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ON THE JENSEN–SHANNON DIVERGENCE
AND THE VARIATION DISTANCE
FOR CATEGORICAL PROBABILITY DISTRIBUTIONS

Jukka Corander, Ulpu Remes, Timo Koski

We establish a decomposition of the Jensen–Shannon divergence into a linear combination
of a scaled Jeffreys’ divergence and a reversed Jensen–Shannon divergence. Upper and lower
bounds for the Jensen–Shannon divergence are then found in terms of the squared (total)
variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker
inequality. We use these bounds to prove the asymptotic equivalence of the maximum likeli-
hood estimate and minimum Jensen–Shannon divergence estimate as well as the asymptotic
consistency of the minimum Jensen–Shannon divergence estimate. These are key properties for
likelihood-free simulator-based inference.

Keywords: blended divergences, Chan–Darwiche metric, likelihood-free inference, implicit
maximum likelihood, reverse Pinsker inequality, simulator-based inference

Classification: 62B10, 62H05, 94A17

1. INTRODUCTION

1.1. Background: Simulator-based modeling and inference

The Jensen–Shannon Divergence (JSD) is a numerical quantity expressing the degree of
disagreement between two probability distributions. JSD is a special case of the fam-
ily of φ-divergences between two probability distributions, see [13] and [49] for general
presentations. There is an abundance of applications of various φ-divergences in, e. g.,
statistical inference, signal processing and machine learning, see [2] for a survey. The
study of JSD in the present paper has its background in the development of likelihood-
free inference in [20] for the context of simulator-based modeling. The paper [35] is
a survey of inference by approximate Bayesian computing in simulator-based model-
ing. The more recent survey [11] covers also a wider range of methods for inference in
simulator-based modeling like, e. g., probabilistic programming.

Many recent mechanistic models, e. g., in genetics, medicine and molecular biology,
describe a data generating process in nature by complex, high-accuracy simulator models
and the existing computing power gives the ability to generate synthetic data from them.
However, simulator models are often not amenable to a tractable analytical treatment.
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For example, the likelihood functions of the model parameters cannot be written down
explicitly, since, e. g., a marginalization over some usually large space of latent variables
is required. In the terminology of Diggle and Gratton in [15, p.193] such a likelihood
function is called implicit. In the same vein, a prescribed model is a model with the
likelihood specified by a data distribution in closed form [15, lo.cit.].

Simulator-based models are functions Mc that map the model parameters and some
random variables to synthetic data. The functions Mc are generally implemented as
computer programs, where the parameter values are provided as input and where the
random variables are drawn sequentially by making calls to a random number generator.
The parameters govern the interesting regularities of a data source in nature, whereas the
random variables represent the stochastic variation inherent to the simulated process.
The mapping Mc may be as complex as is asked for, and this generality of simulator-
based models allows one to implement a scientifically plausible implicit generative model,
which needs not be ruled out on the grounds of mathematical intractability. Of course,
to paraphrase [15, p.210], there is no merit in fitting an arbitrary implicit model in
favour of a simpler prescribed model, unless the former has a scientific justification.

The notations to be used next serve the purpose of a quick intuitive introduction
and will be made more precise in the paper. Let X be the observed data set and
Xθ be an output of Mc at θ, both with values in a finite alphabet A. A key part of
simulator-based inference is frequently the selection of summary statistics. In [20] Xθ

and X are summarized by their respective empirical categorical distributions P̂Xθ
and

P̂X on A. One option for an approximation of the implicit likelihood is to evaluate
the JSD between P̂Xθ

and P̂X to be minimized as a function of θ. This minimization
can be done by BOLFI (Bayesian optimization for likelihood-free inference), see [4]
and [20, Section 6.], a method implemented in ELFI, which is a statistical software
package suitable for such a mininization. ELFI has been developed by the team of
authors in [36]. Concisely stated, the JSD between P̂Xθ

and P̂X in view of [20] is an
estimate of the implicit likelihood function. We prove here that the minimum of JSD-
estimate of θ is asymptotically equivalent to the maximum likelihood estimate (MLE)
of θ based on X. Here we take advantage of the general properties of φ-divergences, and
in particular those of the Kullback-Leibler divergence, the Jeffreys’ divergence and the
(total) variation distance. The work in [33] minimizes an expected Euclidean distance
between X and Xθ, as data in a general Euclidean space, to find the implicit MLE. It
is shown in [33], under fairly restrictive conditions, that a certain non-trivial scaling of
the estimate is the MLE.

1.2. Total variation distance and JSD

JSD was up to our understanding first introduced in 1969 by Sibson in [43], under the
name information radius (of first order), the biological impetus can be found in [26]
and is clarified briefly in the observation 7.3 below. Independently, Topsøe dealt with
JSD in [46] and called it capacitory information. Sibson proved, amongst other, that
certain JSD-neighborhoods form a basis for the variation distance topology, we shall
state this fact more precisely in Section 2.3. We bound JSD upwards and downwards
by the squared variation distance.

