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Structural aspects of truncated archimedean

vector lattices: good sequences, simple elements

Richard N. Ball

Abstract. The truncation operation facilitates the articulation and analysis of
several aspects of the structure of archimedean vector lattices; we investigate two
such aspects in this article. We refer to archimedean vector lattices equipped
with a truncation as truncs.

In the first part of the article we review the basic definitions, state the
(pointed) Yosida representation theorem for truncs, and then prove a representa-
tion theorem which subsumes and extends the (pointfree) Madden representation
theorem. The proof has the virtue of being much shorter than the one in the
literature, but the real novelty of the theorem lies in the fact that the topological

data dual to a given trunc G is a (localic) compactification, i.e., a dense pointed
frame surjection q : M → L out of a compact regular pointed frame M . The
representation is an amalgam of the Yosida and Madden representations; the
compact frame M is sufficient to describe the behavior of the bounded part G∗

of G in the sense that G̃∗ separates the points of the compact Hausdorff pointed
space X dual to M , while the frame L is just sufficient to capture the behavior
of the unbounded part of G in R0L.

The truncation operation lends itself to identifying those elements of a trunc
which behave like characteristic functions, and in the second part of the article
we characterize in several ways those truncs composed of linear combinations
of such elements. Along the way, we show that the category of such truncs is
equivalent to the category of pointed Boolean spaces, and to the category of
generalized Boolean algebras.

The short third part contains a characterization of the kernels of truncation
homomorphisms in terms of pointwise closure. In it we correct an error in the
literature.

Keywords: truncated archimedean vector lattice; pointwise convergence; l-group;
completely regular pointed frame

Classification: 06F20, 46E05

1. Introduction

The need for the truncation operation on RX for the purposes of measure

theory was pointed out by M.H. Stone in [21], and under the name “Stone’s

condition”, this operation is assumed in many measure theory texts, see [13], [14].
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Moreover, a truncation is a weakening of the requirement of a weak unit, and

as such it is all that is necessary to render the representation of a vector lattice

canonical. Based on an axiomatic formulation of the truncation operation, this

representation theory has recently been worked out in [2] and [3]. The article at

hand continues this development, and makes frequent references to the latter two.

Part 1 concerns the representation of truncs. It begins in Section 2 with a re-

view of the basic constructs to fix notation, followed by a statement of the classical

Yosida representation theorem 2.3.1. We take up the pointfree representation in

Section 3, beginning with a review of the trunc operations in R0L, and culminat-

ing in Theorem 3.3.2. The proof of this theorem is conceptually clear, technically

uncomplicated, and short. A given trunc G is shown to be isomorphic to a trunc

in E0q, where q : M → L is a compactification, and E0q is the family of those

pointed frame maps g ∈ R0L for which there exists another pointed frame map

g′ : O∗R → M such that g ◦ p = q ◦ g′. Here p stands for the pointed frame map

of the inclusion R → R.

Both uniform and pointwise convergence have elegant formulations in terms of

the truncation operation, and Section 4 reviews them. The connection between

the two convergences is Dini’s Theorem 4.2.3. In Section 5 we take up the trun-

cation sequences used by A.W. Hager in his treatment of *-maximal W-objects,

see [15], and in Proposition 5.2.3 we show them to be essentially equivalent to the

good sequences which D. Mundici used to show the equivalence between unital

l-groups and MV -algebras, see [19]. We conclude Section 5 by characterizing the

functions of E0q as being those elements g ∈ R0L such that each truncation g ∧n

factors through q (Proposition 5.4.1).

Part 1 concludes with Section 6. We show that for a compactification q :

M → L, E0q is a trunc if and only if every cozero element u ∈ M for which

q(u) = ⊤ is C∗-embedded (Proposition 6.1.1). Furthermore, we show E0q = R0L

if and only if q is the compact regular coreflection, i.e., if and only if q is the

Čech–Stone compactification (Proposition 6.1.3). We conclude Part 1 with an

important question in the form of Conjecture 6.1.4.

The truncation operation makes it easy to identify those elements which behave

like characteristic functions (Proposition 7.2.1). In analysis, the term simple func-

tion is often used for linear combinations of characteristic functions, and we use

that term here, both for the elements and for the truncs composed of them. Under

the name Specker groups, these objects have received a good deal of attention in

the ordered algebra literature, see [11, page 385]. Part 2 presents several charac-

terizations of simple truncs: Theorem 8.1.1 in terms of locally constant functions,

Theorem 8.2.10 in terms of functions bounded away from 0, and Theorem 8.3.6

in terms of hyperarchimedean truncs.
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As a matter of independent interest, we show in Section 7 that the following four

categories are equivalent: the category sT of simple truncs, the category gBa

of generalized Boolean algebras, the category iBa of idealized Boolean algebras,

and the category zdK∗ of Boolean pointed spaces, i.e., zero dimensional compact

Hausdorff pointed spaces, see Theorems 7.1.5 and 7.5.1.

Part 3 is a brief coda. In it the fundamental lemma from the literature

characterizing the kernels of truncation homomorphisms receives a correction

(Lemma 9.1.1), and the lemma is then used to show that such kernels are also

characterized by the property of being pointwise closed (Proposition 9.2.1).

Part 1. Representation of truncated archimedean vector lattices

2. The Yosida representation

In this section we introduce the primary constructs to fix notation, and then

outline the fundamental Yosida representation Theorem 2.3.1.

2.1 Pointed spaces and frames. We introduce the categories which constitute

the setting for the geometrical aspects of our investigations.

Definition (pointed space). A pointed space is an object of the form (X, ∗), where

X is a Tychonoff topological space and ∗ is a designated point of X . A contin-

uous pointed function f : (Y, ∗Y ) → (X, ∗X) is a continuous function f : Y → X

such that f(∗Y ) = ∗X . We denote the category of pointed spaces with contin-

uous pointed functions by Sp∗. We denote the full subcategory consisting of

the compact Hausdorff pointed spaces by K∗. We denote the full subcategory of

zero dimensional compact Hausdorff pointed spaces, aka Boolean pointed spaces,

by zdK∗.

The pointfree counterpart of a pointed space is a pointed frame. A fuller

development of this topic, together with proofs, can be found in Section 4 of [3].

Unless explicitly stipulated otherwise, we assume all spaces to be Tychonoff, i.e.,

Hausdorff and completely regular, and all frames to be completely regular.

Definition (pointed frame). A pointed frame is a pair (L, ∗L), where L is a frame

and ∗L is a point of L, i.e., a frame map ∗L : L → 2 ≡ {⊥,⊤}. A pointed frame

homomorphism f : (L, ∗L) → (M, ∗M ) is a frame homomorphism f : L → M

which commutes with the points, i.e., ∗M ◦ f = ∗L.

We denote the category of pointed frames with their homomorphisms by Frm∗.

Of particular importance is the pointed frame of the reals O∗R ≡ (OR, ∗0),

where OR designates the frame of open subsets of the real numbers and ∗0 :
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OR → 2 is the frame map corresponding to the insertion of the real number 0

into R, i.e.,

∗0(U) =

{
⊤ if 0 ∈ U

⊥ if 0 /∈ U
, U ∈ OR.

The connection between the categories Frm∗ and Sp∗ is provided by the basic

adjunction given by the functors S∗ : Frm∗ → Sp∗ and O∗ : Sp∗ → Fr∗. The

functor S∗ assigns to a pointed frame its spectrum, or space of points. The

functor O∗ assigns to a pointed space (X, ∗X) the pointed frame (OX, ∗), where

OX is the frame of open sets of X and ∗ is the frame map of the point insertion

∗ → X .

2.2 Truncated vector lattices. We introduce the categories which will pro-

vide the setting for the algebraic aspects of our investigation. The underlying

motivation is that truncation is a generalization of a weak order unit.

Definition (truncation). A truncation on an archimedean vector lattice G is

a unary operation on the positive cone G+, to be designated g 7→ g , satisfying the

following axioms for all h, g ∈ G+:

(T1) g ∧ h≤ g ≤ g.

(T2) If g = 0 then g = 0.

(T3) If ng = ng for all n then g = 0.

The range {g : g ∈ G+} of the truncation is designated byG.

The symbol g ⊖ 1 occurs frequently as an abbreviation for g −g , as does the

symbol g ⊖ r as an abbreviation for r(g/r ⊖ 1), 0 < r ∈ R. The expression

g ⊖ 0 is taken to represent g. Likewise the symbol g ∧ r occurs frequently as an

abbreviation for rg/r, 0 < r ∈ R. The appearance of the symbols 1 or r here is

formal; it is not implied that the trunc contains elements named 1 or r.

Definition (trunc). A truncated vector lattice, or more concisely a trunc, is an

archimedean vector lattice G equipped with a truncation g 7→ g . A truncation

homomorphism is a vector lattice homomorphism θ : G → H which preserves the

truncation, i.e., θ(g) = θ(g) for all g ∈ G+. We denote the category of truncs

with truncation homomorphisms by T.

Definition (C0X). The most classical truncs are those of the form

C0X ≡ {g̃ : X → R : g̃ is continuous and g̃(∗) = 0},

where (X, ∗) is a pointed Tychonoff space. In C0X or any of its variants, trun-

cation is always given by the formula

g̃(x) ≡ g̃(x) ∧ 1, x ∈ X.
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The well known category W of archimedean vector lattices with designated

weak order units can be identified with a non-full subcategory of T.

Definition (W). A trunc G is called unital if it possesses an element u, called its

unit, such that g = g∧u for all g ∈ G+. We denote the non-full subcategory of T

comprised of the unital truncs by W. Its objects are of the form (G, u), where

G is an archimedean trunc with unit u, and its morphisms are the truncation

homomorphisms θ : (G, uG) → (H,uH) such that θ(uG) = uH .

Theorem 2.2.1 ([3], 6.1.3). The category W is a non-full monoreflective sub-

category of T.

2.3 The Yosida representation. Let R ≡ R ∪ {±∞} designate the extended

real numbers.

Definition (D0X). Let (X, ∗) be a compact Hausdorff pointed space. A contin-

uous function g̃ : X → R is said to be almost finite if g̃−1(R) is a dense subset

of R. We denote the family of such functions which vanish at ∗ by

D0X ≡ {g̃ : g̃ : X → R is continuous, almost finite, and g̃(∗) = 0}.

The family of functions D0X has many of the features of a trunc: it contains

the constant 0 function (and no other constant function) and is closed under

pointwise join, meet, and scalar multiplication. It is also closed under the natural

truncation g̃ = g̃ ∧ 1, but it does not contain the constant 1 function itself. The

family of functions D0X also admits the partial addition given by the rule:

f̃ + g̃ = h̃ ⇐⇒ ∀x ∈ f̃−1(R) ∩ g̃−1(R) ∩ h̃−1(R) (f̃(x) + g̃(x) = h̃(x)).

Even though this partial addition can fail to be total, it may nevertheless be the

case that a subset A ⊆ D0X is closed under all of the aforementioned operations

and is therefore a trunc. In such a case we say that A is a trunc in D0X . Such

truncs are universal objects for T in the following sense.

Theorem 2.3.1 ([2] 5.3.6). Let G be a trunc.

(1) There is a compact Hausdorff pointed space (X, ∗), a trunc G̃ in D0X

which separates the points of X , and a trunc homeomorphism νG :

G → G̃ = (g 7→ g̃). The space (X, ∗) is unique up to homeomorphism

with respect to its properties, and is referred to as the Yosida space of G.

(2) For every trunc homomorphism θ : G → H , where H is a trunc with

Yosida space Y ∈ K∗, there exists a unique K∗-morphism k : Y → X

such that θ̃(g) = g̃ ◦ k for all g ∈ G.
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G D0X X R

H D0Y Y

νG

θ D0k

g̃

νH

k
θ̃(g)

3. The Madden representation of truncs

3.1 The trunc R0L. An element x of a frame L is said to be dense if the only

element of L disjoint from x is ⊥.

