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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 1 , P A G E S 1 5 – 3 7

A DEPTH-BASED MODIFICATION OF THE K-NEAREST
NEIGHBOUR METHOD

Ondřej Vencálek and Daniel Hlubinka

We propose a new nonparametric procedure to solve the problem of classifying objects
represented by d-dimensional vectors into K ≥ 2 groups. The newly proposed classifier was
inspired by the k nearest neighbour (kNN) method. It is based on the idea of a depth-based
distributional neighbourhood and is called k nearest depth neighbours (kNDN) classifier. The
kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize
global properties of the considered distributions (symmetry). In contrast to the maximal depth
classifier and related classifiers, it does not have problems with classification when the considered
distributions differ in dispersion or have unequal priors. The kNDN classifier is compared
to several depth-based classifiers as well as the classical kNN method in a simulation study.
According to the average misclassification rates, it is comparable to the best current depth-
based classifiers.

Keywords: Bayes classifier, data depth, k nearest depth neighbours, nonparametric

Classification: 62H30, 62G30

1. INTRODUCTION

The classification of multivariate observations to given groups is a classical statistical
problem that has been studied many times and still is of high importance. Procedures
based on data depth represent a modern nonparametric approach to the classification
problem.

The notion of data depth provides a multivariate version of ranks. A depth function is
any function which provides an ordering of points in multidimensional space with respect
to a given distribution (or data cloud in the empirical case). Many depth functions have
been introduced ad hoc. Their overview may be found in [30] where a general definition
of a depth function is provided (the definition lists several desirable properties, suggested
already by Liu in 1990, see [20]). Nowadays, the concept of data depth provides a basis
for a wide range of nonparametric procedures. Its applications are reviewed in [21] or
[26].

The idea of using data depth for classification was suggested by Liu in [20]. The
classifier which assigns a new observation to the distribution where it has the most
central position, i. e. maximal depth (referred as the max-depth classifier), was studied
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in detail by Ghosh and Chaudhuri [10]. The development of new possible ways how to
apply the data depth for classification has been intensified in recent years ([6, 14, 18],
and [24]).

The current paper deals with a new classifier based on data depth. It is inspired
by the k-nearest neighbour (kNN) method. This classical method is well-known for its
versatility – it achieves low misclassification rates even if distributions of observations in
individual groups are far from normality. On the other hand, the kNN could not utilise
global properties of distributions like their symmetry which leads to its less satisfactory
performance in higher dimensions. The newly suggested classifier retains the local char-
acter of the kNN procedure but is able to take advantage of the global properties of
distributions.

The paper is organised as follows. The classification problem is briefly recalled in
Section 2. The new kNDN classifier is introduced in Section 3. Its equivalence to the
Bayes rule is proved for a class of general elliptically symmetric distributions. However,
the method gives very good results for more general settings. In particular, this methods
works better than the usual methods if the probability distributions of the respective
groups belong to different families. Section 4 shows that the proposed method is at least
comparable with the usual classifiers and in some settings it outperforms most of them.
Two real data examples are also included in that section. The proof of the main result
is provided in the Appendix.

2. THE DEPTH AND SUPERVISED CLASSIFICATION

Recall briefly the classification problem. Consider 2 ≤ K <∞ groups of objects. Each
object (in any group) is represented by d ∈ N numerical characteristics. Each group
of objects is characterised by an (unknown) probability distribution on Rd of these
numerical characteristics. Let us denote these distributions P1, . . . , PK . All distributions
are assumed to be absolutely continuous with respect to the d-dimensional Lebesgue
measure and, naturally, Pi 6= Pj when i 6= j.

Consider further independent random samples Xi,1, . . . ,Xi,ni from Pi, i = 1, . . . ,K.
These random samples (called the training set) provide the only available information on
the unknown distributions. There is a need to find a rule assigning a new d-dimensional
observation X to one of the groups. Such rule (called classifier) must have a form of
some measurable function c : Rd → {1, . . . ,K}.

The quality of the classification rule is usually measured by the average misclassifi-
cation rate, i. e. by the proportion of incorrectly classified observations in the group of
all observations to be classified. The average misclassification rate estimates the total
probability of misclassification

K∑
i=1

πiP (c(X) 6= i|X ∼ Pi) ,

where πi = P(X ∼ Pi) is the prior probability that X comes from the ith group, and
P (c(X) 6= i|X ∼ Pi) is the conditional probability of incorrect classification given that
X comes from the ith group. A classifier minimising the average misclassification rate
is called the Bayes minimal error rule or the optimal Bayes rule. It is well-known that
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the optimal classifier has the following form:

c(x) = arg max
i=1...,K

πifi(x), (1)

where fi(·) is the probability density function of the ith distribution. It is essential to
realise that no classifier can have lower probability of misclassification than the Bayes
classifier (1), see p. 307 in [22].

The Bayes rule (1) is based on probability density functions which in practice need to
be estimated from the training set either by estimation of their parameters (parametric
methods) or in some nonparametric way. Data depth can be successfully used for the
density estimation in some special cases, e. g., if the distribution is elliptically symmetric
and strictly decreasing from the centre. In that case, the halfspace depth becomes a
strictly increasing function of f , see [7]. If the densities do not have global properties
like symmetry, the use of data depth for classification purposes is not so straightforward.
Zakai and Ritov [29] have shown that all consistent classifiers are necessarily localisable,
i. e., they do not significantly change their response at a particular point when only the
part of the training set that is close to that point is shown to them. However, data
depth of a point is a measure of its centrality with respect to the whole distribution
and therefore it is not of a local nature. There are two ways how to localise the depth-
based procedures. The first possibility is to use some local depth, as suggested in,
e. g., [1, 13, 16], or [23]. The second possibility is to plug-in some local classification
procedure like k-nearest neighbours. Such classifiers were studied by Paindaveine and
Van Bever [24] or by Vencalek [27].

