yi) corresponds to a set Si = ∪N !

j=1Si,j in the joint probability

simplex which is the disjoint union of N ! linear spaces of dimension N(N2n−2−
1). Indeed, there are N ! maximizers of the marginal mutual information. Each
of them corresponds to fixing a marginal distribution p(Xi, Yi) with support of
cardinality N , which defines a set Si,j in the joint probability simplex. In terms

of the above discussion, Xλ = Xi × Yi and |X̃λ| = N . The set S of maximizers
of the SFMI is the intersection of n such sets, S = ∩ni=1 Si, one corresponding
to each pair marginal. Each marginal implies that (N2 − N)Nn−2 entries of
the joint distribution vanish. Overall, only Nn entries of the joint distribution
can have nonzero value. Each marginal implies N linear constraints of the form
1
N = p(Xi = xi, Yi = yi) =

∑
xî,yî

p(x1, . . . , xn, y1, . . . , yn). Each marginal

contributes (N − 1) independent constraints, and have one shared constraint,
namely that the sum of entries is 1. The number of independent constraints
can be derived from the fact that 1λ,xλ , λ ⊆ Λ, xλ ∈

∏
i∈λ(Xi \ {0}), including

1∅ ≡ 1, is a basis of the set of functions
∑
λ∈Λ fλ(x); see [21]. We have Nn

positive entries satisfying n(N − 1) + 1 independent linear equality constraints,
which gives the desired dimension Nn − n(N − 1)− 1.

In terms of the number of pieces, all pieces defined by one marginal intersect
with all pieces defined by any other marginal. Since each pair marginal defines
N ! pieces, the total number of pieces is N !n.

The fact that the set of SFMI maximizers is a superset of the set of FMI
maximizers follows from the fact that it is defined by a subset of the affine
constraints that define the FMI maximizers. �

The next question is whether the transportation polytopes maximizing the
SFMI contain some of the maximizers of the MI. Transportation polytopes are
not very well understood in general. We obtain the following characterization.

Theorem 17. (Maximizers of SFMI vs MI) Consider N -ary variables
X1, . . . , Xn, Y1, . . . , Yn with N > 1. Each of the N !n transportation polytopes
maximizing the SFMI contains N !n−1 vertices which are maximizers of the
multi-information. These vertices come in (N − 1)!n−1 disjoint sets, each set
consisting of Nn−1 affinely independent vertices and having the same centroid,
which is a maximizer of MI(X,Y).
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To put this in perspective, recall that I(X1, Y1, . . . , Xn, Yn) has N !2n−1 max-
imizers, and MI(X,Y) has Nn! maximizers. Moreover, the dimension of each
of the transportation polytopes in question is Nn − 1 − n(N − 1). The total
number of vertices of a transportation polytope is not known in general. For
the special type of transportation polytopes that we consider here, the theorem
gives a lower bound N !n−1.

P r o o f . [Proof of Theorem 17] The proof is by construction. Consider one
of the N !n polytopes, S = ∩ni=1Si,ji for a fixed choice of ji ∈ {1, . . . , N !}, for
i = 1, . . . , n. Let pi,ji be the corresponding (Xi, Yi) margin, which is a uniform
distribution on N strings of length two and minimum distance two, out of the
N2 possible strings of length two. Denote these N strings by zki = (xki , y

k
i ),

k = 1, . . . , N . In the following we will write the joint states of all variables as
((x1, y1), . . . , (xn, yn)).

We claim that S contains 1
N

∑N
k=1 δzπ1(k)

1 ···zπn(k)
n

, for each choice of an order-

ing πi of {1, . . . , N}, for each i = 1, . . . , n. Indeed, for each i = 1, . . . , n the ith
margin is 1

N

∑
k δzki = pi,ji .

Each of these points is a distinct maximizer of the multi-information of
(Z1, . . . , Zn). Indeed, each of them is a uniform distribution on N strings
of length n and minimum distance n (with each Zi regarded as a single
N valued variable). They are also maximizers of the multi-information of
(X1, Y1, . . . , Xn, Yn), since any distinct zki and zk

′

i from our list have, by defini-

tion, distance two when regarded as strings (xki , y
k
i ) and (xk

′

i , y
k′

i ).

Summarizing, S contains N !n−1 distinct maximizers of the multi-
information. These points are also vertices of the polytope. Since they have
support of cardinality N , they cannot be expressed as a non-trivial combination
of maximizers of SFMI. Indeed, N is the minimum cardinality of the support of
any maximizer of SFMI (because this is the minimum cardinality of any maxi-
mizer of the mutual information of any pair margin). Moreover, any maximizer
of SFMI with support of cardinality N must be the uniform distribution over
that support (because this is true for any maximizer of the MI of any pair
margin).

Next we show that S contains (N−1)!n−1 simplices which are each the convex
hull of Nn−1 distinct vertices of S. Recall that | supp(S)| = max{| supp(p)| : p ∈
S} = Nn. Because S has N !n−1 vertices which are multi-information maximiz-
ers, it follows that there are N !n−1 codes of length 2n, minimum distance 2n,
and cardinality N . These are the support sets of the vertices. One can find
Nn−1 codes of this form which are disjoint and cover all strings (see Proposi-
tion 22). For Nn−1 disjoint codes, each of cardinality N , the union contains

Nn distinct strings and covers supp(S). One can find N !n−1

Nn−1 = (N − 1)!n−1

such collections of codes (see Proposition 23), which correspond to the different
simplices.