Definition (RL, R0L, D0M). For any frame L, we denote the family of frame

homomorphisms OR → L by RL. For a pointed frame (L, ∗), we denote the fam-

ily of pointed frame homomorphisms O∗R → L by R0L. For a compact pointed

frame M , we denote the family of pointed frame homomorphisms h′ : O∗R → M

such that h′(−∞,∞) is a dense element of M by D0M . Thus if M = O∗X for

X ∈ K∗ then D0M = {g̃−1 : g ∈ D0X}.

The family R0L inherits a natural trunc structure from the trunc R, just as

RL inherits its structure from the W-object R. In similar fashion, D0M inherits

from R a scalar multiplication, the lattice operations, and a truncation, together

with a partial addition operation. We briefly outline the details of these operations

here; the reader wishing a fuller explanation can find it worked out for RL in [8]

or [5], and for R0L in [3]. The reader may also consult the several papers of

B. Banaschewski related to the topic.

Consider an n-ary operation on R, i.e., a continuous function w : Rn → R.

Then w gives rise to an n-ary operation on R0L as follows. A basic open subset

of Rn has the form

#”

U = (U1, U2, . . . , Un) = {(x1, x2, . . . , xn) : xi ∈ Ui},

where Ui ∈ OR for all i. We write w(
#”

U ) ⊆ V to mean that w(x1, x2, . . . , xn) ∈ V

whenever xi ∈ Ui for all i. And we use ~f to abbreviate (f1, f2, . . . , fn) ∈ (R0L)
n.

Theorem 3.1.1 ([4], 3.2). Assume the foregoing notation. The operation induced

on R0L by the function w : Rn → R, also denoted w by abuse of notation, is given

by the formula

w(~f )(V ) =
∨

w(
#”

U )⊆V

∧

i

fi(Ui), V ∈ O∗R.

The function w : Rn → R may come from a truncation term, i.e., an expression

built up from variables and constants using the trunc operations. In that case the

corresponding function w is obtained by interpreting each operation and constant

of the term as the corresponding operation or constant of R. For instance, the
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functions in Lemma 3.1.2 are those associated with the truncation terms x and

x ⊖ 1. The interpretations of these terms in R are x ∧ 1 and x −x = (x− 1)+,

respectively; the lemma provides the formulas for the corresponding frame homo-

morphisms.

Lemma 3.1.2 ([4], 3.3). The following hold for g ∈ R+
0 L:

g(−∞, r) =

{
⊤ if r > 1

g(−∞, r) if r ≤ 1
, g(r,∞) =

{
⊥ if r ≥ 1

g(r,∞) if r < 1
,

g ⊖ 1(r,∞) =

{
⊤ if r < 0

g(r + 1,∞) if r ≥ 0
, g ⊖ 1(−∞, r) =

{
⊥ if r ≤ 0

g(−∞, r + 1) if r > 0
.

Corollary 3.1.3 ([4], 3.4). If an equation in the elementary language of T,

meaning an expression of the form τ1 = τ2 for T-terms τi, holds in the trunc R

then it also holds in R0L. In particular, all of the axioms defining a trunc hold

in R0L.

Truncs of the form R0L, L ∈ Frm∗, are universal objects for T, a result due

to J. Madden and J. Vermeer for W, see [18], and to the author for T, see [3].

Our objective here, however, is Theorem 3.3.2, a sharper representation which

will subsume both of these results.

3.2 Compactifications. Recall that a frame surjection q : M → L is associated

with the sublocale q∗(L) ≡ {q∗(y) : y ∈ L}, where

q∗ : L → M =
(
y 7→

∨
{x : q(x) ≤ y}

)

is the adjoint map of q. Although not a subframe of M , the sublocale q∗(L) is

a frame in the order inherited from M , and the range restriction of q∗ is a frame

isomorphism L → q∗(L). For example, each element y ∈ M gives rise to its open

quotient map o(y) : M →↓ y ↓= (x 7→ y ∧ x), which is associated with the open

sublocale

o(y)∗(↓ y ↓) = {y → x : x ∈ M} ≡ y → M.

Recall that for any frame surjection q : M → L, the associated sublocale S = q∗(L)

is contained in the open sublocale y → M if and only if q(y) = ⊤, see [20, 1.3.1].

Recall also that any sublocale S in a fit frame M , and therefore in a regular

frame, is the intersection of the open sublocales which contain it, see [20, 1.3.2],

i.e., S =
⋂
{y → M : q(y) = ⊤}. Finally, recall that a frame surjection is said to

be dense if q(x) = ⊥ implies x = ⊥, i.e., if ⊥ ∈ q∗(L).

A cozero element of a frame L is one of the form g(R \ {0}), g ∈ RL. (See [20,

XIV 6.2.3] for a characterization.) By replacing g by |g|, we may assume a cozero
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element to be of the form g(0,∞) for g ∈ R+L. In a pointed frame (L, ∗),

a cozero element which omits ∗ is of the form coz g = g(0,∞) for some g ∈ R+
0 L,

and a cozero element which contains ∗ is of the form con g ≡ g(−∞, 1) for some

g ∈ R+
0 L. In either case we may assume that g = g by replacing g by g . For

a subtrunc G ⊆ R0L we let cozG ≡ {coz g : g ∈G} and conG ≡ {con g : g ∈G}.

A frame L is said to be Lindelöf if whenever
∨
S = ⊤ in L then also

∨
S0 = ⊤

for some countable subset S0 ⊆ S. An element x ∈ L is said to be Lindelöf if its

open sublocale x → L is Lindelöf. Since x → L is isomorphic to the frame ↓ x ↓

this is equivalent to the condition that any subset S ⊆ L such that
∨
S ≥ x has

a countable subset S0 ⊆ S such that
∨
S0 ≥ x. The importance of this concept

for our purposes lies in the fact that the cozero elements of a compact frame

coincide with the Lindelöf elements. Another fact important for our purposes is

that the intersection of any family of Lindelöf sublocales is Lindelöf, see [9]. Thus

a frame is Lindelöf if and only if it an intersection of cozero sublocales in any

compactification.

Definition (compactification). A compactification is a dense surjective pointed

frame homomorphism q : M → L with compact domainM . For compactifications

q : M → L and r : N → Q, a homomorphism of compactifications is a pair (l,m)

of pointed frame homomorphisms such that m ◦ q = r ◦ l.

M L

N Q

q

l m

r

We write (l,m) : q → r. We denote the category of compactifications with their

homomorphisms by Cmp.

3.3 Representing G as a subtrunc of R0L. We denote by p : O∗R → O∗R

the pointed frame homomorphism (U 7→ U ∩ (−∞,∞)) of the inclusion R → R.

Lemma 3.3.1. Let q : M → L be a dense pointed frame surjection. Then a ho-

momorphism h′ drops to a homomorphism h such that h ◦ p = q ◦ h′ if and only

if q ◦ h′(−∞,∞) = ⊤.

O∗R M

O∗R L

h′

p q

h

Proof: If h′ satisfies h ◦ p = q ◦ h′ for some h ∈ R0L then q ◦ h′(−∞,∞) =

h ◦ p(−∞,∞) = h(⊤) = ⊤. On the other hand, suppose that q ◦h′(−∞,∞) = ⊤.
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Then for Ui ∈ O∗R , if p(U1) = p(U2) then U1∩ (−∞,∞) = U2∩ (−∞,∞), hence

q ◦ h′(U1) = q ◦ h′(U1) ∧ ⊤ = q ◦ h′(U1) ∧ q ◦ h′(−∞,∞)

= q ◦ h′(U1 ∩ (−∞,∞)) = q ◦ h′(U2 ∩ (−∞,∞))

= q ◦ h′(U2) ∧ q ◦ h′(−∞,∞) = q ◦ h′(U2).

This fact allows us to define h(U) ≡ q◦h′(U ′) for some (any) U ′ ∈ O∗R such that

p(U ′) = U . This yields a homomorphism h which makes the diagram commute.

�

Notice that if M is compact then the only elements h′ which can possibly drop

as in Lemma 3.3.1 are those of D0M .

Definition (E0q). For a compactification q : M → L, we let

E0q ≡ {h ∈ R0L : ∃h′ ∈ D0M (q ◦ h′ = h ◦ p)}.

When referring to an element h ∈ E0q, we denote by h′ that element of D0M

such that q ◦ h′ = h ◦ p.

Like D0X and D0M , E0q is closed under scalar multiplication, the lattice op-

erations, and truncation. However, it is not generally a trunc, as shown by Ex-

ample 3.3.3. Nevertheless, a subset G ⊆ E0q may be closed under all of the trunc

operations, in which case we refer to G as a trunc in E0q.

Definition (trunc snugly embedded in E0q). Let q : M → L be a compactifica-

tion. We shall say that a trunc G in E0q is snugly embedded if cozG ∪ conG

join-generates M , and if the sublocale S ≡ q∗L is the intersection of the open

sublocales of the form g′(−∞,∞) → M , g ∈G. Note that this condition implies

that L is Lindelöf.

Theorem 3.3.2. Let G be a trunc.

(1) There is a compactification q, a snugly embedded trunc Ĝ ⊆ E0q, and

a trunc isomorphism µG : G → Ĝ. The trunc Ĝ, or the isomorphism µG,

is referred to as the Madden representation of G, and q is referred to as

the Madden compactification. Up to isomorphism, these are unique with

respect to their properties.

(2) This representation is functorial. For any homomorphism θ : G → H ,

where H is a trunc with Madden representation µH : H → E0r, there

exists a unique Cmp-morphism (l,m) : q → r such that E0(l,m) ◦ µG =

µH ◦ θ.
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G E0q M L

O∗R

H E0r N Q

µG

θ E0(k,l)

q

l m

ĝ

θ(g)
µH

r

Proof: Let G be a given trunc with Yosida representation νG : G → G̃ ⊆ D0X

per Theorem 2.3.1. Let M ≡ O∗X represent the Yosida frame of G, and abbre-

viate g̃−1 : O∗R → M to g′ for each g ∈ G. Let q : M → L be the intersection of

the open quotients

M → ↓ g′(−∞,∞) ↓ = (x 7→ x ∧ g′(−∞,∞)), g ∈ G.

Since each g̃ lies in D0X , the corresponding pointed frame map makes g′(−∞,∞)

a dense element of M and the corresponding open quotient map M →

↓ g′(−∞,∞) ↓ a dense surjection. Consequently q is a dense surjection, and,

by Lemma 3.3.1, each map g′, g ∈ G, drops to a unique pointed frame map

ĝ : O∗R → L such that q ◦ g′ = ĝ ◦ p. Finally, the trunc homomorphism µG : G →

R0L thus defined is one-one for if 0 6= g ∈ G then g′([−∞, 0)∪ (0,∞]) > ⊥ in M ,

hence

⊥ < q ◦ g′([−∞, 0) ∪ (0,∞]) = ĝ ◦ p([−∞, 0) ∪ (0,∞])

= ĝ((−∞, 0) ∪ (0,∞)),

so ĝ 6= 0.

