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Abstract. It is our aim to contribute to the flourishing collection of knowledge centered
on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we
are interested in the inverse topology. In general, this space is compact and T1, but need
not be Hausdorff. In 2006, W.Wm.McGovern showed that this space is a boolean space
(i.e. a compact zero-dimensional and Hausdorff space) if and only if the l-group in question
is weakly complemented. A slightly weaker topological property than having a base of
clopen subsets is having a clopen π-base. Recall that a π-base is a collection of nonempty
open subsets such that every nonempty open subset of the space contains a member of the
π-base; obviously, a base is a π-base. In what follows we classify when the inverse topology
on the space of prime subgroups has a clopen π-base.
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1. Introduction

Throughout, (G,+, 0,∨,∧) will denote a lattice-ordered group. Unless otherwise

noted, we do not assume that G is abelian. Recall that an l-subgroup H of G is

convex if whenever 0 6 g 6 h for an h ∈ H , then g ∈ H . The set of convex

l-subgroups of G is denoted by C(G). The intersection of any collection of convex

l-subgroups is itself a convex l-group and therefore C(G) is a complete lattice when

partially ordered by inclusion. We shall denote the convex l-subgroup generated by

g ∈ G, by G(g) and call this the principal convex l-subgroup generated by g.

A (proper) convex l-subgroup P of G is said to be a prime subgroup if whenever

a∧ b = 0, then either a ∈ P or b ∈ P . The collection of all prime subgroups is known

as the prime spectrum of G and is denoted by Spec(G). By Zorn’s Lemma, given
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any 0 < a ∈ G there is a convex l-subgroup that is maximal with respect to not

containing a. Such a subgroup is called a value of a and we use Val(a) to denote the

set of values of a. It is known that values are prime subgroups, and not conversely. In

particular, Spec(G) is nonempty when G is nontrivial. Lattice-ordered groups have

the feature that the collection of primes containing a given prime forms a chain,

i.e. Spec(G) is a root system. Since the intersection of a chain of prime subgroups is

again a prime subgroup, it follows that minimal prime subgroups exist; the collection

of these is denoted by Min(G). It is this set that captivates our interest.

The set Min(G) can be equipped with two topologies. Formally, the hull-kernel

topology on Min(G) has as a base of open sets the collection

H = {U(g) : g ∈ G},

where U(g) = {P ∈ Min(G) : g /∈ P}. The collection H is closed under finite unions

and finite intersections. The complement of U(g) is denoted by V (g) = Min(G)rU(g)

and we let

I = {V (g) : g ∈ G}.

The set I is obviously also closed under finite unions and finite intersections. The

inverse topology on Min(G) is the topology generated by the collection I. Topo-

logically speaking, we distinguish between the topologies by letting Min(G) denote

the space equipped with the hull-kernel topology, and letting Min(G)−1 denote the

space equipped with the inverse topology.

Lemma 1.1. Let G be an l-group and a, b, g ∈ G+. Then

(a) U(a) ∩ U(b) = U(a ∧ b), and

(b) V (a) ∩ V (b) = V (a ∨ b).

(c) V (g) = Min(G) if and only if g = 0.

(d) V (g) = ∅ if and only if g is a weak order unit.

Recall that an element 0 6 g ∈ G is called a weak order unit of G whenever it

satisfies the property that for all h ∈ G, g ∧ h = 0 implies h = 0.

A space is said to be zero-dimensional if it has a base of clopen subsets. The space

Min(G) is a zero-dimensional Hausdorff space; each member of H is a clopen subset.

However, the hull-kernel topology on Min(G) is not always compact. On the other

hand, the inverse topology on Min(G)−1 is always compact and T1, but not always

zero-dimensional.

The l-group G is called complemented when it has the property that for each

0 6 g ∈ G there is an 0 6 h ∈ G such that g∧h = 0 and g∨h is a weak order unit ofG.

(An element g ∈ G+ for which there is such an h ∈ G+ is called complemented and
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such a pair g, h ∈ G+ is called a complementary pair.) Theorem 2.2 of [6] states and

proves that G is complemented if and only if Min(G) is a compact Hausdorff space.

Later, it was pointed out that G is complemented if and only ifMin(G) = Min(G)−1.

(This last equivalence was first proved for abelian groups in [16] and later mentioned

in [12] that the proof carries over for all l-groups mutatis mutandis. Much of the

above can be phrased in terms of lattice theory; foundational results in the theory

can be traced back to the work of Kist, see [11] and Speed, see [17].) Formally, we

state this.

Theorem 1.2. For an l-group G the following statements are equivalent.

(1) G is complemented.

(2) Min(G) is compact.

(3) Min(G) = Min(G)−1.

It follows that if G is complemented, then Min(G)−1 is a boolean space (that

is, compact, Hausdorff, and zero-dimensional). In [16] and [12] the authors classify

when Min(G)−1 is a boolean space. The important algebraic notion is that of a

weakly complemented l-group: whenever g ∧ h = 0, there is a complementary pair

x, y ∈ G+ such that g 6 x and h 6 y.

Theorem 1.3. Let G be an l-group. Then G is weakly complemented if and only

if Min(G)−1 is a boolean space.

In [2], the authors generalized the notion of a weakly complemented l-group with

the goal of classifying when Min(G)−1 is a Hausdorff space. The l-group G is called

lamron if whenever g, h ∈ G+ such that g ∧ h = 0, then there are x, y ∈ G+ such

that g 6 x, h 6 y, g ∧ y = 0 = h∧ x, and x ∨ y is a weak order unit. (Notice that in

this definition the elements x and y need not be a complementary pair.)

In [4], the authors investigated the space of maximal d-subgroups of G, de-

noted Maxd(G), and made a connection between a lamron l-group G and the space

Maxd(G). We deviate and recall the fundamentals of d-subgroups.

First, for any set S ⊆ G, the polar of S is the set

S⊥ = {g ∈ G : ∀ s ∈ S, |g| ∧ |s| = 0}.