Consider the vertices corresponding to a single collection of Nn−1 vertex sup-
port sets. Any distribution written as a convex combination of these vertices
is in S. Since the support sets of these vertices are disjoint, it follows that a
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strictly convex combination will have support on Nn vectors. Furthermore, the
convex hull of these vertices can be seen as a simplex of dimension Nn−1−1. At
the center of the simplex where each vertex is given equal weight, one obtains
the uniform distribution over the Nn vectors of supp(S). Recall from the pre-
vious that the vectors in supp(S) are N -ary vectors of length 2n with minimum
distance 2, and therefore the uniform distribution over Nn such vectors is a
maximizer of MI(X,Y). Since each of the (N −1)!n−1 simplices have the same
support of supp(S), their centroids all coincide at a maximizer of MI(X,Y).

�

In particular, we note the following.

Corollary 18. Consider N -ary variables X1, . . . , Xn, Y1, . . . , Yn with N > 1.
The maximizers of the multi-information are vertices of the polytopes of maxi-
mizers of the SFMI.

We note that the MI is independent of the ordering of the variables within the
vectors X and Y. The SFMI measure that we have introduced corresponds to IΛ
where Λ is a specific pairing of variables in the two vectors. Each Λ consisting of
n pairs that are a perfect matching between X1, . . . , Xn and Y1, . . . , Yn defines
a different SFMI measure. The situation is illustrated in Figure 3. We expect
that for each of the n! possible pairings, the corresponding SFMI measure will
have among its maximizers, different subsets of maximizers of the MI that can
be written as convex combinations of multi-information maximizers. At this
point it remains an open question how the sets of MI maximizers that maximize
different SFMI measures compare to each other, and how many MI maximizes
total are maximizers of some SFMI measure.

We illustrate the discussion of this section in the next example.

Example 19. Consider n = 2 pairs of N = 2 valued variables (X1, X2, Y1, Y2).
The maximizers of the SFMI (12) are N !n = 4 polytopes of dimension Nn−1−
n(N − 1) = 1. With non-negative α, β such that α+ β = 1, the polytopes are

α
2 (δ0000 + δ1111) + β

2 (δ0101 + δ1010),

α
2 (δ0001 + δ1110) + β

2 (δ0100 + δ1011),

α
2 (δ0010 + δ1101) + β

2 (δ0111 + δ1000),

α
2 (δ0011 + δ1100) + β

2 (δ0110 + δ1001).

(19)

A detailed derivation is provided in Appendix C.2. When α, β are strictly
positive, these distributions have support of cardinality 4 and do not maximize
multi-information. However we see that the vertices, with β = 0 or α = 0,
recover all 8 maximizers of multi-information. Additionally, setting α = β = 1

2
recovers 4 out of the 24 maximizers of MI(X,Y). These are the four points
marked with ∗ in Example 5. Notice that the SFMI maximizers with highest
entropy are maximizers of MI(X,Y).
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X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

X1 Y1

X2 Y2

X3 Y3

Fig. 3. Illustration of various types of SFMI measures.

Consider now an SFMI with a different assignment of Xs and Y s, SFMI ′ =
1
2

(
MI(X1, Y2) +MI(X2, Y1)

)
. With non-negative α, β such that α+β = 1, the

polytopes of SFMI ′ maximizers are

α
2 (δ0000 + δ1111) + β

2 (δ1001 + δ0110),

α
2 (δ0010 + δ1101) + β

2 (δ0100 + δ1011),

α
2 (δ0001 + δ1110) + β

2 (δ1000 + δ0111),

α
2 (δ0011 + δ1100) + β

2 (δ0101 + δ1010).

(20)

At the center of these polytopes where α = β, the maximizers marked ∗∗ in
Example 5 are found, demonstrating that distinct subsets of MI maximizers are
contained in each of the n! possible SFMI measures.

We provide more examples in Appendix C.2.

7. CODES AND PARTITIONS

In the proof of Theorem 17 we used certain properties of the set of N -ary
strings of length n; specifically, we used that it can be partitioned into codes
of minimum distance n and cardinality N , in a number of different ways. Here
a code refers simply to a subset of strings. In this section we state and prove
these facts.

Proposition 20. There are N !n−1 N -ary codes of length n, minimum distance
n, and cardinality N .

P r o o f . An N -ary code of length n, minimum distance n, and cardinality N
corresponds to a perfect covering of a rectangular grid of size N × n by N
strings of length n. In order to count the total number, consider the grid, and
the possible choices for how to place the first string. The first coordinate is 1, for
the second coordinate there are N choices, for the third coordinate there are N
choices, etc. For the second string the first coordinate is 2, and there are N − 1
possible choices for each of the remaining coordinates. For the Nth string there
is only one choice left. So in total we have Nn−1 · (N − 1)n−1 · · · 1n−1 = N !n−1.