Now consider a trunc homomorphism θ : G → H , where H is a trunc with

Yosida representation νH : H → H̃ ⊆ D0Y . Let k : Y → X be the continuous

function provided by Theorem 2.3.1 such that θ̃(g) = νH ◦ θ(g) = νG(g) ◦ k =

g̃ ◦ k for all g ∈ G. Let N ≡ O∗Y be the Yosida frame of H , and abbreviate

h̃−1 : O∗R → N to h′ for each h ∈ H . Let l : M → N be the pointed frame

homomorphism corresponding to k, so that if we denote the frame maps of g̃ and

θ̃(g) by g′ and θ(g)′, respectively, we get that θ(g)′ = l ◦ g′. Finally, let r : N → Q

be the intersection of the open quotients N → ↓ h′(−∞,∞) ↓, h ∈ H . As before,

r is a dense surjection, so each h′, h ∈ H , drops to a unique ĥ : O∗R → Q such

that r ◦ h′ = ĥ ◦ p. Now q is associated with the finest frame congruence which

identifies each g′(−∞,∞) with ⊤, g ∈ G, and likewise r is associated with the

finest frame congruence which identifies each h′(−∞,∞) with ⊤, h ∈ H . In light

of the fact that θ(g)′ = l ◦ g′ for each g ∈ G, it follows that r ◦ l(x1) = r ◦ l(x2)

for all xi ∈ M such that q(x1) = q(x2). From this, in turn, follows the existence
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M L

O∗R O∗R

N Q

q

l m

g′

p

θ(g)′

ĝ

θ̂(g)

r

of a unique frame homomorphism m such that m ◦ q = r ◦ l. We have

m ◦ ĝ ◦ p = m ◦ q ◦ g′ = r ◦ l ◦ g′ = r ◦ θ(g)′ = θ̂(g) ◦ p.

But p is surjective and hence epi, from which m ◦ ĝ = θ̂(g) follows. �

Theorem 3.3.2 is a hybrid of the Yosida representation Theorem 2.3.1 and the

Madden representation theorem, see [3, 5.1.1, 5.3.1]. It is sharper than these two,

however, in the sense that its target E0q is a smaller object than either D0X , the

target of the Yosida theorem, or R0L, the target of the Madden theorem. In fact,

E0q can be viewed as the “intersection” of D0X and R0L in a sense made precise

in Lemma 3.3.1. Nevertheless, Theorem 3.3.2 shares with the Yosida theorem the

disadvantage that its target is not generally a trunc. We shall return to the topic

of E0q in Subsection 5.4 and in Section 6.

Example 3.3.3. Let X designate the compact pointed space ([0, 1], 1), and let

g̃0 ∈ D0X be the function

g̃0(x) ≡




∞ if x = 0
1

x
− 1 if x > 0

.

Let G̃ ≡ {f̃ + rg̃0 : f̃ ∈ C0X, r ∈ R}, a subtrunc of D0X presented in its Yosida

representation. Let M ≡ O∗X and L ≡ O∗(0, 1]; the insertion (0, 1] → X gives

rise to the frame map q : M → L = (U 7→ U ∩ (0, 1]), and, in fact, the map

G̃ → R0L = (g̃ 7→ g̃−1) ≡ g is the Madden representation of G̃ and q is the

compactification of Theorem 3.3.2.

Now G ⊆ E0q by construction, but reasoning similar to that used for g̃0 leads

to the conclusion that E0q also contains the frame homomorphism f0 dual to the

continuous function

f̃0(x) ≡




∞ if x = 0
1

x
+ sin

(1
x

)
− 1− sin 1 if x > 0

.

The point is that h ≡ f0−g0 ∈ R0L\E0q for h̃ ≡ f̃0−g̃0 = sin(1/x)−sin 1 /∈ D0X .
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3.4 Trunc notation. Henceforth the symbol G stands for a trunc with Yosida

space Y∗G ≡ (X, ∗), Yosida frame M = O∗X , and Madden compactification

q : M → L. When G is being regarded as an abstract T-object or as a subtrunc

of R0L, we shall denote it by the symbol G and denote its members by unadorned

lower case letters such as f and g. In particular, this convention applies when

G is regarded as a trunc in E0q, in which case we use f ′ and g′ to denote the

members of D0M which correspond to f and g as in Lemma 3.3.1. On the other

hand, on those occasions when it is advantageous to regard G as a trunc in D0X

(Subsection 2.3), we shall denote it by the symbol G̃ and denote its members by

symbols like f̃ and g̃.

4. Uniform and pointwise convergence

The two most classical convergences have elegant formulations in the language

of truncs. We introduce them here, for both are important for our purposes. We

begin by defining uniform convergence in archimedean truncs.

4.1 Uniform convergence.

Proposition 4.1.1. The following are equivalent for a sequence {gn} ⊆G:

(1) ∀ k ∃m ∀n ≥ m (kgn = kgn);

(2) ∀ ε > 0 ∃m ∀n ≥ m ∀x ∈ X (g̃n(x) < ε);

(3) ∀ ε > 0 ∃m ∀n ≥ m (gn(−∞, ε) = ⊤).

Proof: The equivalence of (1) with (2) follows directly from the fact that g̃(x) =

g̃(x)∧ 1 for all x ∈ X and g ∈ G+. The equivalence of (1) and (3) follows directly

from the fact that g(−∞, ε) = g(−∞, ε) for ε < 1 by Lemma 3.1.2. �

Definition (uniform convergence). A sequence {gn} ⊆ G is said to converge

uniformly to 0, written gn → 0, if {|gn|}, the sequence of truncations of its

absolute values, satisfies the conditions of Proposition 4.1.1. A sequence {gn} ⊆ G

converges to an element g0 if |gn − g0| → 0; we write gn → g0. A sequence

{gn} ⊆ G+ is said to be uniformly Cauchy if

∀ k ∃m ∀ i, j ≥ m
(
k|gi − gj | = k|gi − gj |

)
.

A trunc G is said to be uniformly complete if every uniformly Cauchy sequence

{gn} ⊆ G converges uniformly to a limit in G.

We record the well known classical theory of uniform convergence, including

the Stone–Weierstrass theorem.

Proposition 4.1.2. Uniform convergence interacts nicely with the trunc struc-

ture:
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(1) All of the trunc operations are uniformly continuous. That is, if fn → f0
and gn → g0 then (fn ⊕ gn) → f0 ⊕ g0, where “⊕” may be taken to be

“+”, “−”, “∨”, or “∧”. Likewise, fn → f0 implies f n → f 0.

(2) Any trunc homomorphism θ : G → H is uniformly continuous, i.e.,

gn → g0 in G implies θ(gn) → θ(g0) in H .

(3) A trunc G is uniformly complete if and only if G̃∗ = C0X .

4.2 Directional pointwise convergence. Directional pointwise convergence

will play a modest but important role in our development. (Unrestricted pointwise

convergence plays a central role in the theory of the pointfree Baire functions, the

subject of the recent article [4].) Directional pointwise convergence is based on

the notion of pointfree pointwise suprema, the definition of which presumes that

G is identified with its Madden representation as a subtrunc of R0L for a pointed

frame L.

Definition (pointwise suprema and infima). An element b ∈ G is said to be the

pointwise supremum (infimum) of a subset A ⊆ G, written
∨• A = b

(∧• A = b
)
,

if for all r ∈ R,

∨

A

a(r,∞) = b(r,∞)

(∨

A

a(−∞, r) = b(−∞, r)

)
.

Even though pointwise suprema and infima are defined in R0L, they are char-

acterized in Proposition 4.2.1 in terms independent of any representation. They

are precisely those joins and meets which remain valid whenever G is embedded

in a larger trunc. To coin a phrase, pointwise joins and meets are those which are

context free.

Proposition 4.2.1 (cf. [6], 4.2.5). The following are equivalent for an element b

and subset A of a trunc G:

(1)
∨•

A = b.

(2)
∨
θ(A) = θ(b) for every truncation homomorphism θ out of G.

The article [6] is a lengthy treatment of pointwise suprema and infima, carried

out in W but yielding results which carry over to T.

Definition (directional pointwise convergence). A sequence {gn} in a trunc G

converges pointwise downwards (upwards) to an element g0 ∈ G, written gn ց g0
(gn ր g0), provided that gn+1 ≥ gn (gn+1 ≤ gn) for all n, and

∧•
gn = g0

(
∨• gn = g0), i.e., for all r ∈ R,

∨

n

gn(−∞, r) = g0(−∞, r)

(∨

n

gn(r,∞) = g0(r,∞)

)
.
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Directional pointwise convergence has a number of nice propertie relevant to

our development, and we list the main ones here.

Proposition 4.2.2 ([4], 5.2, 5.3). Let {fn} and {gn} be sequences in R0L, and

let f0 and g0 be elements of R0L:

(1) ġ ց g, where ġ designates the constant sequence, i.e., ġn = g for all n.

(2) gn ց g0 if and only if (−gn) ր (−g0).

(3) If {gn} ⊆ R+
0 L and gn ց g0 then gn ց g0.

(4) If fn ց f0 and gn ց g0 then (fn⊕ gn) ց (f0 ⊕ g0), where “⊕” stands for

one of the operations “+”, “∨”, or “∧”.

(5) If gn ց g0 and 0 ≤ r ∈ R then (rgn) ց rg0.

(6) If gn ց g0 and gn ց f0 then g0 = f0.

(7) Directional pointwise convergence is continuous. That is, for any T-

homomorphism τ : R0M → R0N , and for any sequence {gn} and element

g0 of R0M ,

gn ց g0 in R0M =⇒ τ(gn) ց τ(g0) in R0N.

The dual statements for pointwise upwards convergence all hold as well.

For a compact frame L, directional pointwise convergence in R0L reduces to

uniform convergence. This classical theorem of Dini has a concise demonstration

in a pointfree context.

Theorem 4.2.3 ([12]). Let {gn} be a non-increasing sequence of positive ele-

ments in R0L for a compact frame L. Then

gn ց 0 =⇒ gn → 0.

Proof: To say that gn ց 0 is to say that
∨

n gn(−∞, ε) = ⊤ for all ε > 0. But

since L is compact, that means that for all ε > 0 there is an index m such that

gn(−∞, ε) = ⊤ for all n ≥ m, which is to say that gn → 0 by Proposition 4.1.1. �

5. Truncation sequences, good sequences

5.1 Truncation sequences. In the context of W-objects, the notion of a trun-

cation sequence was mentioned briefly in Section 5.2 of [6]. The closely related

notion of “expanding sequence” plays an important role in Hager’s penetrating

analysis of ∗-maximal W-objects in [15, Section 10]. Here we generalize the idea

of a truncation sequence to truncs, and relate it to Mundici’s good sequences in

Proposition 5.2.3. The major result is the characterization of the elements of E0q

in terms of truncation sequences in Proposition 5.4.1.
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Definition (truncation sequence). The nth truncation of an element g ∈ G+ is

ng/n. The truncation sequence of g is {ng/n}. We often abbreviate ng/n to

g ∧ n, trusting the reader to keep in mind that the symbol n is formal and not

a reference to a member of the trunc.

Lemma 5.1.1. Let {g∧n} be the truncation sequence of an element g ∈ G+. If G

is represented as a trunc in D0X for a pointed space X then g̃ ∧ n(x) = g̃(x) ∧ n

for all x ∈ X and all n. If G is represented as a subtrunc of R0L for a pointed

frame L then

(g ∧ n)(−∞, r) =

{
⊤ if r > n

g(−∞, r) if r ≤ n
, r ∈ R, n ∈ N.

Proof: By Lemma 3.1.2 we get that for any r ∈ R,

(g ∧ n)(−∞, r) = n
( g
n

)
(−∞, r) =

( g

n

)(
−∞,

r

n

)

=





⊤ if
r

n
> 1

( g

n

)(
−∞,

r

n

)
if

r

n
≤ 1

=




⊤ if r > n

g(−∞, r) if r ≤ n
.

�

Corollary 5.1.2. For all g ∈ G+, g =
∨•

n(g ∧ n).

Proof: To say that g =
∨•

n(g ∧ n) is to say that
∨

n ng/n(−∞, r) = g(−∞, r)

for all r ∈ R. But this is clear from Lemma 5.1.1. �

Proposition 5.1.3 (cf. [6], 5.2.2). A sequence {gn} ⊆ R+
0 L is the truncation

sequence of some element g ∈ R+
0 L if and only if

(1) gn = gn+1 ∧ n for all n, and

(2)
∨•

n gn = ⊤, i.e.,
∨

n gn(−∞, n) = ⊤ in L.