The variation distance is effectively the only φ-divergence that is a metric, see [27],
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see also [50, Corollary p.898] for a transparent proof, in the sense that, if a φ-divergence
is a metric, then it is proportional to the variation distance. The square root of the
symmetric JSD is a metric, see [16], a special case of a general result on metricity of
positive powers of φ-divergences [50, Thm 1, p.891]. Total variation distance appears like
a center node in a graph when a number of inequalities to other measures of difference
between probability measures used in statistics are depicted pictorially, see [18, Figure1,
p.421]. In the comprehensive and deep study [41] the inequalities between total variation
and φ-divergences are summarized in [41, pp.5973–5974]. The most recent techniques
for deriving inequalities for φ-divergencies appear in [40]. A survey of the inequalities for
φ-divergences of categorical distributions is found in [1]. The survey [18, p.429] provides
a summary of inequalities for total variation distance w.r.t. the well known metrics of
probability theory.

JSD is operationally relevant in machine learning, see, e. g., [38], [42] and [44]. Due
to the applications we have in mind, we are restricting ourselves to probabilities on finite
discrete sets (alphabets), to be called categorical distributions. Chan and Darwiche have
introduced a metric between two categorical distributions in [6] and [7]. There is no quick
way of comparing a φ-divergence to the Chan–Darwiche metric. When we consider the
special case of the multivariate Bernoulli distributions on the binary hypercube, we can
express the bounds on JSD in terms of the Chan–Darwiche metric.

1.3. Organization of the paper

The notations and definitions, including Chan and Darwiche metric, φ-divergences, JSD,
and reversed JSD, are presented in Section 2. Here JSD and reversed JSD are introduced
by the notion of blending in [29]. The Pinsker inequality and reverse Pinsker inequality,
see [41] are used for the first upper and lower bounds for JSD in terms of the variation
distance in Section 3. The bounds based on a decomposition of the JSD as a linear
combination of a scaled Jeffreys’ divergence and a reversed JSD are in Section 4. The
decomposition is derived by means of the compensation identity [46] and is bounded by
the reverse Pinsker inequality. In Section 5, the proof of consistency of the minimization
of JSD, when there is a true distribution inside the model, is based on taking the square
root of the inequalities and then using the triange inequality for the variation distance.
Thereafter we can apply the complete convergence results in [3] and [14]. The same
argument shows also that the minimum JSD-estimate is asymptotically equivalent to the
MLE. We can thus actually compute the MLE by the minimum JSD, if the likelihood
is implicit. There are simulation studies in Section 6 for comparison of MLE and the
minimum JSD-estimate. Instances of the derived bounds with explicit expressions for
the multivariate Bernoulli distributions are given in Section 7, which partly are based
on the special representation of the multivariate Bernoulli distribution found in [22].

2. CATEGORICAL DISTRIBUTIONS AND THE JENSEN–SHANNON
DIVERGENCE

2.1. Categorical distributions and a metric

Let A = {a1, . . . , ak} be a finite alphabet, k ≥ 2. A and k are known. P is the set of
all probability distributions on A. Every P ∈ P is called a categorical distribution, and
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can be represented as,

P (x) =

k∏
i=1

p
[x=ai]
i , x ∈ A, (1)

where [x = ai] = 1, if x = ai and [x = ai] = 0 otherwise (the Iverson bracket),

(00 = 1, 01 = 0), and pi ≥ 0,
∑k
i=1 pi = 1. If we have a random variable X assuming

values in A such that the probability of X = ai is pi, we write X ∼ P . The support
of P ∈ P is supp(P ) = {ai ∈ A| pi = P (ai) > 0}. Models M are subsets of P, where
P ∈ M is depending on a finite number of real valued parameters with the generic
symbol θ ∈ Θ. For k functions pi(θ) of θ, such that pi(θ) ≥ 0,

∑k
i=1 pi(θ) = 1 for all

θ ∈ Θ we have that Pθ(x) :=
∏k
i=1 pi(θ)

[x=ai], x ∈ A, is a parametric distribution Pθ ∈ P
and the corresponding model is M = {Pθ | θ ∈ Θ}. In simulation-based inference the
simulator itself induces M. The notion of implicit likelihood due to Diggle and Gratton
[15] means in the case of Pθ ∈ P that all of pi(θ) are implicit or intractable, i. e., cannot
be expressed in closed form. We cite two cases.

Example 2.1. In [9] Wright−Fisher theory about the multilocus negative frequency-
dependent selection is used as the model of the evolution of genotype frequencies. The
categories are vaccine-type statuses combined with sequence clusters of binary strings
representing the presence and absence of a number of antibiotic-resistance phenotypes
present in a certain bacterial population. The category probabilities are functions of the
carrying capacity of an environment, migration rate, and the vaccine selection pressure
and its magnitude. The likelihood function for these parameters based on observed
frequencies P̂ of each category is intractable, but one can simulate M, in this case
the generative Wright−Fisher model, to get the synthetic relative frequencies under
any parameter setting and then find the (symmetric) θ̂n,JS. Further data-analysis with
minimum symmetric JSD in this framework is presented in [23].