In fact, every polar is a convex l-subgroup. When S = {f}, we instead write f⊥ and

call this the polar of f . Notice that using this notation we could have defined g ∈ G to

be a weak order unit if g⊥ = {0}. The convex l-subgroup f⊥⊥ is called the principal

polar of f and such objects are used to define d-subgroups. AnH ∈ C(G) is called a d-

subgroup if for all h ∈ H , h⊥⊥ ⊆ H . Notice that a proper d-subgroup cannot contain
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any weak order units. When G has a weak order unit, then maximal d-subgroups

exist and are indeed prime subgroups. In the sequel the only topology considered on

Maxd(G) is the hull-kernel. For each g ∈ G let Ud(g) = {M ∈ Maxd(G) : g /∈ M}.

R em a r k 1.4. The interested or unfamiliar reader should check the articles [10]

and [9] for more information on d-subgroups in the context of archimedean vector lat-

tices. According to Darnell (see [7]), d-subgroups were originally called z-subgroups

by Bigard. However, given that z-ideals are a different well-studied concept in the

theory of continuous functions, nowadays it appears that the nomenclature of d-

subgroups is appropriate. Azarpanah and others in [1], within the confines of ring

theory, call these z0-ideals. In our experience, we have found that searching for

d-ideals is easier than for z0-ideals.

Lemma 1.5. Let G be an l-group and a, b, g ∈ G+. Then

(a) Ud(a) ∩ Ud(b) = U(a ∧ b), and

(b) Ud(a) ∪ Ud(b) = Ud(a ∨ b).

(c) Ud(g) = Maxd(G) if and only if g is a weak order unit.

E x am p l e 1.6. In general, it is not the case that
⋂
Maxd(G) = {0}. For ex-

ample, let G be the lexicographic extension of Z over H =
⊕
n∈N

Z, the direct sum

of countably many copies of Z. Then Maxd(G) = {H} 6= {0}. It is true that

if G is archimedean and has a weak order unit, then
⋂
Maxd(G) = {0}; more on

archimedean l-groups later. Also, in Section 4, we characterize those elements satis-

fying Vd(g) = Maxd(G).

We end this section with some interesting observations from [3] and [4]. We assume

in all that follows that G possesses a weak order unit.

(i) Each maximal d-subgroup is a prime subgroup. The set Maxd(G) can be

equipped with the hull-kernel topology making it a compact Hausdorff space.

(ii) For each P ∈ Min(G) there is a unique d(P ) ∈ Maxd(G) containing it, giving

rise to a continuous surjective map d : Min(G)−1 → Maxd(G).

(iii) The map d is a bijection (and hence a homeomorphism) if and only if G is a

lamron l-group.

(iv) Min(G) = Maxd(G) if and only if G is complemented.

The following result is instrumental in our thinking.

Proposition 1.7. Let G be a lamron l-group. The following statements are

equivalent.

(1) G is a weakly complemented l-group.
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(2) Maxd(G) is zero-dimensional.

(3) Min(G)−1 is zero-dimensional.

The main question that intrigues us is whether it is possible to have an l-group G

for which Maxd(G) is zero-dimensional while Min(G)−1 is not. Obviously, such an

l-group must not be lamron. It is within this framework that we were led to the

current work.

2. Clopen π-bases

We start this section with the central topological definition pertaining to this

article.

Definition 2.1. Let X be a topological space. A collection B of (nonempty)

open subsets of X is called a π-base if every nonempty open subset of X contains a

member of B. Obviously, a base of (nonempty) open sets is a π-base.

A clopen π-base is a π-base for which each element in it is a clopen subset. For

example, any space with a dense set of isolated points has a clopen π-base. The

connection here is that the study of clopen subsets of Min(G)−1 is akin to the study

of complemented elements of G.

Lemma 2.2 ([16], Lemma 5.1). A subset K ⊆ Min(G)−1 is clopen if and only if

K = U(e) for some complemented e ∈ G+. Furthermore, if U(e) is a clopen subset

of Min(G)−1, then e is a complemented element.

Thus, the question of when Min(G)−1 has a clopen π-base can be answered ef-

ficiently as follows. By a proper complemented element we mean a complemented

element which is not a weak order unit. Equivalently, a proper complemented ele-

ment is an e ∈ G+ such that U(e) is a proper subset of Min(G)−1.

Theorem 2.3. The space Min(G)−1 has a clopen π-base if and only if for every

nonweak order unit 0 < g ∈ G there is a proper complemented element e ∈ G+ such

that g 6 e.

P r o o f. Suppose Min(G)−1 has a clopen π-base, say B. By Lemma 2.2, each

member of B is of the form V (f) for some complemented element f ∈ G+. We

assume that each V (f) 6= ∅, hence each f is not a weak order unit. Take 0 < g ∈ G+

and suppose that g is not a weak order unit, then V (g) 6= ∅. So, there exists a

V (f) ∈ B such that V (f) ⊆ V (g). Since V (f) = V (f) ∩ V (g) = V (f ∨ g), it follows

that f ∨ g is a proper complemented element.
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Conversely, suppose that each positive nonweak order unit of G is surpassed by a

proper complemented element. Take a basic open set of Min(G)−1, say V (g) with

0 < g, and without loss of generality we assume that g is not a weak order unit. By

hypothesis, there exists a proper complemented element g 6 e. Then V (e) ⊆ V (g).

Since ∅ 6= V (e), it follows that the collection

B = {V (e) : 0 < e is a proper complemented element of G}

is a clopen π-base of Min(G)−1. �

This has led us to the following new type of subgroup.

Definition 2.4. Let H ∈ C(G). We call H a c-subgroup of G if for all 0 < h ∈ H

there exists a complemented element e ∈ H+ such that h 6 e. We let Cc(G) denote

the collection of c-subgroups of G.

Some simple observations are in order. For c-subgroups to exist it is necessary

that G possess a weak order unit, in which case, by convention and definition, the

trivial subgroups are both c-subgroups. Thus, any convex l-subgroup of G containing

a weak order unit is a c-subgroup. Moreover, a convex l-subgroup is a c-subgroup if

and only if it is generated (vis-a-vis convexity) by its complemented elements. We

find it useful to notate the set of positive complemented elements.

Definition 2.5. Denote the set of complemented elements of G by c(G);

c(G) = {g ∈ G+ : g is a complemented element of G}.

Lemma 2.6. The collection c(G) is a sublattice of G+.