�
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Proposition 21. The set of all N2 edges of the full bipartite graph on N ×
N can be partitioned into N sets of N edges, each of which forms a perfect
matching.

P r o o f . Denote the edges by (u, v) ∈ {0, . . . , N−1}×{0, . . . , N−1}. Each t =
1, . . . , N defines a perfect matching {(u, u+ t mod (N)) : u ∈ {0, . . . , N − 1}}.
Each of these matchings uses one distinct edge, out of the N edges that connect
to the uth left node, for each u. Hence all of these matchings have disjoint edge
sets, and they, together, contain all edges from the full bipartite graph. �

Proposition 22. The set of all Nn N -ary strings of length n can be partitioned
into Nn−1 codes of minimum distance n and cardinality N .

P r o o f . We want to partition the set of all Nn strings into Nn−1 sets,
each of which gives a perfect covering of a grid of size N × n. For any
(t2, . . . , tn) ∈ {0, . . . , N−1}n−1, define a code as {(u, u+t2 mod (N), . . . , u+tn
mod (N)) : u = 0, . . . , N − 1}. The proof of Proposition 21 discusses how this
construction gives a perfect matching between all nodes in column i and column
i + 1, for all i = 1, . . . , n − 1. There are Nn−1 of these assignments and they
all build disjoint sets of strings. They, together, exhaust all Nn strings, by the
same reasoning of Proposition 21. �

Proposition 23. There are N !n−1/Nn−1 ways to partition the set of all Nn

N -ary strings of length n in the form described in Proposition 22.

P r o o f . Consider again each N -ary code of length n, minimum distance n,
and cardinality N as a perfect covering of an N × n grid by strings. Consider
the partition described in Proposition 22 of the set of N -ary strings into Nn−1

such codes. Note that this partition is constructed by applying circular shifts,
which define a subgroup of the symmetric group. Now we simply consider
the cosets defined by the circular shifts. The cardinality of all cosets is equal.
Two cosets are either equal or are disjoint. The number of distinct cosets is
N !/N = (N − 1)!. This gives a total of (N − 1)!n−1 partitions. �

8. DISCUSSION

We formulated factorized versions of the mutual information and studied the
sets of joint probability distributions that maximize them. As we observe, char-
acterizing the maximizers of these measures translates to characterizing the sets
of joint distributions that are compatible with a given specification of margins.

When a sufficient number of margins is included in the factorized measure,
the maximizers correspond precisely to the maximizers of the multi-information.
For this to be the case, it is necessary and sufficient that the set of margins
builds a connected covering of all variables. In particular, there are families
of pair margins that are sufficient, which reflects previous results showing that
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the multi-information can be maximized over families of joint distributions that
only include pair interactions.

When the considered margins have disjoint sets of variables, the constraints
that they impose on the joint distributions no longer specify the joint dis-
tributions down to the maximizers of the multi-information. Instead, they
specify families of transportation polytopes some of whose vertices are multi-
information maximizers. As we showed, certain choices of margins (as in the
SFMI) lead to polytopes that contain some of the maximizers of the mutual
information between two subsets of variables.

MI vs I The set of maximizers of the multi-information
I(X1, . . . , Xn, Y1, . . . , Yn) is a discrete set of cardinality (N !)2n−1. The
set of maximizers of the mutual information MI(X,Y) is a discrete set of
cardinality (Nn)!. The two sets are equal if n = 1, and are disjoint otherwise.
These are well known results, collected in Proposition 1 and Corollary 4.

FMI vs I and MI The set of maximizers of IΛ(X1, . . . , Xn) is equal to the
set of maximizers of I(X1, . . . , Xn) if the considered set Λ of margins builds a
connected covering of all variables, and it is a strict superset otherwise. See
Theorem 11. If Λ is a connected covering of all variables, then the maximizers
of IΛ(X1, . . . , Xn, Y1, . . . , Yn) are disjoint from maximizers of MI(X,Y), unless
n = 1 in which case the two sets are equal. If Λ is not a connected covering,
the relation is open in general. We studied in detail the special case of SFMI,
summarized below.

SFMI vs I and MI SFMI is the special case of IΛ with Λ being a perfect
matching of X and Y variables. This is not a connected covering, except when
n = 1. The set of SFMI maximizers consists of N !n disjoint polytopes of
dimension Nn − 1 − n(N − 1), each of which has the structure of a central n-
way transportation polytope defined by 1-margins of size N . See Theorem 16.
Each of the N !n polytopes maximizing SFMI contains N !n−1 maximizers of
I(X1, . . . , Xn, Y1, . . . , Yn) and one maximizer of MI(X,Y). See Theorem 17.