Example 2.2. Suppose we have a theory domain entertaining k functions gi (θ), i =
1, . . . , k of interest, tractable or not. Then a categorical distribution is determined by
the soft-max assignments pi(θ) = egi(θ)/C(θ), i = 1, . . . , k. In these situations, that
occur, e. g., in neural networks and discriminative classification, frequently no closed
form exists for the normalization C(θ). But synthetic samples of Pθ are still readily
generated without access to a tractable C(θ) by, e. g., the well known Gumbel-Max
trick, see [51, Lemma 6, p.123].

Following Chan and Darwiche, see [6] and [7], we introduce for P ∈ P and Q ∈ P the
quantity

DCD(P,Q) := max
x∈A

ln
P (x)

Q(x)
−min
x∈A

ln
P (x)

Q(x)
. (2)

If supp(P ) ∩ supp(Q) = ∅, then DCD(P,Q) = +∞. We take 0/0 = 1. It is shown in [6,
Thm 2.1] that DCD(P,Q) is a metric on P2. The following simple example will play a
part in Section 7 via Appendix A.

Example 2.3. Here A = {0, 1} and θ ∈ (0, 1). Let

pθ(x) := (1− θ)[x=0] · θ[x=1], x ∈ {0, 1}. (3)
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Then MBe = {pθ|0 < θ < 1} is the family of Bernoulli distributions. We take q(x) =
p1/2(x) = 1/2 for x ∈ {0, 1}. Then (2) yields

DCD(pθ, q) =

{
ln θ

1−θ if 1/2 ≤ θ < 1;

ln 1−θ
θ if 0 < θ < 1/2.

(4)

Hence it is seen that DCD(pθ, q) > 0 if θ 6= 1/2 and DCD(p1/2, q) = 0. The expression
(4) is the link connecting DCD to JSD between two multivariate Bernoulli distributions.

The φ-divergences to be discussed next are not metrics in general. DCD(P,Q) is
constructed to measure the distance between P and Q, when P is an up-date of Q on
a set of events, e. g., Jeffrey’s update and Pearl’s virtual up-date. It is shown in [6] and
[7] that, e. g., Kullback-Leibler divergence can fail to make a meaningful comparison of
up-dates.

2.2. φ-divergences

We define first a divergence function, see, e. g., [29, Def.1, p.44] or [40, Def. 3, p.32].

Definition 2.4. A divergence function φ(x) is a continuous convex function (0,+∞)
φ7→ R ∪+∞, φ(1) = 0, and strictly convex at x = 1. If p = 0, we take qφ(p/q) = qφ(0),
where φ(0) = limx↓0 φ(x). If q = 0, we take qφ(p/q) as p limx→+∞ φ(x)/x.

For two categorical distributions Q ↔ Q(x) =
∏k
i=1 q

[x=ai]
i ∈ P and P ↔ P (x) =∏k

i=1 p
[x=ai]
i ∈ P and for a divergence function φ, we define the φ-divergence [49] between

P and Q as

Dφ(P,Q) :=
∑
x∈A

Q(x)φ

(
P (x)

Q(x)

)
=

k∑
i=1

qiφ

(
pi
qi

)
, (5)

where we applied (1). We have the adjoined function, also known as the conjugated
function,

φ∗(x) = xφ

(
1

x

)
, x ∈ (0,+∞). (6)

The adjoined function has the property Dφ∗(P,Q) = Dφ(Q,P ). It holds that

φ(1) ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0). (7)

This gives Dφ(P,Q) = 0 ⇔ P = Q. The range property in (7) is proven by Liese and
Vajda in [32, Thm 5].

Several distinct φ-divergences appear in the sequel. For the first instance, we select in
(5) φ(x) = x lnx, the resulting divergence is known as the Kullback-Leibler divergence
(KL) and is denoted by DKL(P,Q). In general DKL(P,Q) 6= DKL(Q,P ), if P 6= Q. If
there is a pair pi > 0 and qi = 0, then DKL(P,Q) = +∞ by the properties of divergence
functions stated in definition 2.4. The expression

DJe(P,Q) := DKL (P,Q) +DKL (Q,P ) (8)
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defines Jeffreys’ symmetric φ-divergence. It corresponds to the divergence function
φJe(x) := (x− 1) lnx, or by (6), φJe(x) = φ(x) + φ∗(x), for φ(x) = x lnx.