P r o o f. Let g1, g2 ∈ c(G) and choose h1, h2 ∈ G+ so that gi ∧ hi = 0 and

gi ∨ hi is a weak order unit (i = 1, 2). We prove that g1 ∨ g2 is complemented with

complement h = h1 ∧ h2. First,

(g1 ∨ g2) ∧ h = (g1 ∧ h) ∨ (g2 ∧ h)

= (g1 ∧ h1 ∧ h2) ∨ (g2 ∧ h1 ∧ h2) = 0 ∨ 0 = 0.

Second, to show that (g1 ∨ g2) ∨ h is a weak order unit, let t ∈ G satisfy

t ∧ ((g1 ∨ g2) ∨ h) = 0.

Then (t∧ (g1 ∨ g2))∨ (t∧h) = 0, whence both t∧ (g1 ∨ g2) = 0 and t∧ (h1 ∨h2) = 0.

The former implies that both t ∧ g1 = 0 and t ∧ g2 = 0, whence the element t ∧ h2

has the property that it is disjoint from both g1 and h1. This implies it is disjoint

from g1 ∨ h1, a weak order unit. Consequently, t ∧ h2 = 0. But then t is disjoint

from g2 ∨ h2, a weak order unit. Therefore, t = 0. �
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It is clear that c(G) contains each weak order unit. It is entirely possible that 0

is the only proper complemented element. Example 7.1 is such a case. In the sequel

we will be interested in those c-subgroups which do not contain any weak order

unit, calling these proper c-subgroups. It follows that the only proper c-subgroup in

Example 7.1 is {0}.

3. The frame of c-subgroups

As was already pointed out, C(G) is a complete lattice under inclusion. It is also a

distributive lattice and furthermore, finite meets distribute over arbitrary joins. All

of this together is easily stated by saying that C(G) is a frame. It is known that the

collection of d-subgroups of G, denoted Cd(G), is also a frame (see [14], Chapter 5).

In general, Cd(G) is not a subframe of C(G). We consider Cc(G). For the next result

recall that the join of a collection of convex l-subgroups is the subgroup generated

by the collection (see [7]).

Proposition 3.1. Let A,B ∈ Cc(G) and {Hi} ⊆ Cc(G). Let g ∈ G+. Then

(a) A ∩B ∈ Cc(G),

(b)
∨
Hi ∈ Cc(G), and

(c) if g ∈ c(G), then g⊥ ∈ Cc(G).

P r o o f. (a) If A∩B = {0}, then we are done. Otherwise, choose 0 < h ∈ A∩B.

By hypothesis, there are complemented elements, say a ∈ A+ and b ∈ B+, such that

h 6 a and h 6 b. Therefore, h 6 a ∧ b with the latter a complemented element

belonging to A ∩B.

(b) It suffices to show that H =
∨
Hi is a c-subgroup. To that end, let h ∈ H+.

Then there is a collection h1, . . . , hn ∈ G such that hi ∈ Hji and h 6 h1 ∨ . . . ∨ hn.

Since each Hji is a c-subgroup, there is a complemented ei ∈ Hji such that hi 6 ei

and therefore,

h 6 e1 ∨ . . . ∨ en

with the latter a complemented element belonging to H =
∨
Hi.

(c) Let h be a complement of g. Then for any 0 6 t ∈ g⊥, t ∨ h ∈ g⊥ is also a

complement of g as (t ∨ h) ∨ g is a weak order unit and g ∧ (t ∨ h) = 0. �

Theorem 3.2. Let G be an l-group. Then Cc(G) is a subframe of C(G). In

particular, Cc(G) is an algebraic frame.
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P r o o f. The main consequence of Lemma 3.1 is that since finite meets and

arbitrary joins are the same in Cc(G) as in C(G), Cc(G) is a subframe of C(G). So

this only leaves us with proving that Cc(G) is algebraic.

By definition, each c-subgroup is the directed join of principal convex l-subgroups

generated by complemented elements. Moreover, the principal convex l-subgroups

are the compact elements in C(G) and hence, those in Cc(G) are compact in Cc(G).

The interested reader can finish the proof that the compact elements of Cc(G) are pre-

cisely the principal convex l-subgroups generated by complemented elements. There-

fore, Cc(G) is an algebraic frame. �

In Example 7.3, we provide a concrete example to show that the converse of (c)

of Proposition 3.1 is not true. For now, we classify when g⊥ is a c-subgroup for all

g ∈ G.

Proposition 3.3. For all g ∈ G, g⊥ is a c-subgroup if and only if G is weakly

complemented.

P r o o f. Suppose G is weakly complemented and let 0 6 g ∈ G+. Let h ∈ g⊥.

By hypothesis, there is a complementary pair x, y ∈ G+ such that g 6 x and h 6 y.

It follows that g∧ y = 0, whence y ∈ g⊥ is a complemented element for which h 6 y.

Therefore, g⊥ is a c-subgroup.

Conversely, suppose g, h ∈ G satisfy g ∧ h = 0. Then h ∈ g⊥, a c-subgroup, so

there is a complemented element y ∈ g⊥ with h 6 y. Let x be a complement of y

and observe that so is x′ = x ∨ g. Thus, G is weakly complemented. �

R em a r k 3.4. A consequence of Theorem 3.2 is that C(G) = Cc(G) if and only if

every principal convex l-subgroup is a c-subgroup. But then either of these conditions

occur if and only if G is complemented.

The embedding of Cc(G) into C(G) is a frame homomorphism and therefore there

is an adjoint map h∗ : C(G) → Cc(G). We expand on this. (For more information on

the adjoint map of a frame homomorphism the reader may consult [15], Definition

and Remarks 2.2.)

Starting with an H ∈ C(G) define

Hc = {h ∈ H : |h| 6 e for an e ∈ H+ ∩ c(G)}.

Clearly Hc ⊆ H . Furthermore, by Lemma 2.6, Hc ∈ Cc(G) and it is the largest

c-subgroup contained in H . Another way of describing Hc is as a convex l-subgroup

of H generated by the complemented elements of H . It is possible that Hc = {0}

while H 6= {0}. By definition, H is a c-subgroup if and only if H = Hc. Moreover,

the map h∗ : C(G) → Cc(G) is given by h∗(H) = Hc.
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We are now ready to state our main result, characterizing when Min(G)−1 has a

clopen π-base.