3. CLASSIFICATION USING K-NEAREST DEPTH NEIGHBOURHOOD

In this section, we briefly recall the idea of k-nearest neighbour classifier and explain
the new method of k-nearest depth neighbourhood (k-NDN).

3.1. Classical kNN classification

The classical k-nearest-neighbour method is based on a neighbourhood of a point with
respect to the Euclidean distance, i. e. the neighbourhood LE,ε(x) of the point x defined
as

LE,ε(x) =
{
y ∈ Rd : ‖x− y‖ < ε

}
, (2)

for some positive constant ε ∈ R. In what follows, we omit the subscript ε if it is possible
without confusion. For a sufficiently small constant ε and a continuous density function
f of a random vector X, the approximation

P(X ∈ LE(x)) =

∫
LE(x)

f(y) dy ∼= f(x) · λd (LE(x)) , (3)

where λd is the d-dimensional Lebesgue measure, may be used. The density f at the
point x may then be estimated using the approximation

f(x) ∼=
P(X ∈ LE(x))

λd (LE(x))
. (4)
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The kNN classification is then based on (4) since the terms that include the group
index i in the expression

πifi(x) ∼= πi
Pi(LE(x))

λd (LE(x))
(5)

may be estimated easily. Let n be the total number of points in the training set (n =
n1 + . . . + nK), fix k < n and find the smallest ball LE(x) centred at x that contains
k points of the training set. Denote by Ki the number of points from the ith group of
the training set lying in LE(x). A natural estimator of probability Pi(LE(x)) is then
Ki/ni, and the prior probabilities πi may be estimated by ni/n. Hence the empirical
Bayes classifier is

arg max
i
π̂if̂i(x) = arg max

i

ni
n

Ki

ni

1

λ̂d(LE(x))
= arg max

i

Ki

nλ̂d(LE(x))
, (6)

which may be simplified to
c(x) = arg max

i=1,...,K
Ki.

For more details see [8].

3.2. Construction of the k nearest depth neighbours classifier

The basic idea of the kNDN classifier is to use a different notion of the neighbourhood
in approximation (4). Approximation (4) is appropriate if the density is almost constant
on the used neighbourhood LE(x). In that case, it makes sense to use the density-based
neighbourhood – a set of points where the density is similar to the value f(x). Consider
now a depth function D(·, P ) which assigns measures of centrality to points in Rd with
respect to the distribution P characterised by the density f . Assuming that small
difference in density between two (arbitrary) points small difference in depths of these
points, it is possible to use the depth-based neighbourhood instead of the density-based
neighbourhood.

The depth-based neighbourhood of a point x can be defined as a set of points which
have the depth similar (w.r.t. a given probability distribution) to the point x. The
depth-based neighbourhood was defined in [9].

Definition 3.1. For a depth function D, positive real constant ε, and probability mea-
sure P the depth ε-neighbourhood of x ∈ Rd with respect to P is defined as

LD,ε(x;P ) =
{
y ∈ Rd : |D(x;P )−D(y;P )| < ε

}
. (7)

The difference between the distance-based neighbourhood and the depth-based neigh-
bourhood of a point is illustrated in Figure 1. In the considered example, contours of the

pdf of the bivariate normal distribution N
((

0
0

)
,

(
4 1
1 1

))
are plotted. The classical

and the depth neighbourhood of a point x = (2.5, 0.5)T are shown as the grey regions.
Note that the depth-based neighbourhood involves the whole distribution, hence some

intrinsic geometric properties of the distribution may be captured in the shape of the
neighbourhood.
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Fig. 1. A classical neighbourhood of a point x = (2.5, 0.5)T (left)

and a distributional neighbourhood of the same point (right), when

the considered distribution is centred bivariate normal.

Using the depth neighbourhood instead of the distance-based neighbourhood brings
the following advantage. Let us consider constants ε1 and ε2 such that it holds
P (LD,ε1(x;P )) = P (LE,ε2(x)). Figure 1 indicates that the density f is less varying in
the region LD,ε1(x;P ) than in the ball LE,ε2(x). Hence, the approximation

f(x) ∼=
P
(
X ∈ LD,ε1(x)

)
λd
(
LD,ε1(x)

) . (8)

may be even more precise than the approximation (4).
The depth neighbourhood depends on the underlying distribution while the classical

neighbourhood is distribution free. This is the principal difference and the classification
rule must be modified properly. Our classifier is based on the approximation

πifi(x) ∼= πi
Pi(LD,εi(x, Pi))

λd
(
LD,εi(x, Pi)

) , (9)

which is only a slight modification of (5). In practice, empirical distributions based on

the training set P̂1, . . . , P̂K are used instead of their unknown theoretical counterparts.
We proceed similarly as in the case of the classical kNN method. Fix k < mini ni and

find the smallest depth neighbourhoods LD,ε1(x, P̂1), . . . , LD,εK (x, P̂K) each containing
k points from the corresponding part of the training set. Note that the number of
points in each neighbourhood is now fixed and equal for each group but the volumes of
the neighbourhoods are different while for the classical kNN method it is the opposite.
The volumes need to be estimated, what might be a nontrivial task, as discussed in
Section 3.5. The classifier based on the empirical version of the approximation (9) has
the following form:

c(x) = arg max
i=1,...,K

ni
n

k

ni

1

λ̂d
(
LD,εi(x, P̂i)

) ,
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which may be simplified to

c(x) = arg min
i=1,...,K

λ̂d
(
LD,εi(x, P̂i)

)
. (10)

An observation is therefore classified into the group with the smallest volume of its depth
neighbourhood containing k points from the corresponding training group.