When φ(x) = |x − 1|, the φ-divergence in (5) is denoted by V (P,Q), and called the
(total) variation distance. In [41, Thm 4, p.5980] Sason and Verdu prove that

Dφ(P,Q) ≤ 1

2
[φ(0) + φ∗(0)]V (P,Q). (9)

We note the elementary equality min{x, y} = 1
2 (x+ y − |x− y|), valid for any real

numbers x and y. It follows that

1

2
V (P,Q) = 1−

k∑
i=1

min{pi, qi}, (10)

which plays a role in the sequel. This equality is a special case of the equality in [31,
p.803].

2.3. Jensen–Shannon and reversed Jensen–Shannon divergence

Jensen–Shannon divergence and the Reversed Jensen–Shannon divergence can be intro-
duced in a unified fashion by the notion of blended divergence in [29, Def. 2., p.48]. We
recapitulate this definition. Let φ1 and φ2 be two divergence functions and set for x > 0

φB(x) := (1− π + πx)φ1

(
x

1− π + πx

)
+ φ2 (1− π + πx) . (11)

Then φB can be shown to be a divergence function, in the sense of definition 2.4, and
is called the blended divergence function (blending of φ1 and φ2). For 0 < π < 1
the mixture M ∈ P is defined by M = πP + (1 − π)Q with the category probabilities
mi := πpi + (1 − π)qi. When we blend the divergence functions πφ1 and (1 − π)φ2,
respectively, we get the blended divergence

DφB (P,Q) = πDφ1
(P ;M) + (1− π)Dφ2

(M,Q), (12)

as follows by [29, Corollary 1, Corollary 2., p.47] noting the rule aDφ(P,Q) = Daφ(P,Q).
Let us take φ1 = φ and φ2 = φ∗. Then the property Dφ∗(P,Q) = Dφ(Q,P ) entails that

DφB (P,Q) = πDφ(P ;M) + (1− π)Dφ(Q,M),

c.f. [29, Specification 1, p.48]. When φ(x) = x lnx, we set DJS(P,Q) := DφB (P,Q), and
find

DJS(P,Q) = πDKL(P,M) + (1− π)DKL(Q,M), 0 < π < 1. (13)

This is the Jensen–Shannon divergence (JSD) with the divergence function

φ(x) = π · x lnx− (πx+ (1− π)) ln(πx+ (1− π)), (14)

by (11), see also [52, Example 1, p.1038] for another derivation. Blending has produced
a smoothing of KL, as DKL(P,M) < +∞ and DKL(Q,M) < +∞ for all Q and P ,
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since M dominates both P and Q. Actually DJS(P,Q) is uniformly bounded, the upper
bound will be pointed out below. Vajda and Österreicher did show in [52] that DJS(P,Q)
is a measure of statistical information in terms of Bayesian risk of discrimination with
a logarithmic risk function.

By (5) and (14) it follows, as pointed out by a reviewer, after a small piece of algebra
that

DJS(P,Q) = πDKL(P,Q)−DKL(M,Q). (15)

This expression will be invoked in the last paragraph of Section 5.
The decomposition of JSD in the sequel produces the following quantity

DRJS(P,Q) := πDKL(M,P ) + (1− π)DKL(M,Q) (16)

called the reversed JSD, c.f. [50, p.891]. The reversed JSD is another blended divergence.
Let φ(x) = x lnx and specify (12) for x > 0 with φ1(x) = −πφ∗(x) = −π lnx and
φ2(x) = (1 − π)φ(x). This entails (16) by (12). The corresponding blended divergence
function is derived by (11) as

φRJS(x) = (πx+ (1− π)) [ln(πx+ (1− π))− π lnx] . (17)

When dealing with DRJS(P,Q) we are going to assume supp(P ) = supp(Q)(= A without
loss of much generality). By (7) we get

0 ≤ DJS (P,Q) ≤ B(π) ≤ ln(2), (18)

where
B(π) := −π ln(π)− (1− π) ln(1− π) (19)

is the binary entropy function. From (7) and (9) we obtain

DJS(P,Q) ≤ B(π)

2
V (P,Q) ≤ ln 2

2
V (P,Q). (20)

For the case π = 1/2 we introduce the notation DJS,1/2(P,Q). Hence DJS,1/2 is a
smoothed and symmetrized blend of KL. DJS,1/2 is often used in applying the JSD
in data analysis by simulator modeling. The paper [47] provides alternative explicit
expressions (e. g., in terms of infinite series) and bounds for DJS,1/2. By [30, pp.108-
111], DJS,1/2 is an instance of extended Matusita divergences and by [30, pp.106-108],
DJS,1/2 is an instance of extended absolute power divergences. In our effort we have not
so far taken advantage of selecting φ-divergences with most desirable properties using
smooth transitions between the cited divergences and DJS,1/2.

2.4. JSD and total variation distance topology

For any P ∈ P we define an open JSD - neighborhood around P as

N(P, ε) := {Q ∈ P|DJS(P,Q) < ε}. (21)

The following is from [43, Thm 2.7., p.153].
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Proposition 2.5. For fixed π, varying P ∈ P and ε, N(P, ε) form a basis for the
variation distance topology of P.