Factorized multi-information as an intrinsic reward

When the MI is superimposed with another objective function, we may obtain
specific types of solutions which maximize both, or simply which tend to have
a larger MI. The SFMI maximizers do not include all MI maximizers. An inter-
pretation is that the SFMI maximizers also maximize the MI between specific
pairs of variables. So for instance, the MI can be maximized if H(Y1|X1) 6= 0, if
in exchange one has that H(Y2|X1) = 0, meaning that sensor 2 can be predicted
from sensor 1. However, the maximizers of SFMI insist that H(Y1|X1) = 0. In
this sense, the SFMI gives a more structured objective function than the MI.
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Possible generalizations

We focused on two general types of margins. In the case of families that are not
connected coverings, we considered the SFMI, which consists of a non overlap-
ping covering by edges. Extensions of our analysis to other families of margins
are possible. Any connected subfamily will then specify a maximizer of the
multi-information over the covered variables. This will give rise to maximiz-
ing sets defined in terms of transportation polytopes with margins given by
the maximal connected subfamilies. A natural question that arises is how to
choose Λ in order to capture, as tightly as possible, a given subset of maximizers
of MI(X,Y). We have focused on systems where all variables have the same
number of states. The same problem can be studied in the case of inhomo-
geneous variables as well. One should be able to obtain a characterization as
was done in [5] for the multi-information. The case of continuous variables is
another generalization that would be interesting to consider in the future. This
has not been discussed in as much detail in the literature as the discrete case.
Another interesting analysis would pertain to local maximizers and criticality,
in connection to the works [3] and [28].
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[23] A. S. Klyubin, D. Polani, and C. L. Nehaniv: Empowerment: A universal agent-
centric measure of control. In: 2005 IEEE Congress on Evolutionary Computation,
Vol. 1, IEEE 2005, pp. 128–135.
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as the relationship between total correlation and mutual information became clear,
several authors have begun to call this quantity multi-information [5, 17, 42, 41, 8].
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and multivariate mutual information, as referenced in [46, 22]. This naming confu-
sion has been the source of false equalities between the two quantities, such as in [38,
Eqn. 8]. One fundamental difference in the two quantities is that multi-information
as defined here is non-negative, and multivariate mutual information can take positive
and negative values.

B. DISTRIBUTIONS WITH FIXED MARGINS

In various contexts one is interested in the sets joint distributions that are compatible
with given values of some of the marginals. We encounter a version of this problem
here. Concretely, we study whether certain collections of subsets of variables can each
have maximum multi-information, and, if so, what is the set of joint distributions that
are compatible with these specifications.

B.1. Transportation polytopes

An n-table is an N1×· · ·×Nn array of nonnegative real numbers. For a set of indices
λ ⊆ {1, . . . , n}, the λ-margin of a table p is the |λ|-table obtained by summing the
entries over all but the λ indices. A multi-index transportation polytope or contingency
table is the set of all n-tables that satisfy a set of given margins. The polytope is
called central if all entries of any of the considered margins are equal. An assignment
polytope is the special case where all entries across all of the considered margins are
equal (which implies N1 = · · · = Nn = N). The two-way assignment polytopes are
also called Birkhoff polytopes or polytopes of doubly stochastic matrices (when the
value of the margin entries is 1). The N ! vertices of the Birkhoff polytope are the
permutation matrices of size N ×N .

Optimal transportation problems are often formulated as linear programs with
feasible set given by a transportation polytope. Hence the number of vertices and
edges has been subject of study. For a 2-way transportation polytope, it is known
that the dimension is equal to (N1 − 1)(N2 − 1) (if the entry sums of the two margins
are equal). A matrix p in the polytope is a vertex if and only if the graph Fp with edges
{(x1, x2) : p(x1, x2) > 0} forms a spanning forest of the full bipartite graph with edges
{(x1, x2) : 1 ≤ x1 ≤ N1, 1 ≤ x2 ≤ N2}. See [49]. Already for 3-way transportation
polytopes, the number of vertices is not known in general [16].

The set of maximizers of the SFMI is a union of polytopes, each of which has the
structure of an n-way assignment polytope defined by 1-margins of size N .

B.2. Marginal polytopes

Marginal distributions satisfy certain relations among each other. Consider the tuple
of λ-marginals for all λ ∈ Λ for some fixed Λ ∈ 2{1,...,n}. The set of all possible tuples
is called the marginal polytope. If we consider all q-marginals among n variables with
state spaces of cardinality N , the dimension of the marginal polytope is

∑q
i=1

(
n
i

)
(N−

1)i. In turn, a fixed feasible and generic choice of all q marginals cuts out a set
(a transportation polytope) in the joint probability simplex of dimension Nn − 1 −∑q
i=1

(
n
i

)
(N − 1)i. If the choice of the margins sits at the boundary of the marginal

polytope, then the set that is cut out in the joint probability simplex will be smaller.
Classifying the possible values of the dimension is an open problem in general. In our
discussion of transportation polytopes maximizing the SFMI, we remove zeros and
obtain uniform margins.



Factorized mutual information maximization 971

Marginalizing over n − q variables can be viewed as a linear projection L : ∆n →
∆q. Each marginal distribution that we specify in ∆q provides Nq linear constraints
(including normalization). In our discussion with margins being maximizers of multi-
information, N entries of the margin take value 1/N and the other Nq − N entries
take value 0. The constraints with value 0 imply that (Nq −N) ·Nn−q entries of the
joint distributions also take value 0. So each margin creates N linear constraints for
N · Nn−q entries of the joint distribution, and in addition, it equates the remaining
entries of the joint distribution to zero. If we forget about the inequality constraints,
the number of linearly independent constraints that arise from the specification of the
marginal distributions is equal to the dimension of the marginal polytope.