The choice of the number of neighbours k should follow the rules well known in the
classical kNN method: with an increasing size of the training set, k should also increase
whereas the proportion of points in the neighbourhood should decrease, see Section 3.4.
In practice, k is usually chosen by cross-validation.

3.3. Depth functions

The above-presented method of the depth neighbourhood may be applied with an arbi-
trary depth, or localised depth function. In this paper, we mainly consider the halfspace
depth, the projection depth or the Mahalanobis depth. These depth functions are widely
used for classification purposes.

Let us recall that the halfspace (Tukey) depth of a point x w.r.t. a probability
distribution P of a random variable X is defined as

D(x, P ) = inf
‖u‖=1

P[u>(X − x) ≥ 0], (11)

i. e., the halfspace depth is the infimum of probabilities of closed halfspaces containing
the point x.

The projection depth of a point x w.r.t. a probability distribution P is defined as

D(x, P ) =
1

1 +O(x, P )
, O(x, P ) = sup

‖u‖=1

|(uTx− µPu)|
σPu

, (12)

where µPu is some location and σPu is some scale characteristic of the distribution of the
random variable uTX, usually the median and the median absolute deviation (MAD),
respectively. These characteristics are preferred to the mean and the standard deviation
because of their robustness.

The Mahalanobis depth of a point x w.r.t. a probability distribution P is defined as

D(x, P ) =
1

1 +M(x, P )
, (13)

where M(x, P ) = (x − µ)′Σ−1(x − µ) is squared Mahalanobis distance of the point x
from the centre of P denoted as µ.

The k depth nearest neighbours classifier with the above-mentioned depth functions is
quite good if the level sets of density f are convex, or even elliptically symmetric. Then
the approximation (9) may be even better than the approximation (5) (see Figure 1).
Other kinds of symmetry (lp-symmetry) can be utilized with specific depth functions,
see [5]. For asymmetric distributions, the correspondence of level sets of density and
depth can be approached by the use of local depth, as discussed in [13].

On the other hand, if the level sets of the probability density function are not convex,
then the approximation (9) needs not be sufficiently good. This problem may be solved
by using some version of a localised depth, see [13, 16] or [1], rather than a usual global
depth function such as the halfspace depth or the projection depth.
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3.4. Optimality of the k nearest depth neighbours classifier

In this section we show that the classifier (10) with the halfspace, projection or Ma-
halanobis depth is optimal when considering elliptically symmetric distributions Pi.
However, the distributions Pi need not be of the same nature, they may differ not only
in location and scatter matrix but quite generally in the family of distributions. Also,
the priors πi need not be equal for the optimality. These assumptions are then less
restrictive than is usual for basic depth-based methods like max-depth classifier (see
[10]). Although optimality is guaranteed only for elliptically symmetric distributions,
the classifier (10) is applicable in a more general situation, as shown in the simulation
study 4.

Let us start with two elliptically symmetric distributions P1 and P2 on Rd with
densities f1(·) and f2(·). Assume:

(Q1) fi(x) = γ

|Σi|1/2
gi (Mi(x)), where Mi(x) =

[
(x− µi)TΣ−1

i (x− µi)
]1/2

denote the

Mahalanobis distances of x from the µi, i = 1, 2, and γ is a normalising constant,

(Q2) gi are continuous functions, such that gi(cx) < gi(x) for arbitrary x ∈ R+ such
that gi(x) > 0 and c > 1, and gi(x) = 0⇒ gi(cx) = 0 ∀c > 1, i. e. gi are continuous
and monotone decreasing and strictly decreasing on sets {x : gi(x) > 0}.

Assumption (Q2) means that there are no central areas with high depth but zero prob-
ability.

Let us denote n = n1 +n2 the (total) size of the training set, n1 and n2 denoting the
number of observations from group 1 and group 2 in the training set. Further, denote kn
the number of points (from each group) included in the depth neighbourhood. Assume

kn
n→∞−→ ∞, kn

n

n→∞−→ 0.

We consider a sequence of independent d-dimensional random vectors X1,X2, . . .
with the same distribution P = π1P1 + π2P2. For any fixed n ∈ N and any fixed
x ∈ Rd denote X1, . . . ,Xn the training set and X1,1, . . . ,X1,n1

and X2,1, . . . ,X2,n2

the observations belonging to group 1 and 2, respectively. Denote an ordering relation
≺Mi by

x ≺Mi y if Mi(x) ≤Mi(y).

ObservationsXi,1, . . . ,Xi,ni can be ordered according to their Mahalanobis distances
from µi in an increasing order: Xi:1 ≺Mi

Xi:2 ≺Mi
. . . ≺Mi

Xi:mi(n) ≺Mi
x ≺Mi

Xi:mi(n)+1 ≺Mi
. . . ≺Mi

Xi:mi(n)+kn ≺Mi
. . . ≺Mi

Xi:ni

In what follows, we use Mahalanobis distance based neighbourhood of a point x ∈ Rd
defined as

OMi (x, h) :=
{
y ∈ Rd : Mi(y) ∈ [Mi(x),Mi(x) + h]

}
, i = 1, 2,

where Mi(·) denotes the Mahalanobis distance from µi. Recall that λd
(
OMi (x, h)

)
=

πd/2

Γ(d/2+1) |Σi|1/2
[(
Mi(x) + h

)d − (Mi(x)
)d]

.
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Theorem 3.2. Consider the mixture of two distributions P = π1P1 + π2P2, where the
distributions Pi satisfy (Q1–Q2) above. Let x be any fixed point in Rd such that fi(x) >
0 for both i = 1, 2. For any n ∈ N define a random variable C1(n) := M1(X1:m1(n)+kn)−
M1(x) and C2(n) := M2(X2:m2(n)+kn)−M2(x). Then it holds:

λd
(
OM1 (x, C1(n))

)
λd
(
OM2 (x, C2(n))

) → π2f2(x)

π1f1(x)
in probability as n→∞.