We shall now make a statistical interpretation. The empirical distribution

P̂n(x) :=

k∏
i=1

p̂
[x=ai]
i ∈ P, x ∈ A, (22)

is determined by the relative frequencies p̂i = ni
n , i = 1, . . . , k, found in X = (X1, . . . , Xn),

where Xl are outcomes of independent, identically distributed (i.i.d.) random variables
with values in A, where ni = the number of samples Xl in X such that Xl = ai. We
define the set of ‘true’ distributions, this notion is from [8, p. 2254], by

B(P̂n) := {P ∈ P|V (P, P̂n) < ε}, ε ∈ (0, 2). (23)

Let B denote the variation distance topology, thus B(P̂n) ∈ B. Suppose Pθ ∈ B(P̂n).
A first property of a topological basis is that there exists (for a fixed π) some Pθo and

εo > 0 such that Pθ ∈ N(Pθo , εo) ⊆ B(P̂n). In words, for every nominal distribution Pθ
∈ B(P̂n), there exists a JSD neighborhood of true distributions P that covers Pθ.

The algorithms for simulator-modeling include often a rejection step, c.f., [35, p. e70].
In the total variation setting above, a summarization Pθ of synthetic output of Mc at
θ is accepted, if it lies in B(P̂n) for a chosen ε > 0, otherwise rejected. Hence JSD
is inherent at the rejection step with relative frequencies and V as rejection distance,
which supports intuitively the idea that JSD is an estimate of the implicit likelihood.

3. BOUNDS FOR THE JENSEN–SHANNON DIVERGENCE

3.1. Applications of Pinsker and reverse Pinsker inequalities

We recall the Pinsker inequality, see [10, Lemma 11.6.1]

DKL(P,Q) ≥ 1

2
V (P,Q)2. (24)

An account of the steps of discovery and further refinements on (24) are available in
[17]. The result in the next Lemma is known as the reverse Pinsker inequality, found in
[41, Eq. (335), p.5991].

Lemma 3.1. P ∈ P and Q ∈ P. Assume supp(Q) = A. Set Qmin := minx∈AQ(x).
Then

DKL(P,Q) ≤ 1

2Qmin
V (P,Q)2. (25)

An elementary proof of a less sharp (the factor 1/2 is missing in the right hand side)
version of (25) is developed by [12, Lemma 6.3, p.1012], see also [18, Thm 5, p.429]. For
the statements to follow we compute the second derivative at x = 1 from (14) as

φ
′′
(1) = π(1− π). (26)

We write f(x) � g(x), when cg(x) ≤ f(x) ≤ Cg(x) for all x in some domain, where
c < C. The inequalities in (27) read then as DJS(P,Q) � φ′′(1)V (P,Q)2.
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Proposition 3.2. P ∈ P and Q ∈ P. Assume supp(P) = supp(Q) = A. Set Pmin =
minx∈A P (x) and Qmin = minx∈AQ(x). Then

φ
′′
(1)

2
V (P,Q)2 ≤ DJS(P,Q) ≤ φ

′′
(1)

2 min {πPmin, (1− π)Qmin}
V (P,Q)2, (27)

where φ
′′
(1) is given by (14).

P r o o f . By (13) and (24)

DJS(P,Q) ≥ π

2
V (P,M)2 +

(1− π)

2
V (Q,M)2. (28)

By definition of the total variation distance

V (P,M) =

k∑
i=1

|pi−(πpi−(1−π)qi)| =
k∑
i=1

|(1−π)pi−(1−π)qi| = (1−π)V (P,Q), (29)

and

V (Q,M) =

k∑
i=1

|qi − (πpi + (1− π)qi)| =
k∑
i=1

|πqi − πpi| = πV (Q,P ) = πV (P,Q). (30)

When we insert (29) and (30) in the right hand side of (28) we get

DJS(P,Q) ≥ 1

2

[
π(1− π)2 + (1− π)π2

]
V (P,Q)2. (31)

Here π(1 − π)2 + (1 − π)π2 = φ
′′
(1) by (26). Hence we have the lower bound in (27).

To prove the upper bound of (31) we set Mmin := minx∈A [πP (x) + (1− π)Q(x)]. By
Lemma 3.1, (25), and since

Mmin ≥ min {πPmin, (1− π)Qmin} > 0,

we obtain

DKL (P,M) ≤ 1

2Mmin
V (P,M)2 ≤ 1

2 min {πPmin, (1− π)Qmin}
V (P,M)2 (32)

and similarly for DKL (Q,M) with Q replacing P . When we insert the rightmost ex-
pressions in (29) and (30) in the right hand sides of the bounds on DKL (P,M) and
DKL (Q,M) above, respectively, we obtain by the same computation as above the right
hand side inequality in (27). �

The upper bound (27) is sharper than (20), if V (P,Q) ≤min {Pmin, Qmin}·ln 2/φ
′′
(1).