C. EXAMPLES OF THE SETS OF SFMI MAXIMIZERS

C.1. The dimension of the sets of SFMI maximizers

The linear sets of SFMI maximizers come from taking the intersection of n margin
constraints, each of which defines a set Si,j . Each of these sets is defined by a number of
linear equality constraints, which in general are not independent for multiple margins.
When there are n pairs of binary variables, each Si,j is supported on 22n−1 vectors.
Only half of the support vectors between any given Si,j agree, meaning Si,j ∩S ′i,j has
common support of size 22n−2, and Si,j∩S ′i,j∩S ′′i,j has support of size 22n−3. Once the
intersection of n of these sets is performed, one is left with 22n−n = 2n support vectors.
Then, the linearly independent constraints arising from the S’s can be subtracted off
of 2n. The result will be the dimension of the linear sets. The sets of maximizers also
need to satisfy linear inequality constraints. In general, these can further reduce the
dimension of the solution set.

Example 24. Consider n = 1 pair of N = 2 valued (binary) variables. The SFMI
maximizing set is exactly the MI maximizers, i. e. a zero dimensional set. The set S1,1

has support on 21 = 2 vectors, 00 and 11, and there are two constraints, a = 1/2 and
b = 1/2 for aδ00 +bδ11. Written as a matrix, it would be a rank 2 matrix of constraints.
Normalization is satisfied by these constraints, and the result is a zero dimensional
set.

Example 25. Consider n = 2 pairs of N = 2 valued variables. Then S1,1 ∩ S2,1 has
4 vectors in the support, and the constraints that arise are given by


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



a
b
c
d

 =


1
1
1
1

 , (21)

where p = a
2
δ0000 + b

2
δ0101 + c

2
δ1010 + d

2
δ1111. This matrix is rank 3, meaning the

dimension of the resulting linear set is 4− 3 = 1.

Example 26. When n = 3 pairs of N = 2 valued variables. Then the intersection



972 T. MERKH AND G. MONTÚFAR

S1,1∩S2,1∩S3,1 has support on 23 = 8 vectors, and the rank of the constraint matrix,


1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1





a
b
c
d
e
f
g
h


=


1
1
1
1
1
1

 (22)

is 4. Therefore we expect the linear sets of maximizers to be of dimension of null
space, 8− 4 = 4.

Example 27. Consider n = 2 pairs of N = 3 valued variables. Then S1,1 ∩ S2,1 is
supported on Nn = 9 vectors. The constraint matrix looks like,


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1





a
b
c
d
e
f
g
h
u


=



1
1
1
1
1
1
1
1
1


. (23)

Here, the coefficients correspond to the joint distributions probabilities on
0000, 0101, 02020, 1010, 1111, 1212, 2020, 2121, 2222 respectively. This matrix is rank
5 meaning the null space is 4 dimensional.

C.2. Transportation polytopes of SFMI maximizers

Example 28. Consider the case of n = 2 pairs of N = 2 valued variables. In the
following we illustrate explicitly how the SFMI maximizing distributions noted in
Example 19 are all of the SFMI maximizers. Since it is known that distributions
maximizing SFMI must maximize each term of the sum individually, one may consider
the set of SFMI maximizers as the intersection of n sets where each set contains
all the distributions which maximize a single term of the sum, i. e. each maximize
D(p(xi, yi)‖F) for some i.

Consider the four binary variables X1, X2, Y1, Y2. The maximizers of I(X1, Y1) are
p1

1(X1, Y1) = 1
2
(δ00 + δ11) and p2

1(X1, Y1) = 1
2
(δ01 + δ10). The corresponding joint

distributions have the form p(X1, X2, Y1, Y2) = pj1(X1, Y1)q(X2, Y2|X1, Y1). Therefore,
one may define S1,1 to be the set of distributions which maximize I(X1, Y1) and have
marginal p1

1(X1, Y1). Likewise, S1,2 is the set of distributions which maximize I(X1, Y1)
and have marginal p2

1(X1, Y1). These can be written as{
p ∈ ∆15 : p =

1

2

∑
x2,y2

q(x2, y2|0, 0)δ0x20y2 +
1

2

∑
x2,y2

q(x2, y2|1, 1)δ1x21y2

}
(24)
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and{
p ∈ ∆15 : p =

1

2

∑
x2,y2

q(x2, y2|0, 1)δ0x21y2 +
1

2

∑
x2,y2

q(x2, y2|1, 0)δ1x20y2

}
(25)

respectively. Here, q(x2, y2|x1 = 0, y1 = 0) is the conditional probability of observing
the joint state (X1 = 0, X2 = x2, Y1 = 0, Y2 = y2). Similarly, the two sets S2,1

and S2,2 which maximize I(X2, Y2) and have marginals p1
2(x2, y2) = 1

2
(δ00 + δ11) and

p2
2(x2, y2) = 1

2
(δ01 + δ10) respectively can be written as{

p ∈ ∆15 : p =
1

2

∑
x1,y1

q(x1, y1|0, 0)δx10y10 +
1

2

∑
x1,y1

q(x1, y1|1, 1)δx11y11

}
(26)

and{
p ∈ ∆15 : p =

1

2

∑
x1,y1

q(x1, y1|0, 1)δx10y11 +
1

2

∑
x1,y1

q(x1, y1|1, 0)δx11y10

}
. (27)