Under the assumptions (Q1–Q2), the halfspace depth or projection depth is a de-
creasing function of the Mahalanobis distance, as shown in [10]. Mahalanobis distance
based neighbourhood therefore coincides with depth-based neighbourhood defined as

ODi (x, `) :=
{
y ∈ Rd : Di(y) ∈ [Di(x)− `,Di(x)]

}
,

where Di(·) denotes the depth with respect to the distribution Pi and ` is a constant
which can be chosen to make the neighbourhoods coincide:

OMi
(
Mi(x), Ci(n)

)
= ODi

(
Di(x), `(Ci(n))

)
. (14)

As a corollary, the theorem implies the asymptotic equivalence of the classifier (10)
and the Bayes classifier (1) under the assumption that the volumes of OMi , i = 1, 2
(and equivalently of ODi ) may be consistently estimated. This is possible due to the
assumption on n and k and due to the fact that the depth central regions are convex
and the relation (14) holds.

3.5. Practical issues

Several practical issues need to be addressed when implementing the newly suggested
classifier.

• Choice of the depth function: The classifier is suggested in the way that enables the
use of any depth-function. However, it is advisable to use a depth function which
orders points unambiguously (with no ties – points of the same empirical depth).
Therefore, projection depth or Mahalanobis depth functions are convenient. On
the other hand, use of the halfspace depth or the convex hull peeling depth implies
the occurrence of the groups of points with equal depth. In this case, it is sometimes
necessary to choose a subset of points from a group of points with equal empirical
depth that should be included in the neighbourhood. The choice may affect the
procedure considerably.

• Estimation of the volume of the neighbourhood: The classifier is based on estimates
of volumes of neighbourhoods. However, the estimation may be a nontrivial task.
There are several ways how to deal with this problem. First, a certain shape
of the depth central regions may be assumed, e. g. it may be assumed they are
of an elliptic shape. In that case, it is sufficient to estimate the parameters of
the considered areas and subsequently compute their volumes. A more general
approach relies on the assumption of quasi-concavity of the depth-central regions,
see [26]. In this case, the central regions may be estimated using convex hulls of
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points with given or higher depth. This approach was used in the current paper –
we used function convhulln() from the R package geometry [12], for details see [2].
In the most general case, one needs to deal with estimation of volumes of non-
convex sets (when using, e. g., some localised depth whose central areas need not
be convex). In that case, one can plug-in, e. g., Voronoi diagram to solve the
estimation problem. However, this idea is still being explored and has not been
used in practice so far.

• Inclusion of the new point into its neighbourhood: It may be a bit surprising that
a new point (which needs to be classified) may not be included in its estimated
distributional neighbourhood. Nevertheless, it happens from time to time if the
estimation is based only on the points from the training set. For illustration,
consider theoretical neighbourhood in the case of bivariate normal distribution
which is an area between two ellipses. Empirical counterparts of these ellipses are
polygons. Some points of the theoretical neighbourhood of a given point (including
the point itself) may therefore be outside of the empirical neighbourhood (lie
outside the area between the two polygons). We recommend to include the new
point in its empirical neighbourhood.

• The problem of so-called outsiders: An outsider is a point that is not within the
convex hull of at least one training set, see [18]. The outsiders may be classified
in the same way as other points by the newly suggested classifier since they are
included in their estimated neighbourhoods, as suggested above. However, in many
situations, lower AMR may be obtained by the classification of outsiders based on
the maximum Mahalanobis depth.

4. SIMULATION STUDY AND ANALYSIS OF BENCHMARK DATA SETS

We explored the properties of the newly proposed classifier in a simulation study. We
compared its performance to several depth-based classifiers as well as the traditional
k nearest neighbour method. The distributional settings used in the simulation are
based on the settings used in [19] and [18]. This enables a straightforward comparison
with two efficient depth-based classifiers – the DD classifier and the DD-alpha procedure.
Various two-dimensional distributions are considered in this main part of the simulation.
Moreover, we added a short simulation study dealing with applicability of the procedure
in higher dimensions. The practical applicability of the new method is illustrated by an
analysis of two benchmark data sets.

4.1. Simulation in R2: settings

Let us first list the compared classifiers. The newly suggested procedure – k nearest
depth neighbour method (kNDN) – is compared to three depth-based classifiers and one
classical classifier. The considered depth-based procedures are the DD-plot classifier
(DD) suggested in [19], the DD-alpha procedure (DDalpha) suggested in [18], and the
classifier based on the idea of symmetrisation (Sym) suggested in [24]. We used the
implementation of the first two procedures that is available in the R package ddalpha
[25]. The last procedure (Sym) was implemented by ourselves. The classical methods are
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represented by the k-nearest neighbour method (kNN) which outperforms the LDA and
QDA in eight of the ten considered examples (except for the first two examples). The
parameter k in the kNN was selected by the leave-one-out cross-validation. Finally, the
performance of the optimal Bayes classifier (which is based on theoretical density and
is not available in practice) is also studied and visualised. This serves as a benchmark
of the best attainable classification.