In this circumstance gn ր g.

Proof: Suppose g ∈ G+ and gn = g ∧ n = ng/n for all n. Then {gn} sat-

isfies (1) by Lemma 5.1.1 and (2) by virtue of the fact that
∨

n gn(−∞, n) =∨
n g(−∞, n) = ⊤.

Now suppose {gn} is a sequence in G+ which satisfies (1) and (2). Define the

function g : {(−∞, r) : r ∈ R} → L by putting g(−∞, r) ≡ gn(−∞, r) for some

(any) n > r. The function is well defined because the sequence satisfies (1), and

it follows from Lemma 5.1.1 that gn = gm ∧ n for all m ≥ n. According to [5,

3.1.2], the function has a unique extension to a member of R0L if and only if it

has the following properties:

(E1) r < s implies g(−∞, r) ≺ g(−∞, s);
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(E2)
∨

s<r g(−∞, s) = g(−∞, r);

(E3)
∨

r g(−∞, r) =
∨

r g(−∞, r)∗ = ⊤.

Properties (E1) and (E2) hold because they hold for each gn, and g(−∞, r) =

gn(−∞, r) for any n > r. That
∨

r g(−∞, r) = ⊤ follows from (2), while∨
r g(−∞, r)∗ = ⊤ because g(−∞, 0) = g1(−∞, 0) = ⊥. Finally, Lemma 5.1.1

makes it clear that the sequence of truncations of g is {gn}. �

Proposition 7.2.2 is the analog of Proposition 5.1.3 for subtruncs of D0M ,

M a compact pointed frame. It plays an important role in the proof of our crucial

Proposition 5.4.1. Its proof requires a lemma analogous to Lemma 3.1.2 of [5].

Consistent with previous notation, we denote members of D0M by symbols like

f ′ and g′.

Lemma 5.1.4. A function g′ : {[−∞, r) : r ∈ R} → M , M a compact pointed

frame, can be extended to a member of D0M if and only if it satisfies the following

conditions for all r, s ∈ R. The extension is unique when it exists.

(1) ∗ ∈ g′[−∞, r) if and only if r > 0.

(2) r < s implies g′[−∞, r) ≺ g′[−∞, s).

(3)
∨

s<r f [−∞, s) = f [−∞, r).

(4)
∨

r g
′[−∞, r) and

∨
r g

′[−∞, r)∗ are dense elements of M .

Proof: First extend g′ by defining g′(r,∞] ≡
∨

r<q g
′[−∞, q)∗ for r ∈ Q, then

put g′[−∞,∞] ≡ ⊤, and let g′(r, s) ≡ g′[−∞, s) ∧ g′(r,∞] for r, s ∈ Q. With

these modifications, the proof now closely follows the argument used to prove [5,

3.1.2]. �

Proposition 5.1.5. A sequence {g′n} ⊆ D+
0 M , M a compact pointed frame, is

the truncation sequence of some element g′ ∈ D+
0 M if and only if

(1) g′n = g′n+1 ∧ n for all n, and

(2)
∨

n g
′
n[−∞, n) is dense in M .

Proof: Argue as in the proof of Proposition 5.1.3, using Lemma 5.1.4. �

5.2 Good sequences. In this subsection we take up the connection between the

truncation sequences of Subsection 5.1 and a close analog of Mundici’s good se-

quences, a crucial construct used in his celebrated result [19] linking MV -algebras

and unital l-groups. We emphasize the similarity by expropriating Mundici’s ter-

minology.

Definition (good sequence). A sequence {fn} ⊆ G is called a good sequence if

fn = fn + fn+1 for all n, and if fn ց 0.

We record a couple of fundamental trunc identities.
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Lemma 5.2.1. The following hold for any g ∈ G+ and n ∈ N:

(1) g ∧ n+ g ⊖ n = g;

(2) g ∧ n+ g ⊖ n = g ∧ (n+ 1).

Proof: To establish (1), observe that

g ∧ n+ g ⊖ n = n
( g
n

)
+ n

(( g

n

)
⊖ 1

)
= n

( g

n

)
+ n

(( g

n

)
−

( g

n

))
= g.

To establish (2) note that

g ∧ (n+ 1) = g − g ⊖ (n+ 1) by (1),

= g − g ⊖ n⊖ 1 by [2, 3.3.6],

= g + (g ⊖ n− g ⊖ n) by definition of ⊖,

= (g ∧ n+ g ⊖ n) + (g ⊖ n− g ⊖ n) by (1),

= g ∧ n+ g ⊖ n.

�

Lemma 5.2.2. The following hold for any g ∈ G+ and m ∈ N:

(1) The sequence {g ⊖ (n− 1)} is a good sequence.

(2) g =
∑

1≤n≤m g ⊖ (n− 1) + g ⊖m.

(3) g ∧m =
∑

1≤n≤m g ⊖ (n− 1).

(4) If {fn} is a good sequence and g ≡
∑

1≤n≤m fn then fn = g ⊖ (n− 1)

for all n ≤ m.

Proof: (1) Let fn ≡ g ⊖ (n− 1) and f ≡ (g⊖ (n− 1))/2. Then, using parts (5)

and (9) of [2, 3.3.1],

fn + fn+1 = g ⊖ (n− 1) + g ⊖ n = 2f + 2f ⊖ 1 = 2f = 2f = g ⊖ (n− 1) = fn.

To show that fn ց 0 we must show that
∧•

n fn = 0, which is to say that for all

ε > 0,

∨

n

fn(−∞, ε) =
∨

n

g ⊖ (n− 1)(−∞, ε) =
∨

n

g ⊖ (n− 1)(−∞, ε)

=
∨

n

g(−∞, n− 1 + ε) = ⊤.

The second equality holds for ε < 1 by one part of Lemma 3.1.2, and the third

equality is a minor variant of another part of the same lemma.
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(2) can be proven by induction; the basis, i.e., the m = 1 step, is the assertion

that g = g + g ⊖ 1. To establish the induction step, use [2, 3.3.6] to get

g =
∑

1≤n≤m

g ⊖ (n− 1) + g ⊖m =
∑

1≤n≤m

g ⊖ (n− 1) + g ⊖m+ g ⊖m⊖ 1

=
∑

1≤n≤m

g ⊖ (n− 1) + g ⊖m+ g ⊖ (m+ 1)

=
∑

1≤n≤m+1

g ⊖ (n− 1) + g ⊖ (m+ 1).

(3) follows from (2) together with Lemma 5.2.1.

(4) Suppose g = f1 + f2 + · · ·+ fm. Then by [2, 3.3.1] (11),

g = f1 + f2 + · · ·+ fm = f1 + f2 + . . . (fm−1 + fm) = f1 + f2 + . . . fm−1

= f1 + f2 + . . . (fm−2 + fm−1) = f1 + f2 + . . . fm−2 = · · · = f 1 = f1.

Therefore g⊖1 = g−g = (f1+f2+ · · ·+fm)−f1 = f2+ · · ·+fm, and a repetition

of the preceding argument shows that g ⊖ 1 = f2. Continue. �

The terminology in Proposition 5.2.3 requires a little clarification. We shall say

that a sequence {gn} ⊆ G+ is a truncation sequence if it is the truncation sequence

of some element g0 ∈ R0L, i.e., if it has properties (1) and (2) of Proposition 5.1.3.

If {gn} is an increasing sequence in G+ then {gn − gn−1} refers to the sequence

of differences, assuming g0 = 0, i.e., g1 − g0 ≡ g1.

Proposition 5.2.3. If {gn} is a truncation sequence then {gn − gn−1} is a good

sequence, and if {fn} is a good sequence then
{∑

1≤n≤m fn
}

is a truncation

sequence. Thus are the truncation sequences in bijective correspondence with the

good sequences.

Proof: Given the truncation sequence {gn}, let g be the element of R0L such

that gn = g ∧ n ≡ ng/n for all n. Then {g ⊖ (n− 1)} is a good sequence

by Lemma 8.2.6 (1), and this can be expressed in the form {gn − gn−1} by

Lemma 5.2.1 (2).

Given a good sequence {fn}, put gm ≡
∑

1≤n≤m fn for all m. Then fn =

gm ⊖ (n− 1) for m ≥ n by Lemma 8.2.6 (4). Using Lemma 8.2.6 (3) then yields

gm+1 ∧m = m
(gm+1

m

)
=

∑

1≤n≤m

gm+1 ⊖ (n− 1) =
∑

1≤n≤m

fn = gm.
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It remains to show that ⊤ =
∨

m gm(−∞,m) =
∨

m

(∑
1≤n≤m fn

)
(−∞,m).

Since each fn lies in G we may replace it by f n, yielding with the aid of Theo-

rem 3.1.1

⊤ =
∨

m

∨{ ∧

1≤n≤m

fn(Un) :
∑

1≤n≤m

U n ⊆ (−∞,m)

}
.

The displayed family is indexed by collections {Un} ⊆ OR such that
∑

U n ⊆

(−∞,m). But every such family is contained in a family for which there is a par-

ticular index j such that

Un =

{
(−∞,m) if n = j

(−∞,∞) if n 6= j
.

The term contributed by this family to the join is
∧

fn(Un) = fj(−∞,m), so that

the join over all such families works out to
∨

1≤j≤m fj(−∞,m), which reduces to

fm(−∞,m) because {fm} is a decreasing sequence. Finally, since
∧•

fm = 0 we

get
∨

m fm(−∞,m) ≥
∨

m fm(−∞, 1) = ⊤, as desired. �

5.3 Bounded truncs.

Lemma 5.3.1. The following are equivalent for an element g ∈ G+:

(1) An element g lies in the convex l-subgroup generated by g , i.e., g ≤ ng

for some n.

(2) The truncation sequence {g ∧ n} of g is eventually constant, i.e., there

exists an index m such that g ∧ n = g for all n ≥ m.

(3) There exists a real number r > 0 such that g̃(x) ≤ r for all x ∈ X .

(4) There exists a real number r > 0 such that g(−∞, r) = ⊤.

Proof: This is an application of Lemma 5.1.1. �

Definition (G∗, the bounded part of G). An element g ∈ G is said to be bounded

if |g| satisfies Lemma 5.3.1. The bounded elements comprise the subtrunc

G∗ ≡ {g : g is bounded},

referred to as the bounded part of G. A trunc G is said to be bounded if G = G∗.

A trunc G∗ is the largest bounded subtrunc of G.

Proposition 5.3.2 ([2], 5.1.1). The bounded truncs comprise a full monocore-

flective subcategory T∗ of T, and a coreflector for the trunc G is the insertion

G∗ → G.

Proof: A truncation homomorphism θ : G → H clearly takes G∗ into H∗. �
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Lemma 5.3.3. The Madden compactification of a bounded trunc G is the iden-

tity map 1M on its Yosida frame M .

Proof: According to the proof of Theorem 3.3.2, the Madden compactifica-

tion q : M → L of G is the intersection of the open quotients of the form

g′(−∞,∞) → M , g ∈ G. But because each g ∈ G is bounded and each

g′(−∞,∞) = ⊤, each open quotient is the identity map on M , as is q. �

Proposition 5.3.4. The Madden compactification q : M → L of an arbitrary

trunc G can be understood as realizing the inclusion G∗ → G.

Proof: Realizing the inclusion means finding morphisms l and m which make

the relevant diagram from Theorem 3.3.2 (b) commute. The obvious candidates

G∗ E01M M M

G E0q M L

µG∗

E0(k,l)

1M

l m

µG

q

for the job are l = 1M and m = q. �

5.4 Truncation sequences and E0q. We have pointed out that for a compact

pointed frame M , D0M is closed under scalar multiplication and truncation. In

particular, the nth truncation h ∧ n ≡ nh/n lies in D0M for any h ∈ D+
0 M

and any n. This fact is easily seen from the formulas for the truncation given in

Lemma 5.1.1. Proposition 5.4.1 complements Lemma 3.3.1.