There are 4 possibilities for how these sets may be intersected to yield maximizers
of SFMI. These are, S1,1∩S2,1, S1,1∩S2,2, S1,2∩S2,1, and S1,2∩S2,2. It will be shown
that the intersection of S1,1∩S2,1 corresponds to the line of distributions in Eqn. (19),
and the other intersections correspond in a similar fashion. To see this, one may begin
by considering the binary codes in the intersection. These are all the binary codes
which match in the 1st and 3rd entry, and match in the 2nd and 4th entry. Thus, the
distributions in S1,1∩S2,1 can only have support on {0000, 0101, 1010, 1111}. Thus, at
most the intersection could be a 3 dimensional set, due to the normalization constraint.
Next, consider the linear constraints build into S1,1. Letting

a = q(X2 = 0, Y2 = 0|X1 = 0, Y1 = 0)

b = q(X2 = 0, Y2 = 0|X1 = 1, Y1 = 1)

c = q(X2 = 1, Y2 = 1|X1 = 0, Y1 = 0)

d = q(X2 = 1, Y2 = 1|X1 = 1, Y1 = 1),

(28)

the constraints can be written as a+ c = 1 and b+ d = 1. Similarly, the distribution
in S2,1 must satisfy a+ b = 1 and c+ d = 1. These constraints require that a = d, and
b = c. The distributions in S1,1 ∩ S2,1 must take the form

p =
a

2
δ0000 +

b

2
δ1010 +

c

2
δ0101 +

d

2
δ1111. (29)

Letting α = a
2

= d
2

and β = b
2

= c
2
, the distributions in S1,1 ∩ S2,1 can be written as

in Eqn. (19),
p = α(δ0000 + δ1111) + β(δ0101 + δ1010), (30)

where α+β = 1
2
. By considering the other intersections, S1,1∩S2,2, S1,2∩S2,1, S1,2∩

S2,2, the other 3 transportation polytopes in Example 19 are recovered.

Example 29. Consider the case of n = 3 pairs of N = 2 valued variables
(X1, X2, X3, Y1, Y2, Y3). For any (i, j) ∈ {1, 2, 3} × {1, 2}, let Si,j denote the set of
joint distributions whose (Xi, Yi) margin is the jth maximizer of the mutual informa-
tion. Each Si,j contains distributions supported on 26−1 = 32 binary vectors. The
intersections S1,j1 ∩ S2,j2 contain distributions supported on 26−2 = 16 vectors, and
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when intersecting S1,j1 ∩ S2,j2 ∩ S3,j3 , we obtain distributions supported on 8 binary
vectors.

For concreteness, let Si,1 correspond to p(Xi, Yi) = 1
2
(δ00 + δ11). Then S1,1 is the

set of joint distributions of the form

p =
1

2

∑
x2,x3
y2,y3

(
q(x2, x3, y2, y3|0, 0)δ0x2x30y2y3 + q(x2, x3, y2, y3|1, 1)δ1x2x31y2y3

)
, (31)

where the numbers q(x2, x3, y2, y3|x1, y1) define an arbitrary conditional distribution.
Each of these p is supported on strings (x1, x2, x3, y1, y2, y3) that satisfy x1 = y1.

The distributions p ∈ S1,1∩S2,1∩S3,1 are supported on strings (x1, x2, x3, y1, y2, y3)
that satisfy xi = yi for all i = 1, 2, 3. In turn, they have the form

p =
a

2
δ000000+

b

2
δ001001+

c

2
δ010010+

d

2
δ011011+

e

2
δ100100+

f

2
δ101101+

g

2
δ110110+

h

2
δ111111.

The coefficients correspond to conditional probability distributions in three differ-
ent ways. One way is as the conditional probabilities of X2, X3, Y2, Y3 given X1, Y2,
with

a = q(0, 0, 0, 0|0, 0), e = q(0, 0, 0, 0|1, 1),

b = q(0, 1, 0, 1|0, 0), f = q(0, 1, 0, 1|1, 1),

c = q(1, 0, 1, 0|0, 0), g = q(1, 0, 1, 0|1, 1),

d = q(1, 1, 1, 1|0, 0), h = q(1, 1, 1, 1|1, 1),

(32)

which corresponds to (31) and implies that a + b + c + d = 1 and e + f + g + h = 1.
The other two ways result from conditioning on X2, Y2 and X3, Y3, respectively, and
imply two more pairs of linear constraints. The six constraints form the linear system
Mq = 1 with 

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1





a
b
c
d
e
f
g
h


=


1
1
1
1
1
1

 . (33)

The matrix M is simply the map computing the (Xi, Yi)-margins, restricted to the
support points (i. e., strings with xi = yi for i = 1, 2, 3). It can be regarded as a
sufficient statistics matrix of a binary independence model of n variables, including
the statistic that computes the total mass. The matrix has rank 4 and the vector
1
4
1 ∈ R8 is a particular solution of the linear system. At this particular solution, one

obtains a maximizer of MI(X,Y).