Theorem 3.5. Suppose G is an l-group. The following statements are equivalent.

(1) Min(G)−1 has a clopen π-base.

(2) For every nonweak order unit 0 < g ∈ G there is a proper complemented element

e ∈ G+ such that g 6 e.

(3) For every nonweak order unit 0 < g ∈ G there is a nonzero complemented

element f such that f ∧ g = 0.

(4) For every nonweak order unit 0 < g ∈ G, g⊥c 6= 0.

P r o o f. (1) and (2) are equivalent by Theorem 2.3.

(2)⇒ (3): Let 0 < g ∈ G be a nonweak order unit. This means there is 0 < h ∈ G

such that g ∧ h = 0. By (2), there is a proper complemented 0 < e ∈ G such that

g 6 e. Let 0 6 f ∈ G be a complement of e. In fact, since e is proper, 0 < f . Then

e ∧ f = 0 implies that g ∧ f = 0.

(3) ⇒ (1): Let V (g) be a basic open subset of Min(G)−1 with 0 6 g. We assume

that ∅ 6= V (g) ⊂ Min(G). It follows that g is not a weak order unit and g 6= 0.

By (3), there is a complemented element 0 < f such that f ∧ g = 0. Note that f

is not a weak order unit. Let 0 < e be a (proper) complement of f . A quick check

ensures that ∅ 6= V (e) ⊆ V (g). Since e is complemented, V (e) is a clopen subset of

Min(G)−1. Consequently, Min(G)−1 has a clopen π-base.

The proof that (3) and (4) are equivalent is straightforward and left to the inter-

ested reader. �

R em a r k 3.6. Observe that the order of operations in the symbol g⊥c (item (4))

is to first take the polar of g, and then take the largest c-subgroup inside of g⊥.

In general, this is not the same as taking the polar of the c-subgroup generated

by G(g). For example, if G has only trivial c-subgroups, then for a nonweak order

unit, (g⊥)c = {0}, whereas (G(g)c)
⊥ = G.

4. The d-radical of an l-group

It was an original thought on our part that Theorem 1.7 could be generalized by

changing each instance of the phrase is zero-dimensional to has a clopen π-base. In

trying to prove this we noticed that the intersection of all maximal d-subgroups is

of importance. We continue to assume that G has weak order units. For the sake of

ease, let w(G) denote the set of positive weak order units of G.
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Definition 4.1. Denote the intersection of all maximal d-subgroups by M(G)

and call this the d-radical of G.

Proposition 4.2. Let G be an l-group containing weak order units. Then

M(G) = {g ∈ G : ∀h ∈ G+, h ∨ |g| ∈ w(G) if and only if h ∈ w(G)}.

P r o o f. Suppose g ∈ G has the property that if h∨ |g| ∈ w(G), then h ∈ w(G).

If g /∈ M(G), then there is some maximal d-subgroup M ∈ Maxd(G) such that

g /∈ M . The join of G(g) andM must therefore contain a weak order unit. It follows

from the Riesz Representation Theorem and the Triangle Inequality, that for a finite

set 0 6 m1, . . . ,mn ∈ M and k1 . . . , kn ∈ N, the element

k1g +m1 + k2g +m2 + . . .+ kng +mn ∈ w(G).

Subsequently, there is 0 6 g′ ∈ G(g) and 0 6 m ∈ M such that g′ ∨ m is a weak

order unit. But then so is |g| ∨m. So, by choice of g, m ∈ M is a weak order unit,

a contradiction. Therefore g ∈ M(G).

Conversely, let g ∈ M(G). Obviously, if h ∈ w(G), then so is h ∨ |g| ∈ w(G). So

suppose that h ∈ G+ and h ∨ g ∈ w(G). If h is not a weak order unit, then there is

anM ∈ Maxd(G) such that h ∈ M . But then so is h∨|g|, a contradiction. Therefore

h ∈ w(G). �

A natural question is whether M(G) E G. We demonstrate this now. The first

two results of the next proposition can be found in [5].

Proposition 4.3. Let G be an l-group.

(a) Conjugation is an l-isomorphism.

(b) For each x, g ∈ G, x+ g⊥⊥ − x = (x+ g − x)⊥⊥.

(c) For each x ∈ G, if H is a d-subgroup, then x+H − x is a d-subgroup.

(d) For each x ∈ G and M ∈ Maxd(G), x+M − x ∈ Maxd(G).

P r o o f. (c) Suppose x ∈ G and let y ∈ x+H−x. Then −x+y+x ∈ H , whence

−x+ y⊥⊥ + x = (−x+ y + x)⊥⊥ ⊆ H.

Therefore y⊥⊥ ⊆ x+H − x.

(d) Let M ∈ Maxd(G) and take any d-subgroup H containing x +M − x. Then

M ⊆ −x+H + x, the latter being a d-subgroup. It follows that M = −x+H + x,

whence x+M − x = H . So x+M − x ∈ Maxd(G). �
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The following is a consequence of Proposition 4.3 (d).

Proposition 4.4. Let G be an l-group containing a weak order unit. Then the

d-radical of G is a normal subgroup of G, i.e. M(G) E G.

Definition 4.5. For the lack of a better term we call an element 0 < g ∈ G left

fusible if it can be written as the sum of a weak order unit and a nonweak order unit.

An l-group is called left fusible if it has the property that every nonzero positive

element is left fusible. We define a right fusible element and l-group analogously. A

positive element that is both left and right fusible will be called fusible. It ought to

be clear what we mean by a fusible l-group.

Clearly, (positive) weak order units are fusible and 0 is never considered fusible.

Proposition 4.6. Let G be an l-group containing a weak order unit. The follow-

ing statements are equivalent.

(1) The d-radical of G is zero.

(2) For each 0 < g ∈ G there is a nonweak order unit h ∈ G+ such that g ∨ h is a

weak order unit.

(3) G is left fusible.

(4) G is fusible.

(5) G is right fusible.

P r o o f. (1) ⇒ (2): Let 0 < g ∈ G. If g is a weak order unit, then h = 0 works.

Otherwise, by hypothesis, g /∈ M(G). Applying Proposition 4.2 and observing that

h ∈ w(G) always implies g ∨ w ∈ w(G), then this means there is a nonweak order

unit 0 < h ∈ G such that g ∨ h is a weak order unit.