There are many factors influencing performance of the depth based classifiers. We
have gained a basic insight into influence of size of the training set (see the following
paragraphs), and choice of the depth function. Projection depth and Mahalanobis depth
were used for all classifiers (see section 3.5 where reasons for this choice are explained).
Projection depth was computed by a procedure using 1, 000 randomly selected projec-
tions, for more details see documentation of the R package ddalpha [25]. In examples
including asymmetric distributions (7–10), the newly suggested classifier was also used
with local depth introduced in [23] implemented in the R package DepthProc [17].

Let us now describe distributional settings (10 different examples) used in the simula-
tion. All the examples deal with a two class problem in two-dimensional real space. The
first six examples deal with symmetric distributions, the remaining four examples in-
clude asymmetric distributions. The examples are summarised in Table 1. Let us briefly
explain the shortcuts used in Table 1. The covariance matrix Σ0 used in examples 1–6
has the following form:

Σ0 =

(
1 1
1 4

)
.

In the fifth example, we consider the same distributions as in the first example, but
now there are 10 % of the points in the training set of the group 1 which come from
N(10 · 1,Σ0). Similarly, this contamination is considered in the sixth example where
we consider the same distributions as in the second example. In the case of bivariate
exponential distributions, we consider the distribution with independent marginal ex-
ponential distributions. The bivariate mix-normal distribution used in example 9 comes
up as a product of two independent distributions of the following form:

MixN(µ, σ1, σ2) =

{
−σ1 · |N(0, 1)|+ µ with probability 1/2,
σ2 · |N(0, 1)|+ µ with probability 1/2.

One hundred repetitions of the simulations were performed for each distributional
setting. Each run was performed in the following way: the training data set containing
N points from each of the considered distributions was generated. Two different training
sample sizes were considered: N = 50 and N = 250. Subsequently, another 100 points
from each group constituting the test set were generated and classified. The average
misclassification rate was then computed and recorded.

The depth-based procedures that are inspired by the kNN method – kNDN and Sym
– are dependent on number of considered neighbours (parameter k). For Sym procedure,
we considered k corresponding to 1%, 5%, 10%, 15%, and 20% of N (number of points
from individual groups in the training set). For kNDN procedure, only 10 and 20 percent
were considered.
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Group 1 Group 2
Ex. Distribution Parameters Distribution Parameters
1 Normal 0,Σ0 Normal 1,Σ0

2 Normal 0,Σ0 Normal 1, 4Σ0

3 Cauchy 0,Σ0 Cauchy 1,Σ0

4 Cauchy 0,Σ0 Cauchy 1, 4Σ0

5 Contamin. normal 0,Σ0 Normal 1,Σ0

6 Contamin. normal 0,Σ0 Normal 1, 4Σ0

7 Bivar. exponential 1, 1 Shifted bivar. expon. (+1) 1, 1
8 Bivar. exponential 1, 1/2 Shifted bivar. expon. (+1) 1/2, 1
9 Bivar. mix-normal (0,1,2), (0,1,4) Bivar. mix-normal (1,1,2), (1,1,4)
10 Normal 0, I Bivar. exponential 1, 1

Tab. 1. Examples used in the simulation study.

4.2. Simulation in R2: results

The main results of the simulation study are presented in Figures 2 and 3 (for examples
1–6), Figures 4 and 5 (for examples 7–10), respectively. Boxplots of average misclassifi-
cation rates of the considered classifiers are plotted there.

For each of the four depth-based methods (kNDN, Sym, DDalpha, and DD), several
possible versions were examined from which the best one was always highlighted by
light grey colour. Shortcuts of the classifiers is amended by one of the letters P, M,
and L denoting used depth function – projection, Mahalanobis or local (parameter of
lacality beta = 0.7 turned out to be appropriate choice in all considered situations). For
the kNDN classifier, percentage determining k (10p or 20p) is indicated. For the Sym
classifier, values of k are added to the shortcut Sym.

The only classical classifier (kNN) can be distinguished by a darker shade of grey and
the lowest achievable misclassification rate obtained by the Bayes classifier (not available
in practice since it assumes known densities) is plotted in dark grey.

Main observations based on the simulation:

• For the kNDN classifier, the projection depth provides better results than the
Mahalanobis depth in examples 3-10. Considering asymmetric cases, the local
depth is appropriate in all four examples (although in example 10 it is slightly
outperformed by the projection depth). Improvement gained by the use of the
local depth is more visible for the larger training set (N=250).

• Let us evaluate examples 1, 3, and 5, in which the considered distributions are
elliptically symmetric with equal characteristics of dispersion. In these situations,
the compared classifiers perform similarly well. Slightly worse performance can
be recorded for kNN in examples 1 and 3 irrespective of N , the Sym classifier in
example 1 for N = 50, and the kNDN procedure in example 5 for N = 50.