Proposition 5.4.1. Let q : M → L be a compactification. Then a given h ∈

R+
0 L lies in E0q if and only if each truncation h ∧ n factors through q, i.e.,

h ∧ n = q ◦ ĥn for some ĥn ∈ R0M .

O∗R M

O∗R L

h′

p q

h

O∗R M

O∗R L

h′∧n

p q

h∧n

ĥn

Proof: Note first that any bounded h′ ∈ D+
0 M factors through p by Lem-

ma 3.3.1. (The map q in that lemma is to be understood as the identity map

M → M here. The hypothesis of the lemma is satisfied because the fact that

h′ is bounded means that h′(−∞,∞) = ⊤ by Lemma 5.3.1.) It follows that if

q ◦ h′ = h ◦ p for some h′ ∈ D0M then the truncations of h′ all factor through p,

say h′ ∧ n = ĥn ◦ p for some ĥn ∈ R0M and all n. Because the maps

(h′ 7→ q ◦ h′) : D0M → D0L and (h 7→ h ◦ p) : R0L → D0L
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preserve both scalar multiplication and truncation, we get that q ◦ (h′ ∧ n) =

(h ∧ n) ◦ p for all n. It follows that q ◦ ĥn ◦ p = (h ∧ n) ◦ p for all n, and since p

is surjective, that q ◦ ĥn = h ∧ n for all n.

On the other hand, suppose that we have a function h ∈ R+
0 L for which each

truncation h ∧ n factors through q, say h ∧ n = q ◦ ĥn for some ĥn ∈ R0M

and all n. Put h′
n ≡ ĥn ◦ p, and observe that for all n, h′

n = nh′
n+1/n because

ĥn = nĥn+1/n since hn = nhn+1/n. In light of the density of the map q, the fact

that

q

(∨

n

h′
n[−∞, n)

)
= q

(∨

n

ĥn ◦ p[−∞, n)

)
= q

(∨

n

ĥn(−∞, n)

)

=
∨

n

q ◦ ĥn(−∞, n) =
∨

n

hn(−∞, n) =
∨

n

h(−∞, n)

= h(−∞,∞) = ⊤

implies that
∨

n h
′
n[−∞, n) is a dense element of M . Thus {hn} is the truncation

sequence of a unique member h ∈ D0M by Proposition 7.2.2, a member for which

q ◦ h′ = h ◦ p clearly holds. �

Corollary 5.4.2. For any compactification q : M → L, the bounded elements

constitute a trunc in E0q, to be designated E∗
0 q. This trunc is isomorphic to

R0M and to C0X .

Proof: An element g ∈ E+
0 q is bounded if and only if it coincides with one of its

truncations, in which case it factors through q by Proposition 5.4.1. That means

that g = q ◦ ĝ for some ĝ ∈ R0M . In fact, the correspondence E0q → R0M =

(g 7→ q ◦ ĝ) is a truncation isomorphism. �

6. E0q and C∗-embedded cozero elements of M

Proposition 6.1.1 is the adaptation to T of a classical result of M. Henriksen

and D.G. Johnson [17]: DX is closed under addition, i.e., DX is a W-object, if

and only if X is a quasi-F space, i.e., if and only if every dense cozero subset of X

is C∗-embedded. Recall that a subset u is said to be C∗-embedded in a space X if

any bounded continuous function u → R can be extended to a continuous function

X → R.

6.1 C∗-embedded elements of a frame. An element u is C∗-embedded in

a frame M if every frame homomorphism O[0, 1] → ↓ u ↓ factors through the

open quotient map M → ↓ u ↓= (x 7→ x ∧ u). Since [0, 1] is homeomorphic to R,

this is equivalent to the condition that every frame homomorphism OR → ↓ u ↓
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factors through the open quotient. See [8] for a thorough treatment of this notion.

We continue to adhere to previous notational conventions, using symbols like f̃

and g̃ for elements of CX , C0X or D0X , and abbreviating f̃−1 and g̃−1 to f ′

and g′.

Proposition 6.1.1. For a compactification q : M → L, E0q is a trunc if and only

if every cozero element u ∈ M such that q(u) = ⊤ is C∗-embedded.

Proof: Suppose every cozero element u ∈ M such that q(u) = ⊤ is C∗-embed-

ded, and consider f, g ∈ E+
0 q. By definition of E0q there exist f ′, g′ ∈ D0M such

that q ◦ f ′ = f ◦ p and q ◦ g′ = g ◦ p. But f ′ and g′ are of the form f ′ = f̃−1 and

g′ = g̃−1, respectively, for unique f̃ , g̃ ∈ D0X , hence

u ≡ f ′(−∞,∞) ∩ g′(−∞,∞) = f̃−1(−∞,∞) ∩ g̃−1(−∞,∞)

is cozero element of M which q maps to ⊤ and is therefore C∗-embedded. Since

each truncation (f + g) ∧ n is a frame map O∗[0, n] → u and since [0, n] is

homeomorphic to [0, 1], each truncation factors through the open quotient M →

↓ u ↓; since the open quotient is a factor of q, each truncation factors through q

as well. The result that f + g ∈ E0q by Proposition 5.4.1, the point being that

E0q is closed under addition and is therefore a trunc.

Now suppose that M contains a cozero element u such that q(u) = ⊤, and such

that u is not C∗-embedded in X , say g̃ : u → R is a bounded continuous function

with no extension to a member of CX . Note that the fact that q(u) = ⊤ implies

that ∗ ∈ u, so that, by replacing g̃ by g̃ − g̃(0) if necessary, we may assume

g̃ ∈ D0X .

Since u is a cozero element, it is of the form h̃−1(0,∞) for some h̃ ∈ C+X . Then

f̃ ≡ 1/h̃ is an element of DX satisfying u = f̃−1(−∞,∞), and by replacing f by

|f̃ − f̃(0)| if necessary, we may assume that f̃ ∈ D0X . A routine verification is

then enough to show that the function

k̃(x) ≡

{
f̃(x) + g̃(x) if x ∈ u

∞ if x ∈ X \ u

lies in D0X . The point is that both f ′ and k′ drop to functions f, k ∈ E0q by

Lemma 3.3.1 because f ′(−∞,∞) = k′(−∞,∞) = u, while their difference (g)

does not lie in E0q. �

Proposition 6.1.2 provides an instance in which the hypothesis of Proposi-

tion 6.1.1 is vacuously satisfied. An almost P -space is a space having no proper

dense cozero subsets, see [16]. Compact examples are the one-point compactifica-

tion of an uncountable discrete space, and βN \N. An almost P -frame is a frame

having no dense cozero elements other than ⊤.
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Proposition 6.1.2. For a compact almost-P pointed frame M , any Madden

compactification of the form q : M → L is the identity map on M , and in this

case E0q = R0M .

Proposition 6.1.3 provides another instance to which Proposition 6.1.1 applies.

Proposition 6.1.3. A compactification q : M → L has the feature that E0q =

R0L if and only if q is the compact regular coreflection (Čech–Stone compactifi-

cation) of L. In this case every dense cozero element of M is C∗-embedded.

Proof: To say that E0q = R0L is to say that all truncations g ∧ n of elements

g ∈ R+
0 L factor through q. This is equivalent to the condition that all bounded

elements of R+
0 L factor through q, which, by [8, 8.2.7], is equivalent to q being

the compact regular coreflection of L. �

We close this section by making a conjecture which frames the central question

concerning the representation of truncs by means of compactifications.

Conjecture 6.1.4. Any compactification q : M → L of a Lindelöf frame L

admits a snugly embedded trunc G in E0q.

Part 2. Simple truncated archimedean vector lattices

In analysis, a linear combination of characteristic functions is often called a sim-

ple function. We use that term here for the corresponding elements of a trunc,

which boast catchy characterizations in terms of the truncation operation (see

Proposition 7.2.1). In this section we characterize those truncs composed of sim-

ple elements, culminating in Theorems 8.1.1, 8.2.10, and 8.3.6. To do so requires

the representation theory of Part 1, as well as the additional background of Sec-

tion 7.

7. The equivalence of several categories

7.1 Idealized Boolean algebras, generalized Boolean algebras, and

pointed Boolean spaces.

Definition (idealized Boolean algebra). An idealized Boolean algebra is an object

of the form (B, I), where B is a Boolean algebra and I is a maximal ideal of B.

That is, I is a proper downset in B which is closed under binary joins and which

contains every element or its complement. An idealized Boolean homomorphism

f : (B, I) → (C, J) is a Boolean homomorphism f : B → C such that f−1(J) = I.
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We denote the category of idealized Boolean algebras and their homomorphisms

by iBa.

Recall the adjoint functors of Stone duality

S : Ba → zdK =(B 7→ uf B),

B : zdK → Ba =(X 7→ clopX),

where uf B is the Boolean space of ultrafilters of the Boolean algebra B, and

clopX is the Boolean algebra of clopen subsets of the Boolean space X . We

extend these functors to the pointed context by modifying them as follows.

S∗ : iBa → zdK∗ = ((B, I) 7→ (uf B,B \ I)),

IB : zdK∗ → iBa = ((X, ∗) 7→ (clopX, {b : ∗ /∈ b})).

Proposition 7.1.1. The adjoint functors S∗ and IB constitute a categorical

equivalence between iBa and zdK∗.

Proof: This is straightforward. �

The data required for specifying an idealized Boolean algebra (B, I) is redun-

dant, for a given maximal ideal I can be a maximal ideal in only one Boolean

algebra. This raises the question of the structure of a maximal ideal, by itself as

a lattice. Here we show that any such ideal is a generalized Boolean algebra, and

that this attribute characterizes maximal ideals as lattices.

Definition (generalized Boolean algebra). A generalized Boolean algebra is a dis-

tributive lattice L with designated bottom element ⊥ satisfying

∀ a, b ∃ c (c ∨ b = a ∨ b and c ∧ b = ⊥).

A generalized Boolean homomorphism is a lattice homomorphism f : L → M

which preserves the bottom element. We denote the category of generalized

Boolean algebras and their homomorphisms by gBa.

Note that a generalized Boolean algebra has a designated smallest element but

need not have a largest one. That is, it is closed under finite joins, including the

empty join which evaluates to ⊥, and is closed under finite nonempty meets.

Lemma 7.1.2. For elements a and b in a generalized Boolean algebra B, there

is exactly one element c satisfying c∨ b = a∨ b and c∧ b = ⊥; we denote it a \ b.

Proof: Suppose ci ∨ b = a∨ b and ci ∧ b = ⊥ for i = 1, 2. Then c1 ≥ c2 because

c1 = c1 ∨ ⊥ = c1 ∨ (c2 ∧ b) = (c1 ∨ c2) ∧ (c1 ∨ b) = (c1 ∨ c2) ∧ (a ∨ b) = c1 ∨ c2,

and c2 ≥ c1 dually. �
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We remark in passing that, by taking a \ b as a primitive binary operation in

addition to the lattice operations and ⊥, the class of generalized Boolean algebras

becomes a variety, i.e., the class is equationally definable. The equations are

those which define distributive lattices, together with the equations mentioned in

Lemma 7.1.2 and the equation a ∧⊥ = ⊥.

The forgetful functor F : iBa → gBa = ((B, I) 7→ I) provides a rich source of

examples of generalized Boolean algebras for if I is a maximal ideal in a Boolean

algebra B then the relative complementation relation a \ b can be taken to be

simply a ∧ ¬b. But the functor F is much more than a source of examples; in

fact, it is an equivalence of categories.

Theorem 7.1.3. The functor F : iBa → gBa is an equivalence of categories.