(2) ⇒ (3): Let 0 < g ∈ G+ be a nonweak order unit. By (2), there is a nonweak

order unit h ∈ G+ such that h ∨ g ∈ w(G). Since

G(g + h) = G(g ∨ h) = G(h) ∨G(g),

it follows that g+ h ∈ w(G). Therefore, g = (g+ h)+ (−h) is a left fusible represen-

tation of g.

(3) ⇒ (1): Let 0 < g ∈ G. We aim to show that g /∈ M(G), which by Proposi-

tion 4.2 is tantamount to finding a nonweak order unit h ∈ G+ such that g∨h ∈ w(G).

By (3), there is a weak order unit w ∈ G and a nonweak order unit m ∈ G such that

g = w +m. Now,

w = g −m ∈ G(g) ∨G(m) = G(g) ∨G(|m|) = G(g ∨ |m|).
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It follows that g∨|m| is a weak order unit. Since m is not a weak order unit, neither

is |m|. Consequently, g /∈ M(G) and so M(G) = {0}.

The rest of the proof follows in the same vein once you observe that the join

operation is commutative. �

R em a r k 4.7. Notice that every complemented l-group is fusible and thus, so

is every projectable l-group. Those familiar with the analogy of l-groups to semi-

prime commutative rings with identity can attest to the fact that this situation is

analogous to saying that every nonzero element can be written as the sum of a (left)

zero-divisor and a nonzero-divisor. Such rings are called left fusible (see [8]). The

slight difference is that in a ring, addition is commutative, though multiplication

need not be. There are left fusible rings that are not right fusible.

In most of the previous work done on maximal d-subgroups, authors have been

interested in archimedean l-groups. In the archimedean case, it can be shown that

M(G) = {0}. Some time ago, the question arose of whether an archimedean l-group

with weak order unit is fusible. Professor A.W.Hager provided a proof which directly

showed that such an object is fusible. Here we supply a different proof.

Proposition 4.8. Suppose G is an archimedean l-group with a weak order unit.

Then
⋂
Maxd(G) = {0}, and such an l-group is fusible.

P r o o f. Let G be an l-group and 0 < u ∈ G a weak order unit. We begin by

demonstrating that any element in
⋂
Maxd(G), say g, also belongs to

⋂
Val(u). To

that end, let V ∈ Val(u) and choose a minimal prime beneath V , say P . Since P

does not contain any weak order units, it follows that P can be extended to a

convex l-subgroup M which is maximal with respect to not containing any weak

order units, i.e. a maximal d-subgroup (see [4], Proposition 4.3), i.e. M ∈ Maxd(G).

Since u /∈ M , then we can extend M to a value of u, which must be V since

Spec(G) is a root system. Therefore M ⊆ V . Since g ∈ M , then g ∈ V . Therefore⋂
Maxd(G) ⊆

⋂
Val(u).

Finally, archimedean l-groups have the property that
⋂
Val(u) = {0}. Therefore,

an archimedean l-group is fusible. �

We end this section with now an obvious characterization of the d-radical of an

l-group.

Proposition 4.9. Let G be an l-group. Then

M(G) = {g ∈ G : |g| is not fusible}.
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5. When Maxd(G) has a clopen π-base

Interestingly, to classify when Maxd(G) has a clopen π-base one needs a result

similar to Lemma 2.2. Unfortunately, the existence of nonzero non-fusible elements

in an arbitrary l-group muddles up the situation.

Lemma 5.1. Let G be an l-group with a weak order unit. Let K ⊆ Maxd(G).

Then K is clopen if and only if there is a pair g, h ∈ G+ such that g ∧ h ∈ M(G)

and g ∨ h is a weak order unit and K = Ud(g). In particular, if e ∈ c(G), then Ud(e)

is a clopen subset of Maxd(G).

Furthermore, if K = Ud(g) is clopen for g ∈ G+, then there is an h ∈ G+ such

that g ∧ h ∈ M(G) and g ∨ h ∈ w(G).

Lastly, if G is fusible, then for any 0 6 g, Ud(g) is clopen if and only if g is

complemented.

P r o o f. The last two statements certainly follow from the first paragraph.

Let K be a clopen subset of Maxd(G). Recall that Maxd(G) is compact Hausdorff

so K = Ud(g) for some g ∈ G+. Similarly, Maxd(G)rK = Ud(h) for some h ∈ G+.

It follows that Ud(g ∨ h) = Ud(g) ∪ Ud(h) = Maxd(G) so g ∨ h ∈ w(G). Now,

Ud(g ∧ h) = ∅ implying that g ∧ h ∈ M(G).

Conversely, suppose g, h satisfy the condition that g ∧ h ∈ M(G) and g ∨ h is a

weak order unit and K = Ud(g). Then

Ud(g) ∩ Ud(h) = Ud(g ∧ h) = ∅

and

Ud(g) ∪ Ud(h) = Ud(g ∨ h) = Maxd(G).

Consequently, K = Ud(g) is a clopen subset of Maxd(G).

Finally, suppose K = Ud(g) is clopen. Then for any h ∈ G+ for which Ud(h) =

Maxd(G)r Ud(h), it will also hold that g ∧ h ∈ M(G) and g ∨ h ∈ w(G). �

In order to characterize when Maxd(G) has a clopen π-base we first consider

when G is fusible. Notice the dual nature of our next proposition in comparison to

Theorem 2.3.

Proposition 5.2. The l-group G is fusible and the space Maxd(G) has a clopen

π-base if and only if for each 0 < g ∈ G there exists an e ∈ c(G) such that 0 < e 6 g.

P r o o f. First, suppose that Maxd(G) has a clopen π-base and G is fusible. Let

0 < g ∈ G. If g is a weak order unit, then we are done. Otherwise, by Lemma 5.1,

choose a complemented element 0 < e ∈ G such that ∅ 6= Ud(e) ⊆ Ud(g). Then
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Ud(e) = Ud(e) ∩ Ud(g) = Ud(e ∧ g), so e ∧ g is complemented as G is fusible. Since

Ud(e) is not empty, it follows that 0 < e ∧ g 6 g.