As φ
′′
(1) = π(1− π) is maximized by π = 1/2, then V (P,Q) ≤ min {Pmin, Qmin} · 4 ln 2

is the lowest range. When (10) is applied in (27) we obtain

√
2

(
1

2
−Pe(P,Q)

)
≤
√
DJS,1/2(P,Q) ≤ 2c

(
1

2
−Pe(P,Q)

)
, (33)
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where c =
√

1/min {Pmin, Qmin} and

Pe(P,Q) :=

k∑
i=1

min

{
1

2
pi,

1

2
qi

}
. (34)

The observation in (33) has a significant meaning. Suppose that the prior probabilities
of P and Q are pr(P ) = pr(Q) = 1/2. The Bayesian rule of discrimination of X = x ∈ A
tells to decide x as being sampled from P , if 1

2P (x) > 1
2Q(x) and conversely, ties resolved

arbitrarily. This rule minimizes the probability of error. The optimal probability of error
equals Pe(P,Q) in (34), one proof is found in [28, ch.9.4].

Suppose now that Qo ∈ B(P ) = {Q ∈ P | V (P,Q) < ε} for some ε > 0. This implies
by (10) that 1

2

(
1− ε

2

)
< Pe(P,Qo) ≤ 1

2 . In view of discussion in Section 2.4 there exist
Po and εo > 0 such that Qo ∈ {Q ∈ P|DJS,1/2(Po, Q) < εo} ⊆ B(P ). Hence, when there
is P such that DJS,1/2(P,Qo) is small, then Pe(P,Qo) must be close to 1/2. Thus, the
Bayes’ discrimination rule for such P and Qo performs equally well as discrimination
by tossing an unbiased coin without looking at x. This is what a good simulator-model
with outputs distributed by Qo should achieve against a given P of observed data.

3.2. Lower bounds for JSD by refinements of Pinsker’s inequality

There is also the lower bound due to Vajda [48], see also [17, Corollary 4, p.1494],

DKL(P,Q) ≥ ln

(
2 + V (P,Q)

2− V (P,Q)

)
− 2V (P,Q)

2 + V (P,Q)
, V (P,Q) ∈ [0, 2). (35)

Proposition 3.3. P ∈ P and Q ∈ P. Then

DJS,1/2(P,Q) ≥ ln

(
1 +

(
1
2 −Pe(P,Q)

)
1−

(
1
2 −Pe(P,Q)

))− 2
(

1
2 −Pe(P,Q)

)
1 +

(
1
2 −Pe(P,Q)

) . (36)

P r o o f . When (29) and (30) and definition of Pe(P,Q) are applied in (35) with V ∈
[0, 2), we obtain (36). �

In [40, Remark 12., Eqn. (156)] one finds, as pointed out by a reviewer, another
refinement of the Pinsker bound.

DKL(P,Q) ≥ − ln

(
1− 1

4
V (P,Q)2

)
, for V (P,Q) ∈ [0, 2), (37)

arising from a bound on Eγ-divergences for γ = 1. By (37) we obtain the following.

Proposition 3.4. P ∈ P and Q ∈ P. Then for V (P,Q) ∈ [0, 2)

DJS,1/2(P,Q) ≥ − ln

(
1− 1

16
V (P,Q)2

)
. (38)
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P r o o f . We apply first (37) in the two terms in DJS(P,Q) and then (29) and (30) in
the two KL- divergences to obtain a lower bound, where we set π = 1

2 . �

We set for economy of writing V = V (P,Q) for a moment. Vajda’s lower bound
improves Pinsker’s bound in the sense that if V ↑ 2, then the lower bound in (35)
turns to +∞, as does DKL(P,Q), since V = 2 is equivalent to supp(P ) ∩ supp(Q) = ∅.
For V ↑ 2, the optimal error Pe(P,Q) → 0 and the lower bound (36) converges to
ln(3) − 2/3 = 0.432 < ln(2) = 0.693. Thus, too much smoothing was injected above.
Hence, the inequality in (36) is mainly of interest for small values of V .

The right hand side of (38) is well-defined even for V = 2 and equals there ln
(

4
3

)
=

0.288. For π = 1
2 the lower bound (27) is always sharper than the bound (38), i. e.,

1
8V

2 > − ln
(
1− 1

16V
2
)

for all V ∈ (0, 2]. In [19, Example II.4, p.2389] one finds

DJS,1/2(P,Q) ≥ 1

2

[(
1 +

V

2

)
ln

(
1 +

V

2

)
+

(
1− V

2

)
ln

(
1− V

2

)]
.