Proof: The functor F takes an iBa-morphism f : (B, I) → (C, J) to its re-

striction f |I, and as such can readily be seen to be both full, i.e., surjective on

morphisms, and faithful, i.e., one-one on morphisms. Consequently, we need only

show that for each generalized Boolean algebra A there is an idealized Boolean al-

gebra (B, I) such that I is isomorphic to A, see [1, 3.33, 6.8]. This is the content of

Lemma 7.1.4, whose proof is a pleasant exercise in elementary lattice theory. �

Lemma 7.1.4. Given a generalized Boolean algebra A, let A′ = {a′ : a ∈ A} be

a set disjoint from A, and let BA ≡ A∪A′. Define the Boolean operations on BA

as follows.

Boolean operation on BA defined in A ∪ A′ as

a1 ∨ a2 a1 ∨ a2
a1 ∨ a′2 (a2 \ a1)′

a′1 ∨ a′2 (a1 ∧ a2)
′

a1 ∧ a2 a1 ∧ a2
a1 ∧ a′2 a1 \ a2
a′1 ∧ a′2 (a1 ∨ a2)

′

¬a a′

¬a′ a

⊥ ⊥

⊤ ⊥′

With these operations BA becomes a Boolean algebra, and A becomes a maximal

ideal in B. That is, (BA, A) is an object of iBa.

In connection with Lemma 7.1.4, note that if A happens to have a greatest

element then it becomes a co-atom in BA.
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According to [1, 6.8], the forgetful functor F must have an adjoint, and it is

the functor expressed in the terms of Lemma 7.1.4 by the formula

B : gBa → iBa = (A 7→ (BA, A)).

We summarize.

Theorem 7.1.5. These are categorical equivalences.

zdK∗

IB

⇄
S∗

iBa
F

⇄
B

gBa.

7.2 Unital components. The unital components of a trunc play a prominent

role in our analysis.

Definition (unital component). When speaking of elements f, g ∈ G+, we say

that f is a component of g if f ≤ g and f ∧ (g − f) = 0. An element u ∈G is

said to be a unital component of G if u ∧ g is a component of g for each g ∈G.

We denote the family of unital components of G by UC(G), and use letters u, v,

and w to represent the components themselves.

The main properties of unital components are given in Proposition 7.2.1.

Proposition 7.2.1. The following hold in a trunc G.

(1) An element u ∈ G+ is a unital component if and only if u = 2u.

(2) The set UC(G) of unital components of G forms a generalized Boolean

algebra.

(3) An element u ∈ G+ serves as the unit for GA, i.e., g = g ∧ u for all

g ∈ G+, if and only if u is a unital component such that u⊥ = 0. This

happens if and only if UC(G) is a Boolean algebra with u as greatest

element.

(4) An element u ∈ G+ is a unital component if and only if ũ is the charac-

teristic function of a clopen subset of X which omits the designated point

∗ ∈ X . In symbols, ũ = χR for R = coz ũ = ũ−1(0,∞).

Proof: The first three parts summarize Section 3.1 of [2], where proofs can be

found. Part (4) follows directly from the fact that g̃(x) = g̃(x) ∧ 1 for all g ∈ G+

and x ∈ X . �

The unital components in G are the characteristic functions of the comple-

mented elements of L. This is the content of Proposition 7.2.2.

Definition (characteristic function χx in RL). Let x be a complemented element

of L. (That means that there is some element y ∈ L, called the complement of x,

such that x ∨ y = ⊤ and x ∧ y = ⊥.) The characteristic function of x is the
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function χx ∈ RL defined by the rule

χx(U) =





⊤ if 0, 1 ∈ U

x if 0 /∈ U ∋ 1

y if 1 /∈ U ∋ 0

⊥ if 0, 1 /∈ U

, U ∈ OR.

If L is a pointed frame then χx ∈ R0L if and only if x does not contain the

designated point ∗ of L, i.e., if only if ∗(x) = ⊥.

Proposition 7.2.2. An element u ∈ G+ is a unital component if and only if

u = χx for some complemented element x ∈ L such that ∗ /∈ x.

Proof: If u = χx for complemented x ∈ L such that ∗L /∈ x then for r ∈ R we

would have

2u(r,∞) = u
(r
2
,∞

)
=





⊥ if r ≥ 2

x if 0 ≤ r < 2,

⊤ if r < 0

so that according to Lemma 3.1.2,

2u(r,∞) =





⊥ if r ≥ 1

x if 0 ≤ r < 1.

⊤ if r < 0

Evidently 2u = u by inspection. On the other hand, suppose that u = 2u for

some u ∈ G+. Then for all r ∈ R we would have

u(r,∞) = 2u(r,∞) =




⊥ if r ≥ 1

2u(r,∞) if r < 1
=




⊥ if r ≥ 1

u
(r
2
,∞

)
if r < 1

.

It follows from the fact that u(r,∞) = u(r/2,∞) for r < 1 that u(r,∞) =

u(r/2n,∞) for all n, hence u(r,∞) =
∨

n u(r/2n,∞) = u(0,∞) = cozu.

The proof is completed by showing that x ≡ cozu is complemented; in fact,

we show that the complement of x is conu = u(−∞, 1). Surely x ∨ conu =

u(0,∞) ∨ u(−∞, 1) = ⊤; what we must show is that x ∧ conu = u(0, 1) = ⊥.

For 0 < r < 1 we have u(r,∞) = u(0,∞) ≥ u(0, r), which, combined with

the fact that u(0, r) ∧ u(r,∞) = ⊥, implies u(0, r) = ⊥. Therefore u(0, 1) =∨
0<r<1 u(0, r) = ⊥. �

7.3 Simple truncs. In the next several subsections we investigate truncs deter-

mined by their unital components. These structures have received a good deal of
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attention in the ordered algebra literature under the name Specker groups. A basic

reference is [11, page 385], while [10] is a very good recent survey.

Definition (simple element, simple trunc, σG). A simple element of a trunc G

is a linear combination of unital components. A typical simple element thus has

the form g =
∑

U r(u)u for some finite subset U ⊆ UC(G) and some coefficient

function r : U → R. (We adopt the convention that
∑

U r(u)u = 0 if U = ∅.)

The set of simple elements is called the simple part of G, written σG; it is the

linear span of the generalized Boolean algebra UC(G) of unital components of G.

We say that a trunc G is simple if G = σG. Finally, we designate the full

subcategory of T comprised of the simple truncs by sT.

7.4 The simple part of G̃. It is easy to visualize the simple part of G̃.

Proposition 7.4.1. Let G be an arbitrary trunc.

(1) The simple elements of G̃ are the functions with finite range.

(2) The simple elements of G̃ are the locally constant functions, i.e., the

functions which, at every point, are constant on some neighborhood of

the point.

(3) The set σG is a bounded subtrunc of G.

(4) Every nonzero simple element can be uniquely expressed in the form g =∑
U r(u)u for a finite pairwise disjoint subset ∅ 6= U ⊆ UC(G) and one-

one function r : U → R \ {0}. This expression is referred to as the normal

form of g.

Proof: Part (1) follows readily from Proposition 7.2.1 (4). Parts (2), (3), and

(4) are likewise evident in G̃, though the statements of (3) and (4) are in terms

of G. �

It is a consequence of Proposition 7.2.1 (1) that a truncation homomorphism

carries unital components to unital components, and therefore simple elements to

simple elements. Proposition 7.4.2 follows.

Proposition 7.4.2. The full subcategory sT of simple truncs is monocoreflec-

tive in the category T of archimedean truncs. A coreflector for the trunc G is

σG → G.

7.5 sT is equivalent to gBa. This is Theorem 7.5.1, and in light of Theo-

rem 7.1.5, this means that sT is also equivalent to gBa and iBa. The latter

equivalences generalize the main result of [7], which is the equivalence of the cat-

egory of unital hyperarchimedean vector lattices with the category of Boolean

algebras.

The following diagram shows the relevant categories and the functors between

them. Here LC is the functor which assigns to a given Boolean pointed space
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zdK∗ iBa

sT gBa

IB

LC

S∗

F

UC

B

(X, ∗) the simple trunc of locally constant functions of D0X , i.e., LCX = σD0X.

Theorem 7.5.1. The functor UC : sT → gBa = (G 7→ UC(G)) is an equivalence

of categories.

Proof: As we mentioned prior to Proposition 7.4.2, a trunc homomorphism

f : G → H takes elements of UC(G) to elements of UC(H) and thus restricts

to a gBa-morphism UC(G) → UC(H). Because simple truncs are generated by

their unital components, different trunc homomorphisms restrict to different gen-

eralized Boolean algebra homomorphisms, i.e., UC is faithful. Furthermore, if

f : UC(G) → UC(H) is a gBa-morphism then we may extend f to a trunc homo-

morphism G → H by defining f(g) ≡
∑

f(U) r(f(u))f(u) for elements g ∈ G

with normal form g =
∑

U r(u)u. That is to say that UC is full.

According to [1, 3.33], it remains only to show that for each generalized Boolean

algebra A there exists a trunc G such that UC(G) is isomorphic to A. But this

is clear, for the idealized Boolean algebra B(A) = (BA, A) has the feature that

its pointed Boolean space S∗(BA, A) = (X, ∗) has its clopen algebra isomorphic

to BA, and this isomorphism takes the clopen subsets of X which omit the des-

ignated point ∗ ∈ X to the elements of the ideal A ⊆ BA. But it is precisely

these clopen subsets which correspond to the unital components of G ≡ LCX by

Proposition 7.2.1 (4). �

8. Characterizing simple truncs

8.1 The fundamental characterization of simple truncs.

Theorem 8.1.1. Every simple trunc is isomorphic to the trunc of locally constant

functions which vanish at the designated point of a unique Boolean pointed space.

Proof: For a simple trunc G, Theorem 2.3.1 provides a representation as a trunc

G̃ ⊆ D0X for a unique compact Hausdorff pointed space X such that G̃ separates

the points of X . That G̃ ⊆ LCX is the content of Proposition 7.4.1 (2). But

every locally constant function on X has finite range, and is therefore a linear

combination of characteristic functions, each of which is of the form ũ for u ∈

UC(G). �
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In the following two subsections we characterize simple truncs in various ways,

culminating in Theorems 8.2.10 and 8.3.6. We begin by showing that the simple

truncs are the truncs bounded away from 0.

8.2 Truncs bounded away from 0.

Proposition 8.2.1. The following are equivalent for an element 0 < g ∈ G:

(1) There is an integer n such that ng is ng ∈ UC(G) for a positive integer n.

(2) There is an element g that u/n ≤ g ≤ u for some u ∈ UC(G) and positive

integer n.

(3) There is a real number ε > 0 such that g̃(x) ≥ ε whenever g̃(x) > 0.

(4) There is a real number ε > 0 for which coz g = g(0,∞) = g(ε,∞).

(5) There is a real number ε > 0 for which g(0, ε) = ⊥.

Proof: The equivalence of the first three conditions in G̃ is clear. The equiva-

lence of (4) with (5) is likewise easy to see. For (4) implies g(0, ε) ≤ g(0,∞) =

g(ε,∞), and since g(0, ε) ∧ g(ε,∞) = ⊥, (5) follows. And (5) implies that

g(0,∞) = g(1, ε) ∨ g(ε/2,∞) = g(ε/2,∞), i.e., (4) holds. It remains to show

the equivalence of (1) with (4).

Assume (1) to prove (4), say ng = u ∈ UC(G) with x ≡ cozu complemented

in L. Then

ng(r,∞) = u(r,∞) =





⊤ if r < 0

x if 0 ≤ r < 1.

⊥ if r ≥ 1

By Lemma 3.1.2 we have ng(r,∞) = ⊥ for r ≥ 1 and ng(r,∞) = ng(r,∞) =

g(r/n, (∞) for r < 1. Consequently, for r = 1/2 we get g(1/(2n),∞) =

ng(1/2,∞) = x = coz g.