26 O. VENCÁLEK AND D. HLUBINKA

●●

●

● ●

●●

●

●

●●

●

●

●

●

●

●● ●●● ●

●

●●

●

●

●● ●●

●●

●●● ●

●● ●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●● ●

● ●

●

●

●

● ●

●

●●●

●

●

●

●●

●

example: 5 example: 6

example: 3 example: 4

example: 1 example: 2

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

0.3 0.4 0.5 0.6 0.3 0.4 0.5

0.2 0.3 0.4 0.5 0.2 0.3 0.4

Bayes
kNN

DD−M
DD−P

DDalpha−M
DDalpha−P

Sym−3
Sym−5
Sym−7

Sym−11
kNDN10p−M
kNDN20p−M
kNDN10p−P
kNDN20p−P

Bayes
kNN

DD−M
DD−P

DDalpha−M
DDalpha−P

Sym−3
Sym−5
Sym−7

Sym−11
kNDN10p−M
kNDN20p−M
kNDN10p−P
kNDN20p−P

Bayes
kNN

DD−M
DD−P

DDalpha−M
DDalpha−P

Sym−3
Sym−5
Sym−7

Sym−11
kNDN10p−M
kNDN20p−M
kNDN10p−P
kNDN20p−P

Bayes
kNN

DD−M
DD−P

DDalpha−M
DDalpha−P

Sym−3
Sym−5
Sym−7

Sym−11
kNDN10p−M
kNDN20p−M
kNDN10p−P
kNDN20p−P

Bayes
kNN

DD−M
DD−P

DDalpha−M
DDalpha−P

Sym−3
Sym−5
Sym−7

Sym−11
kNDN10p−M
kNDN20p−M
kNDN10p−P
kNDN20p−P

Bayes
kNN

DD−M
DD−P

DDalpha−M
DDalpha−P

Sym−3
Sym−5
Sym−7

Sym−11
kNDN10p−M
kNDN20p−M
kNDN10p−P
kNDN20p−P

Average misclassification rate

C
la

ss
ifi

er

Fig. 2. Average misclassification errors, examples 1–6, N = 50.
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Fig. 3. Average misclassification errors, examples 1–6, N = 250.
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Fig. 4. Average misclassification errors, examples 7–10, N = 50.

• Consider now examples 2, 4, and 6, in which the considered distributions are
elliptically symmetric but differ also in dispersion. The most significant differences
are noticeable in example 2 in which kNN and Sym procedures perform worse than
the other three classifiers. The kNDN classifier outperformed all its competitors
in this example in the case N = 50. In examples 4 and 6, all classifiers perform
similarly well. The kNDN classifier is slightly worse than the DD and the DDalpha
and slightly better than the Sym classifier and the kNN in example 4, but the
differences get smaller with increasing N .
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Fig. 5. Average misclassification errors, examples 7–10, N = 250.

• Regarding examples including asymmetric distributions (7–10), the kNDN over-
comes the DDalpha in all cases. In example 7, kNDN is comparable to the DD,
the Sym, and the kNN when N = 250, but is slightly worse than these classifiers
when N = 50. In example 8, the ordering of classifiers (from the best one) is
kNN, Sym, kNDN, DDalpha, and DD. The kNN and Sym classifiers outperform
the other classifiers also in example 9. In example 10, the kNDN overcomes all
its competitors when N = 250 and performs similarly well as DD, Sym, and kNN
when N = 50.
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4.3. Simulation in R5

We explored possibility of using the kNDN classifier also in higher-dimensional space.
We considered two simple cases, both with equal priors:

• Example 1: two d-dimensional normal distributions with covariance matrix equal
to identity matrix differing only in the mean value of the first coordinate (difference
equal to one), i. e.

P1 = Nd ((0, 0, . . . , 0)′, Id) P2 = Nd ((1, 0, . . . , 0)′, Id) .

• Example 2: two d-dimensional normal distributions differing in the mean value of
the first coordinate (difference equal to one), as well as in scale. More precisely:

P1 = Nd ((0, 0, . . . , 0)′, Id) P2 = Nd ((1, 0, . . . , 0)′, 4Id) .

First, we examined proportion of so called outsiders – points from the test set located
out of the convex hulls of both groups of points in the training set. Table 2 shows
increasing proportion of outsiders (see the last column of the table) implied by increasing
dimension. This proportion also closely relates to the size of the training set – the larger
the training set, the less outsiders. Therefore, we decided to work with training sets
containing N = 1000 or N = 4000 points from each group.

We used function inhulln() from the R package geometry [12] for testing whether a
given point lies within a convex hull of some other points. We found that the current
implementation of this function works properly only to dimension 8 when 4000 points
are considered. This determines the current limit of applicability of the newly suggested
method.

Table 2 also includes information about time (in seconds) needed for computation
of the values in the corresponding line. These values are based on 100 repetitions in
which N points from each group (example 1) are generated and another 100 points from
each group are tested (whether they belong to both convex hulls). Considering time
demands, we decided to perform the simulation for dimension d = 5.

Results of the simulation study in five-dimensional space are shown in Figure 6. From
this figure, we can conclude that all the compared classifiers perform similarly well in
example 1, but different performance is recorded in example 2. In the second example,
the Sym method as well as the kNN method lead to higher error rates, while the kNDN,
DD and DDalpha remain close to the lowest achievable error rates (represented by the
Bayes classifier).

4.4. Real-data examples

In this section, we show the performance of the newly proposed classifier on two well
known datasets. Both of them were studied in [18] and [19], the later one was also
studied in [24].