Conversely, suppose that for each 0 < g ∈ G there exists an e ∈ c(G) such that

0 < e 6 g. Let Ud(g) be a basic nonempty subset of Maxd(G). Without loss of

generality, 0 < g. By hypothesis there is 0 < e ∈ c(G) such that 0 < e 6 g. Then

Ud(e) is a nonempty clopen subset of Maxd(G) and

Ud(e) = Ud(e ∧ g) = Ud(e) ∩ Ud(g) ⊆ Ud(g).

Consequently, Maxd(G) has a clopen π-base.

Next, let 0 6 g ∈ M(G). If 0 < g, then we can choose e ∈ c(G) such that 0 < e 6 g.

Since M(G) is a convex l-subgroup, it follows that e ∈ M(G), contradicting that e

is complemented. Therefore M(G) = {0}, i.e. G is fusible. �

R em a r k 5.3. Recall that if G is lamron, then Min(G)−1 and Maxd(G) are

homeomorphic. Therefore, one of them has a clopen π-base precisely when the other

does. Since we cannot determine whether a lamron l-group is fusible, we are not

satisfied with our next theorem. On the bright side, the case does cover a lot of

ground.

R em a r k 5.4. Recall that in Remark 3.4, the map h∗ : C(G) → Cc(G) was

defined by h∗(H) = Hc. The authors in [15] defined such a map h∗ to be ∗-dense if

h∗(H) = 0 implies H = 0. We remarked in Section 3 that it is possible thatHc = {0}

while H 6= {0}, that is, it is possible for the embedding Cc(G) → C(G) not to be

∗-dense. In the result that follows we show, amongst other things, that the ∗-density

of this frame homomorphism is equivalent to Min(G)−1 having a clopen π-base.

Theorem 5.5. Let G be a fusible l-group. The following statements are equiva-

lent.

(1) Min(G)−1 has a clopen π-base.

(2) For each 0 < g ∈ G there exists a proper complemented element e ∈ c(G) such

that 0 < g 6 e.

(3) Maxd(G) has a clopen π-base.

(4) For each 0 < g ∈ G there exists an e ∈ c(G) such that 0 < e 6 g.

(5) The embedding of Cc(G) into C(G) is ∗-dense.

In particular, if G is an archimedean l-group, then Min(G)−1 has a clopen π-base if

and only if Maxd(G) has a clopen π-base.

P r o o f. (1) and (2) are equivalent for all l-groups (Theorem 2.3). It is also

straightforward to check that (4) and (5) are equivalent for all l-groups. Theorem 5.2

says that (3) and (4) are equivalent for all fusible l-groups.
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Recall from our discussion prior to Proposition 1.7 that the map d : Min(G)−1 →

Maxd(G) is a continuous surjection.

(1) ⇒ (3): Let Ud(g) be a basic nonempty open subset of Maxd(G) with 0 <

g ∈ G. Choose M ∈ Ud(g) and let P ∈ Min(G) for which d(P ) = M . Notice that

P ∈ d−1(Ud(g)), the latter being an open subset of Min(G)−1 by continuity of d.

Thus, there is an 0 < h ∈ G such that P ∈ V (h) ⊆ d−1(Ud(g)). By hypothesis, there

is a nonempty clopen subset of Min(G)−1, say U(e), such that ∅ 6= U(e) ⊆ V (h).

Since e is complemented, it follows that Ud(e) = d(U(e)), which is a nonempty

clopen subset of Maxd(G). Furthermore, Ud(e) ⊆ Ud(g). Consequently, Maxd(G)

has a clopen π-base

(4) ⇒ (2): Suppose for each 0 < g ∈ G that there exists an e ∈ c(G) such that

0 < e 6 g. Let 0 < g ∈ G and assume without loss of generality that g is not

a weak order unit, and so there exists 0 < h ∈ g⊥. By hypothesis, there exists a

complemented element 0 < e 6 h. Let f be a complement of e such that f ∧ e = 0

and f ∨ e is a weak order unit. Set f ′ = g ∨ f ; clearly g 6 f ′. Now, f ∨ e 6 f ′ ∨ e,

whence f ′ ∨ e is also a weak order unit. Also,

f ′ ∧ e = (g ∨ f) ∧ e = (g ∧ e) ∨ (f ∧ e) = 0.

It follows that f ′ is a proper complemented element above g. �

R em a r k 5.6. We observed above that a continuous surjection of a topological

space with a clopen π-base has a clopen π-base. Therefore, the content of the above

proof corroborates that the topologies ofMin(G)−1 andMaxd(G) are closely aligned.

R em a r k 5.7. A thorough inspection of Theorem 5.5 reveals that condition (4)

is the strongest. Condition (4) implies that Min(G)−1 has a clopen π-base, which in

turn implies that Maxd(G) has a clopen π-base. There are examples of l-groups G

for which Maxd(G) has a clopen π-base, yet Min(G)−1 does not. Also, imposing the

lamron condition yields that conditions (1), (2) and (3) are equivalent, and we do

not know whether they in turn imply (4).

Q u e s t i o n 5.8. It ought to be apparent that a weakly complemented l-group

is fusible. We have been unable to show that a lamron l-group is fusible, even for

abelian l-groups. We also do not know whether an l-group with stranded primes is

fusible. We guess not in both cases.
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6. Category W

The work in this section takes place in the categoryW. Objects in W are pairs

(G, u), where G is an archimedean lattice-ordered group and u is a distinguished

(positive) weak order unit. A morphism in W, between (G, u) and (H, v), is an

l-group homomorphism ϕ : G → H such that ϕ(u) = v. One of the main features of

this category is seen through the Yosida Embedding Theorem.

Recall that the Yosida space of aW-object (G, u) is the space of values of u; this

set is denoted by Y G. This space is always compact and Hausdorff when equipped

with the hull-kernel topology. A basic open set is of the form

coz(g) = {p ∈ Y G : g /∈ P}

for g ∈ G. The set coz(g) is called the cozero-set of g and the collection of all

such cozero-sets is termed the set of G-cozero-sets and is denoted by coz(G). The

complement of coz(g) is denoted by Z(g) and is called the zero-set of g. The collection

of G-zero-sets is denoted by Z(G). It ought to be clear that coz(g ∨ f) = coz(g) ∪

coz(f) and coz(g ∧ f) = coz(g) ∩ coz(f) for all f, g ∈ G+. Thus, both coz(G) and

Z(G) are lattices under inclusion.