Assume (4) to prove (1), i.e., assume g(ε,∞) = coz g ≡ x for some ε > 0, and

let n be a positive integer such that 1/n < ε. Then for any t, 0 ≤ t < 1/n, we

have

x = g(0,∞) ≥ g(t,∞) ≥ g(1/n,∞) ≥ g(ε,∞) = x.

From this fact we can deduce using Lemma 3.1.2 that

ng(s,∞) =




⊥ if s ≥ 1

ng(s,∞) if s < 1
=




⊥ if s ≥ 1

g
( s

n
,∞

)
if s < 1

=





⊥ if s ≥ 1

x if 0 ≤ s < 1

⊤ if s < 0

= χx(s,∞).

Proposition 7.2.2 then shows that ng ∈ UC(G). �
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Definition (bounded away from 0, clearance). An element 0 < g ∈ G is said to

be bounded away from 0 if it satisfies the conditions of Proposition 8.2.1. The

clearance of such an element is

δ(g) ≡
∨

{ε : g(ε,∞) = coz g} =
∨

{ε : g(0, ε) = ⊥}.

(Our convention is that δ(0) = 0.) Finally, a trunc G is said to be bounded away

from 0 if every 0 < g ∈ G is bounded away from 0.

Corollary 8.2.2. If 0 < g ∈ G is bounded away from 0 then coz g ≡ x is

complemented in L and χx ∈ UC(G).

When checking whether a trunc is bounded away from 0, it is enough to verify

that the elements of G are bounded away from 0

Lemma 8.2.3. An element 0 < g ∈ G is bounded away from 0 if and only if g

is bounded away from 0.

Proof: According to Lemma 3.1.2, g(r,∞) = g(r,∞) for r < 1. It follows that

there is a real number ε > 0 for which g(0, ε) = ⊥ if and only if there is a real

number ε > 0 for which g(0, ε) = ⊥. �

The simple part of any trunc is bounded away from 0.

Proposition 8.2.4. A strictly positive simple element is bounded away from 0.

Thus a simple trunc is bounded away from 0.

Proof: If g is a simple element then g̃ has finite range by Proposition 7.4.1 (1).

If the element is positive then the range has a least positive element, and the

element is bounded away from 0 by Proposition 8.2.1. �

Proposition 8.2.4 has a converse in Theorem 8.2.10. What follows is a sequence

of lemmas which together constitute a proof of that theorem. In these lemmas

we fix our attention on an element 0 < g ∈ G of a trunc G which is bounded

away from 0. We abbreviate coz g to x and δ(g) to δ; by Corollary 8.2.2, x is

complemented in L and χx = u for a unique u ∈ UC(G). Note that x > ⊥ and

u ≥ g > 0.

Lemma 8.2.5. For real numbers s and r > 0,

g ⊖ r(s,∞) =

{
⊤ if s < 0

g(s+ r,∞) if s ≥ 0
.

Proof: Making use of Lemma 3.1.2, we get

g ⊖ r(s,∞) = r
((g

r

)
⊖ 1

)
(s,∞) =

(g
r

)
⊖ 1

(s
r
,∞

)
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=




⊤ if

s

r
< 0

(g
r

)(s
r
+ 1,∞

)
if

s

r
≥ 0

=




⊤ if s < 0

g(s+ r,∞) if s ≥ 0
.

�

Lemma 8.2.6. (1) coz g ⊖ δ < x.

(2) g = δu if and only if g ⊖ δ = 0.

Proof: (1) Suppose for the sake of argument that coz g⊖ δ = x. Since g⊖ δ > 0

is bounded away from 0 and strictly positive, there exists ε > 0 for which g ⊖

δ(ε,∞) = g ⊖ δ(0,∞) = x. But since g ⊖ δ(ε,∞) = g(ε+ δ,∞) by Lemma 8.2.5,

we arrive at the contradiction ε+ δ ≤ δ.

(2) If g = δu = δχx then for all s ∈ R,

g(s,∞) = δu(s,∞) = u
(s
δ
,∞

)
=





⊤ if s < 0

x if 0 ≤
s

δ
< 1

⊥ if
s

δ
≥ 1

=





⊤ if s < 0

x if 0 ≤ s < δ

⊥ if s ≥ δ

.

Combining this with Lemma 8.2.5 yields that g ⊖ δ(s,∞) = ⊤ if s < 0 and

g ⊖ δ(s,∞) = ⊥ if s ≥ 0, which is to say that g ⊖ δ = 0 in G.

If g ⊖ δ = 0 then Lemma 8.2.5 tells us that

g ⊖ δ(s,∞) =

{
⊤ if s < 0

g(s+ δ,∞) if s ≥ 0
= 0(s,∞) =

{
⊤ if s < 0

⊥ if s ≥ 0
.

In light of the fact that g(s,∞) = x for 0 ≤ s < δ, we get

g(s,∞) =





⊤ if s < 0

x if 0 ≤ s < δ

⊥ if s ≥ δ

= δu.

�

Note that g ⊖ δ is bounded away from 0, and if it is strictly positive then by

Corollary 8.2.2 we know that y ≡ coz g ⊖ δ is complemented in L and χy ≡ w ∈

UC(G). Now w ≤ u so v ≡ u− w is a unital component such that w ∨ v = u and

w ∧ v = 0. Since g ≤ u, we can express g in the form g = gw + gv for gw ≡ g ∧w

and gv = g ∧ v.

Lemma 8.2.7. gv = δv.

Proof: Let z ≡ coz v, so that y ∨ z = x and y ∧ z = ⊥. First note that

g(s,∞) = g(0,∞) = x for 0 ≤ s < δ, and that by Lemma 8.2.5,

g(δ,∞) ∧ z = g ⊖ δ(0,∞) ∧ z = y ∧ z = ⊥.
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It then follows that for any s ∈ R,

gv(s,∞) = (g ∧ v)(s,∞) = g(s,∞) ∧ v(s,∞)

= g(s,∞) ∧





⊤ if s < 0

z if 0 ≤ s < 1

⊥ if s ≥ 1

=





⊤ if s < 0

z if 0 ≤ s < δ

⊥ if s ≥ δ

= (δv)(s,∞).

�

Lemma 8.2.8. δ(gw) = δ + δ(g ⊖ δ) > δ.

Proof: For s ≥ δ we have gv(s,∞) = δv(s,∞) = v(s/δ,∞) = ⊥, hence

gw(s,∞) = gw(s,∞) ∨ gv(s,∞) = (gw ∨ gv)(s,∞) = g(s,∞) = g ⊖ δ(s− δ,∞)

by Lemma 8.2.5. Since coz gw = coz g⊖ δ = y, it follows from the equation above

that gw(s,∞) = coz gw if and only if s − δ < δ(g ⊖ δ), which is to say that

δ(gw) = δ + δ(g ⊖ δ). �

Proposition 8.2.9 summarizes the development to this point.

Proposition 8.2.9. Let G be a trunc which is bounded away from 0. Then for

each 0 < g ∈G there exist unique disjoint elements g1 ∈G and 0 < u ∈ UC(G)

such that g = g1 + δ(g)u and δ(g1) > δ(g) if g1 > 0.

Proof: In terms of the preceding lemmas, take g′ to be gw and u to be v. �

Theorem 8.2.10. A trunc is simple if and only if it is bounded and bounded

away from 0.

Proof: A simple trunc is certainly bounded, and it is bounded away from 0 by

Proposition 8.2.4. Now suppose that G is bounded and bounded away from 0.

Since G is bounded, each element is a linear combination of finitely many mem-

bers of G (see Subsection 5.2 on good sequences), so that to show G simple it is

enough to show that each element of G is simple.

For that purpose consider 0 < g0 ∈G, and let g1 ∈G and 0 < u1 ∈ UC(G) be

the disjoint elements given by Proposition 8.2.9 such that g0 = g1 + δ(g0)u1 and

δ(g1) > δ(g0) if g1 > 0. Proceed inductively. If gn and un have been defined such

that gn > 0 then let gn+1 ∈ G and 0 < un+1 ∈ UC(G) be the disjoint elements

which satisfy gn = gn+1 + δ(gn)un+1 and δ(gn+1) > δ(gn) if gn+1 > 0. The

induction continues as long as gn+1 > 0, and terminates if gn+1 = 0. Note that

if gn is defined then

g0 = gn +
∑

0≤i<n

δ(gi)ui+1,
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{δ(gi) } is a strictly increasing sequence of positive real numbers bounded above

by 1, and the ui’s are nonzero pairwise disjoint unital components bounded above

by the element u0 ∈ UC(G) given by Proposition 8.2.1 (2) such that u0/n ≤

g0 ≤ u0 for some positive integer n.

The proof is completed by showing that the sequence of gn’s is finite. If not,

let r ≡
∨

n δ(gn), and consider the element h ≡ (ru0 − g0)
+. We aim to show

that h(0, ε) > ⊥ for any ε > 0, thereby showing that h violates condition (5) of

Proposition 8.2.1 and thus contradicts the hypothesis that G is bounded away

from 0. For that purpose fix ε > 0, let n be such that r < δ(gn) + ε, abbreviate

δ(gn) to s, and let z = cozun+1. Since g0 ≥ sun+1, we can compute with the aid

of Theorem 3.1.1

h(−∞, ε) = (ru0 − g0)
+(−∞, ε) ≥ (ru0 − sun+1)

+(−∞, ε)

=
∨

rU−sV ⊆(−∞,ε)

(χx(U) ∧ χz(V )).

The open sets U ≡ (1−ε/2r, 1+ε/2r) and V ≡ (1−ε/2s, 1+ε/2s) clearly satisfy

the condition rU − sV ⊆ (−∞, ε), so ⊥ < z ≤ χx(U) ∧ χz(V ) ≤ h(−∞, ε). On

the other hand, we have

h(0,∞) = (ru0 − g0)(0,∞) =
∨

rU−V⊆(0,∞)

(χx(U) ∧ g0(V )),

so that if we put U ≡ (1−̺/r, 1+̺/r) and V ≡ (s−̺, s+̺) for ̺ < (ε+s−r)/2

then we can see that rU − V ⊆ (0,∞), with the result that

h(0,∞) ≥ χx(U) ∧ g0(V ) ≥ χx(U) ∧ sun+1(V ) ≥ z.

To summarize, h(0, ε) = h(−∞, ε) ∧ h(0,∞) ≥ z > ⊥. �

8.3 Hyperarchimedean truncs. Hyperarchimedean vector lattices have been

intensively studied; see [11, 380 and the following pages] for an introduction. Of

the many characterizations in the literature, we list here the trunc versions of the

three most often mentioned.

Lemma 8.3.1. The following are equivalent for a trunc G.

(1) Every convex l-subgroup K ⊆ G is an archimedean kernel, i.e., G/K is

an archimedean vector lattice.

(2) Every prime convex l-subgroup is both maximal and minimal.

(3) For every g ∈ G+, the convex l-subgroup G(g) generated by g is a cardi-

nal summand of G. That means that for every f ∈ G there exist unique

elements fg ∈ G(g) and f ′ ∈ g⊥ such that f = fg + f ′.

A trunc which satisfies these conditions is called hyperarchimedean.
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Proof: A proof of these equivalences in the broader context of archimedean l-

groups is part of Theorem 55.1 in [11]. �

Proposition 8.3.2. A simple trunc is hyperarchimedean.