• The biomedical data first discussed by Cox, Johnson and Kafadar [4] are four-
dimensional data divided into two groups. The first group consists of 127 subjects,
the second one of 67 subjects. From these observations, we repeatedly generated
training sets of 100 + 50 subjects and used the rest of the data as test sets.
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dim N time [s] in both only one – correct only one – false outsiders
2 200 1 85.93 8.71 2.18 3.18

1000 1 95.18 3.75 0.40 0.67
4000 1 98.09 1.63 0.13 0.15

3 200 1 72.36 14.90 3.65 9.09
1000 1 90.32 6.20 1.17 2.31
4000 2 96.03 2.86 0.40 0.71

4 200 1 57.57 17.19 6.24 19.00
1000 2 82.97 9.03 2.42 5.58
4000 7 92.48 4.73 0.85 1.94

5 200 2 41.42 18.65 6.41 33.52
1000 11 70.48 12.74 3.75 13.03
4000 46 86.43 7.20 1.57 4.80

6 200 10 26.54 16.66 7.40 49.40
1000 94 57.80 15.30 4.57 22.33
4000 428 78.69 9.65 2.39 9.27

7 200 69 16.53 12.72 6.42 64.33
1000 692 45.62 15.35 5.54 33.49
4000 3392 68.63 11.68 3.46 16.23

8 200 445 9.06 9.52 4.90 76.52
1000 5304 34.77 15.01 5.75 44.47
4000 30335 58.83 13.00 4.27 23.90

Tab. 2. Example 1, section 4.3: Percentage of points lying inside of

both convex hulls of points in training set (column: in both), only in

the convex hull corresponding to the group from which the point was

generated (only one – correct), only in the convex hull corresponding

to the other group (only one – false), and to none of the convex hulls

(outsiders).

• The blood transfusion data was first used by Yeh, Yang and Ting [28]. These
data are three-dimensional and they are divided into two groups. The first group
consists of 570 subjects, the second one of 178 subjects. We repeatedly generated
training sets of 400 + 100 subjects and used the rest of the data as test sets.

We compared the same classifiers as in Section 4.1. For the depth-based classifier, we
tried the projection and the Mahalanobis depth. For the kNDN method, we choose
number of neighbours (k) equal to 5, 10, and 20, respectively. For the Sym method, we
choose number of neighbours (k) equal to 1, 5, and 11, respectively. We recomputed the
misclassification rates presented in the literature.

The results are presented in Table 3 which includes average misclassification rates
(in %), standard errors (in brackets) and information which depth and which number of
neighbours turned out to be the best choice in the considered situation.

The kNDN classifier achieved the 2nd highest average misclassification rate (it was
outperformed by 3 competitors)in both cases. For the biomedical data, failure of the
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Fig. 6. Average misclassification errors, examples in Section 4.3.

Sym classifier is evident while the other four classifiers do not differ much – the difference
between the best one (DDalpha) and the 4th one (kNDN) is less than 1%. For the blood
transfusion data, classical kNN method was surprisingly the worst of the considered
methods while the best results were achieved by the DDalpha and the Sym classifier.

5. CONCLUDING REMARKS

The newly proposed k nearest depth neighbour (kNDN) method is an alternative to the
methods based on density estimation. We have shown that, in contrast to the classical
kNN, it can utilize global properties of the considered distributions like their symmetry.
In contrast to the maximal depth classifier and related classifiers, the kNDN method
does not have problems with classification when the considered distributions differ in
the dispersion.

In the simulation study, it was shown that the newly suggested classifier perform
competitively and is able to overcome the other depth-based classifiers in some situations.

There are already two different classifiers that combine depth-based classification
and the k-nearest neighbour procedure, see [24] and [27]. It is useful to realise that
these approaches are based on different notions of the neighbourhood. Vencalek [27]
uses depth transformation followed by the classical kNN in the DD-space and, therefore,
the neighbouring points are those with similar depths w.r.t. both (all) distributions.
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Dataset kNN DD DDalpha symkNN kNDN

Biomedical 14.32 13.89 13.84 19.11 14.82
(0.45) (0.47) (0.48) (0.53) (0.45)

Mahal. Mahal. k = 1 proj., k = 20
Blood transfusion 29.74 28.10 26.80 26.83 28.94

(0.13) (0.23) (0.22) (0.15) (0.24)
proj. Mahal. k = 11 proj., k = 20

Tab. 3. Average misclassification rates (in %) with standard errors

(in brackets); comparison of classifiers on real datasets.

Paindaveine and Van Bever [24] use the idea of symmetrisation and, therefore, the
neighbouring points are those with the highest depth w.r.t. the symmetrical distribution
with a centre at a point which has to be classified. In the current paper, we use a
distributional neighbourhood defined as an area of points with similar depth, w.r.t. a
given distribution, as the studied point.

APPENDIX

Proof of Theorem 3.2: Let us consider a fixed point x ∈ Rd. Throughout the proof,
we denote Mahalanobis distance based neighbourhoods OMi (x, Ci (j)) by Oi (Ci (j)) for
simplicity. We want to show that

∀ε > 0 ∃j0 ∈ N : j ≥ j0 ⇒ P

(∣∣∣∣λd (O1 (C1 (j)))

λd (O2 (C2 (j)))
/
π2f2(x)

π1f1(x)
− 1

∣∣∣∣ > ε

)
< ε. (15)

For any given ε > 0 we can find constant c0(ε) > 0 such that gi(Mi+c0(ε))
gi(Mi)

> 1 − ε for

both i = 1, 2. Notice that this inequality implies gi(Mi+c)
gi(Mi)

> 1 − ε for both i = 1, 2 for

all c ∈ [0, c0(ε)]. Denote p(ε) := min {π1P1 (O1(c0(ε))) , π2P2 (O2(c0(ε)))}.
Assume j ∈ N to be large enough to ensure

(A1) kj/nj < p(ε)/2 and

(A2) k
−1/4
j < ε.

In the three following steps, we show that for any j ∈ N satisfying these two assump-
tions the inequality in (15) holds. Since now assume j to be fixed (satisfying conditions
above) and we write k, n and Ci, i = 1, 2 instead of kj , nj and Ci(j), i = 1, 2 for simplicity.