This lower bound by Guntuboyina is sharper than the lower bound 1
8V

2 in (27). Let us
denote the expression in the right hand side of Guntuboyina lower bound by f(V ). One
gets f(2) = ln 2, which is perfect. However, f(1) = 0.1308, f(0.1) = 0.013, where the
corresponding values for 1

8V
2 are 0.1250 and 0.013. By a plot one sees that the bounds

f(V ) and 1
8V

2 have indistinguishable graphs for 0 < V < 1 for all practical purposes.

4. DECOMPOSITION OF JSD BY MEANS OF A SUM OF JEFFREYS’
DIVERGENCE AND REVERSED JSD

In all statements in this Section we are assuming that supp(P ) = supp(Q) = A for
P ∈ P and Q ∈ P.

4.1. A decomposition by means of an escort distribution

Consider P ∈ P and Q ∈ P, supp(P ) =supp(Q), and set for i = 1, . . . , k

gi :=
pπi q

1−π
i

c(π)
, π ∈ [0, 1]. (39)

Here c(π) =
∑k
i=1 p

π
i q

1−π
i . Then G(x) =

∏k
i=1 g

[x=ai]
i and G ∈ P is often called the

escort distribution. For πo such that c(πo) ≤ c(π) for all π ∈ (0, 1), G is the barycenter
of {P,Q}, and represents {P,Q} by a minimax property, see [25, p.48].

Proposition 4.1. With Jeffreys divergence (8) and DRJS(P,Q) in (16) it holds for any
P ∈ P and Q ∈ P that

DJS (P,Q) = φ
′′
(1)DJe(P,Q)−DRJS(P,Q). (40)

P r o o f . The compensation identity of [46, Lemma 7], see also [47, p.1603], shows that,
since supp(G) = A,

DJS(P,Q) = πDKL(P,G) + (1− π)DKL(Q,G)−DKL (M,G) . (41)
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Here DKL(P,G) =
∑k
i=1 pi ln

(
pi

pπi q
1−π
i

)
+ ln c(π). Furthermore,

∑k
i=1 pi ln

(
pi

pπi q
1−π
i

)
=∑k

i=1 pi ln
(
pπi p

1−π
i

pπi q
1−π
i

)
= (1−π)DKL(P,Q), and thus πDKL(P,G) = (1−π)πDKL(P,Q) +

π ln c(π). In the same way we obtain (1 − π)DKL(Q,G) = π(1 − π)DKL(Q,P ) + (1 −
π) ln c(π).

Next, DKL (M,G) =
∑n
i=1mi ln mi

pπi q
1−π
i

+ ln c(π). We continue with the same split of

exponent as above,
∑n
i=1mi ln mi

pπi q
1−π
i

=
∑n
i=1mi ln

mπi m
1−π
i

pπi q
1−π
i

= π
∑n
i=1mi ln mi

pi
+ (1 −

π)
∑n
i=1mi ln mi

qi
= πDKL(M,P ) + (1− π)DKL(M,Q). When the preceding expressions

are inserted in (41), remembering (26), the assertion in (40) is proven. �

The result in the Proposition decomposes DJS(P,Q) into a sum of a symmetric
term and an asymmetric term, the reversed JSD. Since JSD is nonnegative, π · (1 −
π)DJe(P,Q) ≥ DRJS(P,Q, hence the reversed JSD is antithetic to DJS(P,Q) in the
sense that if DJS(P,Q) is small, or close to its minimum zero, then DRJS(P,Q) has to
be large, and vice versa. We can write T (P,Q) := DKL (M,G) − ln c(π), and in light
of the terminology in [45, p.12] we can call T (P,Q) the weighted arithmetic-geometric
divergence. Next, H(P ) := −

∑
x∈A P (x) lnP (x), is the Shannon entropy of P ∈ P

in natural logarithm. Explicit expansions of the KL-distances appearing in the right
hand side of (40), re-organizations and a number of terms taking out each other give the
following formula

DJS(P,Q) = H(πP + (1− π)Q)− πH(P )− (1− π)H(Q). (42)

The right hand side of (42) is nothing else than the Shannon-Jensen divergenceDJS(P,Q)
as written down and named in [34]. Of course, the right hand side is well-defined also
when supp(P ) = supp(Q) = A does not hold.

4.2. Bounds for JSD using the decomposition

Proposition 4.2. Let P ∈ P andQ ∈ P. Pmin = minx∈A P (x) andQmin = minx∈AQ(x).
Then it holds that

DJS (P,Q) ≤ φ
′′
(1)

2

(
Pmin +Qmin

QminPmin
− 1

)
V (P,Q)2. (43)

P r o o f . Due to (8) and the reverse Pinsker inequality (25), it follows that

DJe (P,Q) ≤ 1

2Qmin
V (P,Q)2 +

1

2Pmin
V (Q,P )2 =

Pmin +Qmin

2QminPmin
V (P,Q)2. (44)

Next we bound the reversed JSD by the Pinsker inequality (24). This entailsDRJS(P,Q;π)
≥ 1

2

(
πV (M,P )2 + (1− π)