Proof: Consider elements f, g > 0 in a simple trunc G. Since G is bounded

away from 0 by Theorem 8.2.10, there is a positive integer n for which u ≡ ng

is a unital component by Proposition 8.2.1 (1). Hence f = fu + f ′ for unique

elements fu ≤ u and f ′ ∈ u⊥. Since G is bounded, again by Theorem 8.2.10,

there is an integer k such that kf = kfu+kf ′ ≥ f , and since fu∧f ′ = 0, we have

f = (kfu ∧ f) + (kf ′ ∧ f). But kfu ∧ f ∈ G(g) because

kfu ∧ f ≤ kfu ≤ ku = kng ≤ (kn)g,

and kf ′ ∧ f ∈ u⊥ = ng⊥ = g⊥, so we have shown that G is hyperarchimedean by

criterion (3) of Lemma 8.3.1. �

Example 8.3.3 shows that the converse of Proposition 8.3.2 is false.

Example 8.3.3. Let X be the pointed Boolean space (ω+1, ω), and let G̃ be the

family of all functions of D0X of the form ã+ rg̃0, with r ∈ R and ã, g̃0 ∈ D0X

such that coz ã is finite and g̃0(n) = 1/n for all n < ω. Then it is straightforward

to check that G is a hyperarchimedean trunc which is not simple because g̃0 is

not bounded away from 0.

In order to identify which hyperarchimedean truncs are simple, we consider two

trunc attributes. The first is the property of having enough unital components,

and the second is being bounded away from infinity. In Theorem 8.3.6 we show

that, in the presence of the hyperarchimedean property, either of these attributes

is equivalent to simplicity.

Definition (enough unital components). A trunc G is said to have enough unital

components if for all g ∈ G+ there exists a unital component u ∈ UC(G) such

that g ≤ u.

Lemma 8.3.4. The following are equivalent for an element g ≥ 0 of a trunc G.

(1) There exists an element h ∈ G+ for which g ≤ h⊖ 1.

(2) An element g̃ vanishes on a neighborhood of ∗, i.e., ∗ /∈ cl coz g̃.

(3) There exists h ∈ G+ for which coz g ∧ conh = ⊥. (Recall conh ≡

h(−∞, 1).)

Definition (bounded away from ∞). We say that g is bounded away from ∞ if it

satisfies the conditions of Lemma 8.3.4. We say that G is bounded away from ∞

if each g ∈ G+ is bounded away from ∞.
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Proof of Lemma 8.3.4. In the Yosida representation of G, the open subsets

of X of the form con h̃ = h̃−1(−∞, 1), h ∈ G+, form a neighborhood base for the

designated point. Thus (2) is equivalent to the existence of an element h ∈ G+

for which coz g̃ ∩ con h̃ = ∅. A routine calculation then shows the latter condition

to be equivalent to coz g ∧ conh = ⊥, thereby establishing the equivalence of (2)

with (3).

To show the equivalence of (1) with (2), note that if g ≤ h⊖ 1 then

x ∈ coz g̃ = cozg̃ =⇒ 1 = g(x) ≤ (h̃⊖ 1)(x) = (h̃(x) − 1) ∨ 0

=⇒ h̃(x) = 2 =⇒ x /∈ con h̃.

On the other hand, if g̃ vanishes on a neighborhood of ∗ then, since the sets of

the form con h̃, h ∈ G+, form a neighborhood base for ∗, there is some h ∈ G+

such that coz g̃ ∧ con h̃ = ∅. For such an h, it is straightforward to check that

2h̃⊖ 1 ≥ g̃ . �

Lemma 8.3.5. (1) If G has enough unital components then G is bounded

away from ∞.

(2) If G is hyperarchimedean and bounded away from ∞ then G has enough

unital components.

Proof: (1) Suppose g ∈ G+ is such that g ≤ u ∈ UC(G). Then coz g = cozg ≤

cozu, and since cozu∧ conu = ⊥, it follows that coz g ∧ conu = ⊥. We conclude

that g is bounded away from ∞ by Lemma 8.3.4.

(2) Suppose g ≤ h ⊖ 1 for g, h ∈ G+. This is equivalent to the assertion

that h̃(x) > 1 for all x ∈ coz g̃, hence h̃(x) = 1 for all x ∈ coz g̃. If G is

hyperarchimedean then it is the cardinal sum G(g)⊕g⊥, so that h can be uniquely

expressed in the form u + h′ for u ∈ G(g) and h′ ∈ g⊥. Since ũ(x) = 1 for

x ∈ coz g̃ and ũ(x) = 0 for x /∈ coz g̃, we have g ≤ u ∈ UC(G). �

Theorem 8.3.6. The following are equivalent for a trunc G:

(1) G is hyperarchimedean and has enough unital components.

(2) G is hyperarchimedean and bounded away from ∞.

(3) G is simple.

Proof: The equivalence of (1) and (2) is a consequence of Lemma 8.3.5. The

implication from (3) to (2) follows from Proposition 8.3.2, together with the ob-

servation that each element g ≥ 0 of a simple trunc G has the feature that g̃ is

locally constant. The point is that since g̃ is 0 at the designated point ∗, it must

then be 0 on a neighborhood of ∗, which is to say that g is bounded away from ∞.

It remains to show that a trunc G which satisfies (1) also satisfies (3); by

Theorem 8.2.10, it is enough to show that such a trunc is bounded and bounded
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away from 0. It is certainly bounded, for given any g ∈ G+, the hyperarchimedean

property means that G is the cardinal sum of G(g) and g⊥ = g⊥, hence g ≤ ng

for some positive integer n. In order to show that an arbitrary g ∈ G+ is bounded

away from 0 we may assume that g = g by Lemma 8.2.3. Since G has enough

unital components, there exists u ∈ UC(G) such that g ≤ u. Since G is the

cardinal sum of G(g) and g⊥, we can write u in the form ug + u′ for ug ∈ G(g)

and u′ ∈ g⊥. It follows that g ≤ ug ∈ UC(G) and ug ≤ ng for some positive

integer n. In fact we have ug/n ≤ g ≤ ug ∈ UC(G), so that g is bounded away

from 0 by Proposition 8.2.1 (2). �

We should point out that a truncation homomorphism θ : G → H takes ele-

ments of G bounded away from ∞ to elements of H bounded away from ∞. For

by Theorem 2.3.1, such a map is realized by a continuous function f : Y → X ,

where X and Y designate the pointed Yosida spaces of G and H , respectively,

in the sense that θ̃(g) = g̃ ◦ f . Since f takes the designated point ∗Y of Y to

the designated point ∗X of X , it follows that if g̃ vanishes on a neighborhood

of ∗X then θ̃(g) vanishes on a neighborhood of ∗Y . This observation explains

Proposition 8.3.7.

Proposition 8.3.7. The truncs bounded away from ∞ comprise a full mono-

coreflective subcategory of the category T of archimedean truncs. A coreflector

for a trunc G is the insertion of the subtrunc of elements bounded away from ∞.

We remark that in any trunc G, the elements bounded away from ∞ form

a convex subtrunc

K ≡ {g : |g| is bounded away from ∞},

and if G is hyperarchimedean then K is also an archimedean kernel, i.e., G/K

is archimedean. However, K is not always a truncation kernel in the sense of

Section 9 for it fails to satisfy requirement (3) of Lemma 9.1.1 below. Indeed, this

is the case in Example 3.3.3.

Part 3. Truncation kernels

We conclude with a brief discussion of truncation kernels. The topic is of

intrinsic interest in any study of truncs, of course, but the discussion acquires

a degree of urgency by virtue of the necessity of correcting a serious error in [3].
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9. Truncation kernels

Definition (T-kernel). A truncation kernel, or T-kernel, is the set of elements

of a trunc sent to 0 by a T-morphism.

Let U be the category of not-necessarily-archimedean vector lattices. The

distinction between U-kernels and T-kernels is an important one for the former

have the feature that every proper kernel is contained in a maximal proper kernel,

while the latter lack this feature. In fact, it can be shown that the maximal proper

U-kernels are in bijective correspondence with the points of the Yosida space of

a trunc (Subsection 2.3), while the T-kernels are in bijective correspondence with

the elements of the Madden frame of a trunc (Subsection 3.3).

9.1 Correcting a basic lemma. We correct an error in Lemma 2.1.2 of [3].

That lemma is missing an important hypothesis; the corrected version appears

below as Lemma 9.1.1, in which the missing hypothesis is part (3). Archimedean

truncation kernels are further characterized in Proposition 9.2.1.

Lemma 9.1.1. A convex subtrunc K ⊆ G is a truncation kernel if and only if

it satisfies properties (2) and (3) below; it is an archimedean truncation kernel if

and only if it also satisfies (1).

(1) If there exists h ∈ G+ such that (ng − h)+ ∈ K for all n then g ∈ K.

(2) If g ∈ K then g ∈ K.

(3) If g ⊖ 1/n ∈ K for all n then g ∈ K.

Proof: (1) is well known to be equivalent to the archimedean property of the

quotient G/K, and (2) is clearly equivalent to truncation property (T2) of the

quotient. We claim that (3) is equivalent to truncation property (T3) of the

quotient. For g ⊖ 1/n = (ng ⊖ 1)/n = (ng − ng)/n, so that the condition that

g ⊖ 1/n ∈ K for all n is equivalent to the condition that K + ng = K + ng for

all n. �

The falsity of [3, 2.1.2] does not invalidate the subsequent results of [3]. For

example, in the proof of [3, 2.3.4], it is straightforward to verify that the missing

condition (3) of Lemma 9.1.1 above is satisfied for the set displayed on the right

side. Likewise, the internal description of the archimedean truncation kernel [K]

generated by a subset K ⊆ G can be readily modified to take condition (3) into

account, as follows.

Every ordinal number α can be expressed in the form α = β + k for a unique

finite ordinal k and limit ordinal β. (We take β = 0 to be a limit ordinal.). We

will say that α is congruent to i mod 3, and write α ≡ i mod 3, depending on

whether k is congruent to i mod 3.
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For a subset K ⊆ G, let 〈K〉 designate the convex l-subtrunc generated by K.

Now define

K0 ≡ 〈K〉,

Kα+1 ≡ 〈g ∈ G+ : ∀n (g ⊖ 1/n ∈ Kα)〉 if α ≡ 0 mod 3,

Kα+1 ≡ 〈g ∈ G+ : ∃h ∈ G+ ∀n ((n|g| − h)+ ∈ Kα)〉 if α ≡ 1 mod 3,

Kα+1 ≡ 〈g ∈ G+ : g ∈ Kα〉 if α ≡ 2 mod 3,

Kβ ≡
⋃

α<β

Kα if β is a limit ordinal,

K∞ ≡ Kα for some (any) α such that Kα = Kα+1 = Kα+2.

Lemma 9.1.2. The archimedean truncation kernel generated by a subset K ⊆ G,

which we shall denote by [K], is equal to K∞ = Kω1 .

Proof: This follows directly from Lemma 9.1.1 above. �

With these and similar minor modifications, the proofs given in [3] become

correct.

9.2 Pointwise closure and archimedean truncation kernels. Archimedean

truncation kernels are characterized by the property of being pointwise closed.

This is not surprising in view of the fact that the same is true of W-kernels ([6,

5.3.1]).

Definition (pointwise closed convex subtrunc). A convex subtrunc K ⊆ G is

said to be pointwise closed if K0 ⊆ K+ and
∨•

K0 = g imply g ∈ K.

Proposition 9.2.1 (cf. [6], 5.3.1). A convex subtrunc K ⊆ G is a truncation

kernel if and only if it is pointwise closed.

Proof: Suppose that K is a truncation kernel, and let θ : G → G/K be the quo-

tient truncation homomorphism. If K0 ⊆ K+ and
∨•

K0 = g then
∨
θ(K0) =

θ(g) = 0 by Proposition 4.2.1, hence g ∈ K0. Thus K is pointwise closed.

Now suppose that K is a pointwise closed convex subtrunc of G; we must

show that K has the three properties of Lemma 9.1.1. The proof given in [6,

5.3.1] for (1) in W works without modification in T. To check (2) and (3), recall

that ng/n ր g and g ⊖ (1/n) ր g for all g ∈ G+ by [4, 5.5]. �
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