As discussed in Example 26, the space of solutions is 4 dimensional. To obtain all
solutions, we consider the kernel of M , which is spanned by the rows of

1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1

 . (34)
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Any linear combination of these rows can be added to 1
4
1 ∈ R8 to obtain another

vector that satisfies the marginal equality constraints. The intersection of the 4-
dimensional affine space with the probability simplex is obtained by requiring that
the solutions have non-negative entries. This results in a polytope. We compute the
vertex representation using the free open-source mathematics software Sage [44], and
obtain the 6 rows

0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

1/2 0 0 1/2 0 1/2 1/2 0
0 1/2 1/2 0 1/2 0 0 1/2

 . (35)

Based off of the vertex representation above, the distributions which are in S =
S1,1 ∩ S2,1 ∩ S3,1 are of the form

p = α1
2

(δ000000 + δ111111) + α2
2

(δ100100 + δ011011)

+ α3
2

(δ010010 + δ101101) + α4
2

(δ001001 + δ110110)

+ α5
4

(δ000000 + δ011011 + δ101101 + δ110110)

+ α6
4

(δ001001 + δ010010 + δ100100 + δ111111),

where
∑
i αi = 1 ensures normalization and αi ≥ 0 for i = 1, . . . , 6. One can quickly

check that p(Xi, Yi) = 1
2
(δ00 +δ11) for i = 1, 2, 3. The vertices α1 = 1, α2 = 1, α3 = 1,

α4 = 1 are the only distributions with support of cardinality two and they are also the
only maximizers of multi-information within S. The choices α1 = α2 = α3 = α4 = 1/4
and α5 = α6 = 1/2 give the same distribution, which is also the only maximizer of
MI(X,Y) within S. This observation motivates Theorem 17 which states that each
polytope of SFMI maximizers contains one or more simplices, and at the center of each
simplex lies a MI(X,Y) maximizer. Furthermore, when restricted to the set of SFMI
maximizers, the distributions with maximum entropy are MI(X,Y) maximizers.

We have discussed one of the N !n = 2!3 = 8 polytopes. The other 7 are similar.
Each of them has 4 vertices that are maximizers of the multi-information and form a
3-simplex with a maximizer of MI(X,Y) at its center. The 8 centers are following
vectors scaled by 1/8, whereby grouped terms correspond to the vertices:

(δ000000 + δ111111) + (δ001001 + δ110110) + (δ010010 + δ101101) + (δ011011 + δ100100),

(δ000001 + δ111110) + (δ001000 + δ110111) + (δ010011 + δ101100) + (δ011010 + δ100101),

(δ000010 + δ111101) + (δ010000 + δ101111) + (δ001011 + δ110100) + (δ011001 + δ100110),

(δ000100 + δ111011) + (δ100000 + δ011111) + (δ001101 + δ110010) + (δ101001 + δ010110),

(δ000011 + δ111100) + (δ001010 + δ110101) + (δ010001 + δ101110) + (δ011000 + δ100111),

(δ000101 + δ111010) + (δ001100 + δ110011) + (δ100001 + δ011110) + (δ101000 + δ010111),

(δ000110 + δ111001) + (δ010100 + δ101011) + (δ100010 + δ011101) + (δ110000 + δ001111),

(δ000111 + δ111000) + (δ001110 + δ110001) + (δ010101 + δ101010) + (δ011100 + δ100011).

One can see that the simplices are disjoint. In fact, distributions from different
simplices have disjoint supports, meaning that the simplices sit in disjoint faces of the
joint probability simplex. These simplices having disjoint support only occurs when
dealing with binary variables.
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Example 30. Consider the case of n = 2 pairs of N = 3 valued variables. For each
i = 1, 2 let Si,ji be the set of joint distributions which have marginal p(Xi, Yi) as one
of the N ! = 3! = 6 multi-information maximizers, so ji ∈ {1, . . . , 6}. For concreteness,
let the correspondence be

Si,1 : p(Xi, Yi) =
1

3
(δ00 + δ11 + δ22),

Si,2 : p(Xi, Yi) =
1

3
(δ00 + δ12 + δ21),

Si,3 : p(Xi, Yi) =
1

3
(δ01 + δ10 + δ22),

Si,4 : p(Xi, Yi) =
1

3
(δ01 + δ12 + δ20),

Si,5 : p(Xi, Yi) =
1

3
(δ02 + δ11 + δ20),

Si,6 : p(Xi, Yi) =
1

3
(δ02 + δ10 + δ22).

There are N !n = 3!2 = 36 intersections of the form S1,j1 ∩ S2,j2 , each corresponding
to a transportation polytope. They together contain all N !2n−1 = 3!2·2−1 = 216
maximizers of the multi-information. Consider the support sets of three to start:

supp(S1,1 ∩ S2,1) = {0000, 0101, 0202, 1010, 1111, 1212, 2020, 2121, 2222},
supp(S1,1 ∩ S2,2) = {0000, 0102, 0201, 1010, 1112, 1211, 2020, 2122, 2221},
supp(S1,1 ∩ S2,3) = {0001, 0100, 0202, 1011, 1110, 1212, 2021, 2120, 2222}.