Definition 6.1. Recall that for a compact Hausdorff space X , the set D(X)

denotes the collection of all almost real-valued continuous functions on X . Let R =

R ∪ {±} denote the two point compactification of the space of reals. An element

f ∈ D(X) has the feature that f : X → R is continuous and f−1(R) is a dense

subset of X . This set need not be a group as addition might not make sense, but it

is always a lattice. The fact that H is an l-subgroup of D(X) implies that H is in

fact closed under addition.

Corollary 6.2. Let (G, u) be a W-object. For all 0 < v ∈ G, v is a weak order

unit of G if and only if coz(v) is a dense subset of Y G.

P r o o f. The proof of this is well-known, but we include it here for the sake of

completeness.

Let 0 < v ∈ G be a weak order unit. Let f ∈ G satisfy coz(f) ∩ coz(v) = ∅. Then

coz(f ∧v) = ∅, whence f ∧v = 0, so f = 0. Therefore coz(v) is a dense subset of Y G.

Conversely, if coz(v) is a dense subset, then for any 0 < f ∈ G, coz(v ∧ f) =

coz(f) ∩ coz(v) 6= ∅. But then v ∧ f 6= 0, so v is a weak order unit. �

Theorem 6.3 (The Yosida Embedding Theorem). Let (G, u) be a W-object.

There is an l-isomorphism of G (g 7→ ĝ) onto an l-subgroup Ĝ 6 D(Y G) such that

û = 1 and Ĝ has the following separation property: for each p ∈ Y G and closed
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set V ⊆ Y G not containing p there is a g ∈ G for which ĝ(p) = 1 and ĝ(q) = 0

for all q ∈ V . Moreover, Y G is the unique compact space, up to homeomorphism,

satisfying these two properties.

E x am p l e 6.4. The prototypical example of a W-object is C(X), the set of

continuous real-valued functions on a topological space X . We assume that X is

Tychonoff, that is, completely regular and Hausdorff. It shall be assumed, unless

otherwise noted, that when considering C(X) a W-object, that the constant func-

tion b is the distinguished weak order unit. In this case, the Yosida space of (C(X), b)

is the Stone-Čech compactification of X , βX .

For f ∈ C(X), the cozero-set of f is coz(f) = {x ∈ X : f(x) 6= 0}. A cozero-set

of the space X is a set of the form coz(f) for some f ∈ C(X). The collection of all

cozero-sets (or zero-sets) of X is denoted by coz(X) (or Z(X)). Notice that a cozero-

set of X is not necessarily a C(X)-cozero-set of f as the latter is a subset of βX .

We do observe that when X is compact, then the notions coincide. Moreover, for

anyW-object (G, u), each G-cozero-set (or G-zero-set) is a cozero-set (or zero-set)

of Y G. For a more thorough explanation of this see [3], Example 3.2.

Definition 6.5. Let (G, u) ∈ W. The following collection of regular closed

subsets of Y G play a pivotal role in the classification of classes ofW-objects. The

interested reader can also check [4].

(1) R(Y G) = {V ⊆ Y G : V = cl intV }.

(2) Z♯(G) = {cl intZ(g) : f ∈ G+}.

(3) cl coz(G) = {cl coz(g) : g ∈ G+}.

(4) cc(G) = {coz(e) : e ∈ c(G)}.

(5) G (G) = {clC : C ∈ cc(G)}.

(6) Clop(G) = {K ⊆ Y G : K is a clopen subset of Y G} = Clop(Y G).

When X is a compact space and G = C(X), then we write Z♯(X), cl coz(X), cc(X),

and G (X) instead.

For any W-object (G, u) we know that Z♯(G) ⊆ Z♯(Y G), Clop(G) ⊆ cc(G) ⊆

cl coz(G) ⊆ cl coz(Y G) and G (G) ⊆ cc(Y G). When ordered by inclusion, R(Y G) is

a complete boolean algebra. The lattice operations are given as follows.

(i) V1 ∪′ V2 = V1 ∪ V2;

(ii) V1 ∩′ V2 = cl int(V1 ∩ V2);

(iii) V ′ = cl(Y Gr V ).

Observe that the above lattice operations make G (G) a boolean algebra. Further-

more, the equality in item (iii) yields that the set of complements of Z♯(G) in R(Y G)

is precisely cl coz(G). It follows that either of Z♯(G) or cl coz(G) is a boolean algebra

if and only if Z♯(G) = cl coz(G) .
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The following three results are very useful in doing calculations on the just-defined

objects. The results are stated in terms of a compact Hausdorff space and therefore

hold for the Yosida space of anyW-object.

Lemma 6.6. Let X be a compact Hausdorff space and let Z,Z1, Z2 ∈ Z(X). The

following statements hold.

(a) cl intZ1 ∩
′ cl intZ2 = cl int(Z1 ∩ Z2).

(b) cl intZ1 ∪′ cl intZ2 = cl intZ1 ∪ cl intZ2 = cl int(Z1 ∪ Z2).

(c) (cl intZ)′ = cl(X r Z).

Lemma 6.7. Let X be a compact space and let f, g ∈ C(X)+. The following

statements hold.

(a) cl coz(f) ∩′ cl coz(g) = cl(coz(f) ∩ coz(g)) = cl coz(f ∧ g).

(b) cl coz(f) ∪′ cl coz(g) = cl(coz(f) ∪ coz(g)) = cl coz(f ∨ g).

Corollary 6.8. Let (G, u) be a W-object. Then each of Z♯(G), cl coz(G) and

cc(G) is a sub-lattice of R(Y G).

Definition 6.9. Recall that given a boolean algebraA , a sub-boolean algebraB

is said to be dense in A if for every nonzero 0 < a ∈ A there is a nonzero 0 < b ∈ B

such that b 6 a.

The density property has been used to characterize completions of boolean alge-

bras. In particular, A is a completion of B if A is a complete boolean algebra

and B is dense in A.

We are now in position to provide some different ways of looking at the situation

when Maxd(G) has a clopen π-base. What is new to this theorem (see Theorem 5.5)

is the connection to the Yosida space of (G, u).