Step 1:
We can find positive (uniquely determined) constants c1 and c2 such that

π1P1 (O1(c1)) = k/n = π2P2 (O2(c2)) . (16)

Obviously 0 < ci < c0 for both i = 1, 2.
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Now

λd(O1(c1))
λd(O2(c2))

π2f2(x)
π1f1(x)

=

|Σ1|1/2[(M1+c1)d−Md
1 ]

|Σ2|1/2[(M2+c2)d−Md
2 ]

π2|Σ2|−1/2g2(M2)

π1|Σ1|−1/2g1(M1)

=
π1g1(M1)

[
(M1 + c1)d −Md

1

]
π2g2(M2)

[
(M2 + c2)d −Md

2

] . (17)

Using the equation (16) the ratio (17) can be written as

π2P2(O2(c2))

π2g2(M2)
[
(M2 + c2)d −Md

2

] · π1g1(M1)
[
(M1 + c1)d −Md

1

]
π1P1(O1(c1))

=

=

∫M2+c2
M2

g2(r)rd−1dr

g2(M2)
[
(M2 + c2)d −Md

2

] · g1(M1)
[
(M1 + c1)d −Md

1

]∫M1+c1
M1

g1(r)rd−1dr
. (18)

Now we can find upper bound for this ratio (and analogous lower bound). Since gi(·)
are decreasing functions, it holds g2(r) > g2(M2 + c2) for all r ∈ [M2,M2 + c2) and
g1(r) < g1(M1) for all r ∈ (M1,M1 + c1). Hence (18) is bounded from below by∫M2+c2
M2

g2(M2 + c2)rd−1dr

g2(M2)
[
(M2 + c2)d −Md

2

] · g1(M1)
[
(M1 + c1)d −Md

1

]∫M1+c1
M1

g1(M1)rd−1dr
=
g2(M2 + c2)

g2(M2)
· g1(M1)

g1(M1)
> 1−ε.

Similarly, the upper bound for the ratio can be computed.

Step 2:
We find positive constants cL1 , c

U
1 and cL2 , c

U
2 such that

π1P1

(
O1(cL1 )

)
= k−k3/4

n = π2P2

(
O2(cL2 )

)
,

π1P1

(
O1(cU1 )

)
= k+k3/4

n = π2P2

(
O2(cU2 )

)
.

These constants are again unique and less than c0.
Now consider any constant cS1 ∈ [cL1 , c

U
1 ] and cS2 ∈ [cL2 , c

U
2 ]. We do not assume

π1P1

(
O1(cS1 )

)
= π2P2

(
O2(cS2 )

)
. Nevertheless, it can proved that the ratio

λd(O1(cS1 ))
λd(O2(cS2 ))

/π2f2(x)
π1f1(x)

is close to one.
We can proceed similarly as in the first step:

λd
(
O1

(
cS1
))

λd
(
O2

(
cS2
))/π2f2(x)

π1f1(x)
=
π1g1(M1)

[
(M1 + cS1 )d −Md

1

]
π2g2(M2)

[
(M2 + cS2 )d −Md

2

] . (19)

The fraction can be extended by

π1P1(O1(cS1 ))

π1P1(O1(cS1 ))

π2P2(O2(cS2 ))

π2P2(O2(cS2 ))

π2P2(O2(c2))

π1P1(O1(c1))
,

where the last term is equal to one from (16). After a convenient arrangement we get
(19) equals to

g1(M1)
[
(M1 + cS1 )d −Md

1

]
P1(O1(cS1 ))

· P1(O1(cS1 ))

P1(O1(c1))
· P2(O2(cS2 ))

g2(M2)
[
(M2 + cS2 )d −Md

2

] · P2(O2(c2))

P2(O2(cS2 ))
.
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Ratios
P(Oi(c

S
i ))

P(Oi(ci))
are not greater than (k+k3/4)/n

k/n = 1 + k−1/4 and not smaller than

(k−k3/4)/n
k/n = 1 − k−1/4. Recall that k is so big that k−1/4 < ε. The first and the third

term are both bounded similarly as the ratio in the step 1.

The considered ratio is thus not greater than (1+ε)2

1−ε and not less than 1−ε
(1+ε)2 .

Step 3:
We show that Ci ∈ [cLi , c

U
i ] with probability greater than 1−2ε both for i = 1, 2. Consider

a random sample of n points from the mixture P (some of the randomly sampled points
are from P1 and some are from P2).

Let ZLi , i = 1, 2, denote numbers of points from Pi lying in Oi(c
L
i ). ZLi , i = 1, 2,

are binomial random variables: ZLi ∼ Bi
(
k−k3/4
n , n

)
. Let ZUi , i = 1, 2, denote numbers

of points from Pi lying in Oi(c
U
i ). ZUi , i = 1, 2, are binomial random variables: ZUi ∼

Bi
(
k+k3/4

n , n
)

.

Obviously Ci /∈ [cLi , c
U
i ] iff either ZLi > k (in that case Ci < cLi ) or ZUi < k (in that

case Ci > cUi ). Now

P
(
ZLi > k

)
= P

ZLi − EZLi
SD(ZLi )

>
k − (k − k3/4)√

(k − k3/4)(1− k−k3/4
n )

 .

The standard deviation of the considered binomial distribution is smaller than k1/2,
hence

P
(
ZLi > k

)
< P

(
ZLi − EZLi
SD(ZLi )

> k1/4

)
≤ k−1/2 < ε,

where the second inequality follows from the Chebyshev’s inequality and the last in-
equality follows from the assumption (A2).

Similarly it can be shown that P
(
ZUi < k

)
< ε. Hence P

(
Ci ∈ [cLi , c

U
i ]
)
> 1− 2ε. �
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