The probabilities assigned to the joint states are not arbitrary, since they need to satisfy
the margins. One particular subset of distributions in S1,1 ∩ S2,1 can be written as

p =
α1

3
(δ0000 + δ1111 + δ2222) +

α2

3
(δ0101 + δ1212 + δ2020) +

α3

3
(δ0202 + δ1010 + δ2121),

where α1 +α2 +α3 = 1. This is a simplex whose Nn−1 = 32−1 = 3 vertices maximize
multi-information. Another one can be written as

p =
α1

3
(δ0000 + δ1212 + δ2121) +

α2

3
(δ1111 + δ2020 + δ0202) +

α3

3
(δ2222 + δ0101 + δ1010).

This is another simplex whose 3 vertices maximize multi-information. Both simplices
have the same centroid, with α1 = α2 = α3 = 1/3, which is a maximizer of MI(X,Y).

The other transportation polytopes (intersections S1,j1 ∩ S2,j2) are similar. For
example, the two simplices in S1,1 ∩ S2,2 are

α1

3
(δ0000 + δ1211 + δ2122) +

α2

3
(δ1112 + δ2020 + δ0201) +

α3

3
(δ1010 + δ0102 + δ2221),

α1

3
(δ0000 + δ1112 + δ2221) +

α2

3
(δ1211 + δ0102 + δ2020) +

α3

3
(δ2122 + δ1010 + δ0201),

and the two simplices in S1,1 ∩ S2,3 are

α1

3
(δ0001 + δ1212 + δ2120) +

α2

3
(δ2222 + δ1011 + δ0100) +

α3

3
(δ2021 + δ1110 + δ0202),

α1

3
(δ0001 + δ2222 + δ1110) +

α2

3
(δ1212 + δ2021 + δ0100) +

α3

3
(δ2120 + δ0202 + δ1011).

Observe that there are N !n−1 = 3!2−1 = 6 multi-information maximizers per trans-
portation polytope, and there are N !n transportation polytopes total. This number is
expected because all of the N !2n−1 maximizers of multi-information are SFMI maxi-
mizers.
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D. INHOMOGENEOUS VARIABLES

We consider two scenarios for inhomogenous variables which have relevance in rein-
forcement learning and representation learning, respectively.

D.1. Pairs of different sizes

The first setting is considering the SFMI maximizers for (X1, . . . , Xn, Y1, . . . , Yn) where
|Xi| = |Yi|, but in general |Xi| 6= |Xj |. Without loss of generality, we can assume that
the variables are labeled such that |X1| ≤ |X2| ≤ · · · ≤ |Xn|. The state spaces here
for example represent the number of states a given robot sensor can take, where
X = (X1, . . . , Xn) is the joint sensor reading at time t− 1 and Y = (Y1, . . . , Yn) is the
sensor reading at time t. Here, the maximizers of

SFMI(X,Y) =

n∑
i=1

MI(Xi, Yi) (36)

generalize from Theorem 16 when LCM(|X1|, . . . , |Xn−1|) = |Xn|. If this is true, then
the conditions for the analysis from Ay and Knauf [5, Theorem 4.4 and Remark 4.5] for
inhomogeneous variables are met. This means that the maximizers of the SFMI will
maximize each term in the sum individually, allowing us to construct the set of SFMI
maximizers with the same technique as before. If we denote |Xi| = Ni, then the results
in Theorem 16 generalize as follows: The support set of the SFMI maximizers have
cardinality

∏n
i=1 Ni. The ith marginal constraint contributesNi−1 unique constraints,

and they all share the normalization constraint, meaning the dimension of the resulting
set of maximizers will be

∏n
i=1 Ni− 1−

∏n
i=1(Ni− 1). The SFMI maximizers will still

contain the distributions which maximize eachMI(Xi, Yi) for i ∈ [n], and be a superset
of the multi-information maximizers. The number of transportation polytopes will be∏n
i=1 Ni!, and the properties previously described are all effectively the same with the

replacement of N by Ni, and replacing Nn with
∏
i∈[n] Ni.

If LCM(|X1|, . . . , |Xn−1|) 6= |Xn|, the terms in the SFMI can not be maximized
independently of one another. Characterizing the SFMI maximizers for this scenario
is left for future work.

D.2. Single output variable

In the second inhomogeneous situation that we consider, we would like to maximize
the Λ-FMI for (X1, . . . , Xn, Y ), where |Xi| = N for all i ∈ [n] and |Y| ≥ N , and
Λ =

{
{i, n+ 1} : i ∈ [n]

}
. The Λ-FMI where Λ =

{
{i, n+ 1} : i ∈ [n]

}
has been used

as an alternative objective function to maximizing the global mutual information in
deep representation learning, where Y is the learned representation. For more details
on this see [20]. Since all marginals specified by Λ contain Y , the maximizers of multi-
information will maximize the Λ-FMI. This follows directly from [5, Remark 4.5(c)],
as the multi-information maximizers have marginals p(Xi, Y ) which maximize mutual
information for all i ∈ [n]. Since each term in the sum

Λ-FMI =

n∑
i=1

MI(Xi, Y ) (37)

is maximized, Λ-FMI is also maximized. In this case the maximizers of multi-
information equal the maximizers of Λ-FMI.
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