Theorem 6.10. Let (G, u) be aW-object. The following statements are equiv-

alent.

(1) Maxd(G) has a clopen π-base.

(2) Min(G)−1 has a clopen π-base.

(3) For each 0 < g ∈ G there exists an e ∈ c(G) such that 0 < e 6 g.

(4) For each 0 < g ∈ G there exists a proper e ∈ c(G) such that 0 < g 6 e.

(5) The collection cc(G) is an open π-base of Y G.

(6) The sub-boolean algebra G (G) is dense in R(Y G).

(7) The collection of interiors of complementedG-zero-sets is an open π-base of Y G.
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P r o o f. Clearly, (1), (2), (3) and (4) are equivalent since aW-object is fusible

(Theorem 5.5).

(1) ⇒ (5): Let O be a nonempty open subset of Y G. Choose 0 < g ∈ G+ such

that ∅ 6= coz(g) ⊆ O. By (3), there is a complemented 0 < e 6 g. Observe that

∅ 6= coz(e) ⊆ coz(g). Consequently, cc(G) is a π-base for Y G.

(5)⇒ (6): Let ∅ 6= V ∈ R(Y G), a nonempty regular closed subset. By (5) we can

choose 0 < e ∈ c(G) such that coz(e) ⊆ intV . Then ∅ 6= cl coz(e) ⊆ cl intV = V .

Therefore, G (G) is dense in R(Y G).

(6) ⇒ (7): Let O ⊆ Y G be a nonempty open subset. We can shrink O down

to a nonempty G-cozero-set, say coz(g), such that cl coz(g) ⊆ O. Since cl coz(g) ∈

R(Y G), we can apply (6) and choose an e ∈ C(G) such that ∅ 6= cl coz(e) ⊆ cl coz(g).

Let f ∈ c(G) be a complement of e. It is straightforward to check that ∅ 6= intZ(f) ⊆

cl coz(e), whence intZ(f) ⊆ O.

(7) ⇒ (3): Let 0 < g′ ∈ G. As mentioned before, we can shrink down coz(g′) to a

G-cozero-set, say coz(g), so that

coz(g) ⊆ cl coz(g) ⊆ coz(g′).

By (7), there is a complemented element f ∈ c(G) such that ∅ 6= intZ(f) ⊆ coz(g).

Let e ∈ c(G) be a complement of f and note that coz(e) ⊆ intZ(f). It follows

that coz(e) = coz(e) ∩ coz(g) = coz(e ∧ g). Thus, e′ = e ∧ g has the property

that e′ ∧ f = 0 and e′ ∨ f is a weak order unit (Corollary 6.2). Therefore, e′ is a

complemented element and 0 < e′ 6 g. �

7. Examples

We recall some of the examples from [4] and supply some new ones to help round

out the theory.

E x am p l e 7.1. In the paragraph after Lemma 2.6 it was mentioned that there

are examples of l-groups whose nonzero complemented elements are precisely the

weak order units. These are precisely the l-groups such that Min(G)−1 is connected.

If the l-group G is fusible, then Min(G)−1 is connected if and only if Maxd(G) is

connected.

In the context ofW, the above is characterized by the property on Y G that says

Y G is connected and there are no proper dense G-cozero-sets; the latter half of this is

covered in [4], Theorem 5.3. This happens if and only if Maxd(G) = Y G. For C(X)

this means that βX is a connected almost P -space, which is equivalent to saying

that X is a connected pseudo-compact almost P -space (see [13], Proposition 2.2).
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(A space X is an almost P -space if it has no proper dense cozero-sets.) The space

Z = β[0, 1]r [0, 1] is a connected compact almost P -space.

E x am p l e 7.2. Recall Example 1.6, G =
−−−−→
Z×⊕Z is the lexicographical exten-

sion of Z over H , the direct sum of countable many copies of Z. This is not a fusible

l-group since H is the maximal d-subgroup. Moreover, in this case, Min(G)−1 is

homeomorphic to the naturals equipped with the co-finite topology which does not

have a clopen π-base. However, Maxd(G) does have a clopen π-base, trivially.

This construction can be generalized to any H with no weak order unit and we

obtain that the l-group G =
−−−−→
Z×H satisfies that the space Min(G)−1 is connected.

As mentioned before, G is not fusible and G has a unique maximal d-subgroup;

Maxd(G) ={H} is trivially connected. Observe that if H has a weak order unit,

then H is not a maximal d-subgroup of G.

If G has a unique maximal d-subgroup, say K, then G is a lex extension of K and

so Min(K)−1 is homeomorphic to Min(G)−1. Moreover, K must not have any weak

order units and so this is the case as above.

E x am p l e 7.3. The converse to (c) of Proposition 3.1 is not true. Namely, that

it is possible that f⊥ is a c-subgroup without f being a complemented element.

Let X be the space obtained by taking αN and ω∗
1 (the space of countable ordinals

together with ω1) and gluing at the points α and ω1. The function f which maps

the natural n ∈ αN to 1/n and everything in ω∗
1 to 0 is not a complemented element.

However, any function 0 < g ∈ f⊥ must send ω1 to 0 and therefore be 0 on an

interval around ω1. Therefore, the cozero-set of g is contained in a proper clopen

subset of ω∗
1 and so g is beneath some multiple of a characteristic function belonging

to f⊥; such an element happens to be a complemented element. Consequently, f⊥

is a c-subgroup. One can check that there is no complemented element g such that

f⊥ = g⊥.

Q u e s t i o n 7.4. Reading Remark 5.8 once again, we are left with the question

of whether for a general l-group G condition (4) of Theorem 5.5 is equivalent to

Min(G)−1 possessing a clopen π-base. Notice that condition (4) is equivalent to

the statement that Gc 6 G is a dense extension, which is sufficient for G to be

fusible. Therefore, we are left with the question of whether there is a non-fusible l-

group with Min(G)−1 having a clopen π-base. If T is a totally ordered group and H

is an l-group, then Min(
−−−−→
T ×H)−1 is homeomorphic to Min(H)−1. Thus, the use

of lexicographical extensions seems to not be useful in constructing such a group.

Since laterally complete l-groups are complemented, this also rules out the typical

constructions like Aut(Ω) and Hahn groups.
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