)
V (M,Q)2). But V (M,P ) and V (M,Q) are calculated in

(29) and (30). Hence we have DRJS(P,Q;π) ≥ 1
2φ
′′
(1)V (P,Q)2. Then the assertion

follows in view of the decomposition (40) in proposition 4.1. �
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We note that 2QminPmin = QminPmin + QminPmin < Pmin + Qmin. Thus the sec-
ond factor multiplying V (P,Q)2 is greater than 1, as it should be. By [19, Exam-
ple II, p.2390], for π = 1

2 there is the bound DRJS(P,Q) ≥ − 1
2 ln

(
1− V (P,Q)2

)
,

which is valid for probabilities on general sample spaces. By elementary calculus,
− 1

2 ln
(
1− V (P,Q)2

)
> 1

8V (P,Q)2, the lower bound above for π = 1
2 .

Corollary 4.3.

DJS (P,Q) ≤ 2φ
′′
(1)

[
eDCD(P,Q)

eDCD(P,Q) − 1
− ln

DCD(P,Q)

eDCD(P,Q) − 1
− 1

]
. (45)

The corollary follows by the bound [6, Thm 3.4,p.157] forDKL(P,Q) in terms ofDCD(P,Q)
from (2)

DKL(P,Q) ≤ eDCD(P,Q)

eDCD(P,Q) − 1
− ln

DCD(P,Q)

eDCD(P,Q) − 1
− 1, (46)

and by (8), (40) and (46), since DRJS(P,Q) ≥ 0.

4.3. Two examples

Example 4.4. Fragile sites on chromosomes are points at which the chromosome is
likely to break. Identification of fragile sites is thought to contribute to the detection of
genetic abnormalities. The authors of [5] propose a statistical genetics model for fragile
sites named as the fragile site multinomial. Let k be the total number of sites on a
chromosome, k1 is the number of non-fragile sites, i. e., the k categories in A are split
up into two subsets with k1 (< k) and k− k1 elements. In [5] the probabilities pi satisfy

p1 = . . . = pk1 and pi <
1
k , i = 1, . . . , k1, and pi >

1
k , i = k1 + 1, . . . , k,

∑k
i=1 pi = 1. The

work in [24] finds a method to estimate k1 and tests it on different listed structures for
two such subsets.

We insert θ, a pressure of breaking, into one of the structures of [24, Table 2, p.438]

by setting pi = θ
k1

for i = 1, 2, . . . k1, and pi = (1−θ)
(k−k1) , i = k1 + 1, . . . , k. If 0 < θ < k1

k ,

we have θ
k1
< 1

k , (1−θ)
(k−k1) >

1
k and

∑k
i=1 pi = 1. The model MFSM is

MFSM =

{
Pθ|Pθ(x) =

k1∏
i=1

(
θ

k1

)[x=ai]

·
k∏

i=k1+1

(
1− θ
k − k1

)[x=ai]

, 0 < θ <
k1

k

}
. (47)

Hence MFSM is an example of a prescribed model. For θ ∈ [0, 1], B(θ) is given in (19).
The Shannon entropy of Pθ ∈MFSM in (47) equals

H
(
Pθ; FSM

)
= B(θ) + ln(k − k1) + θ · ln

(
k1

k − k1

)
. (48)

Let Pθ1 ∈MFSM and Pθ2 ∈MFSM. When (48) is applied in (42), we obtain

DJS

(
Pθ1 , Pθ2 ; FSM

)
= B (πθ1 + (1− π)θ2)− πB(θ1)− (1− π)B(θ2). (49)

If pθi ∈ MBe, i = 1, 2 in (3), we find DJS

(
Pθ1 , Pθ2 ; FSM

)
= DJS(pθ1 , pθ2). The require-

ments in (47) make MFSM, in terms of the statistical information measured by JSD,
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nothing else than a model on a binary category set. If Pθ1 ∈ MFSM and Pθ2 ∈ MFSM,
then V (Pθ1 , Pθ2) = 2|θ1 − θ2| = V (pθ1 , pθ2). In the bounds of (27) we have

c1|θ1 − θ2|2 ≤ DJS

(
Pθ1 , Pθ2 ; FSM

)
≤ cu,1|θ1 − θ2|2. (50)

where c1 = 2φ
′′
(1), cu,1 = 4.5φ

′′
(1)/min {πθ1, (1− π)θ2}. By the upper bound of (43),

c1|θ1−θ2|2 ≤ DJS(Pθ1 , Pθ2 ; FSM) ≤ cu,2|θ1−θ2|2, where cu,2 = 3φ
′′

(1)(θ1+θ2)
2(θ1θ2−1) . When the

optimal error of discrimination (34) is computed, we get

1

2
−Pe (Pθ1 , Pθ2 ; FSM) = max {θ1, θ2} −min {θ1, θ2} .

We choose π = 1/2 and set c (θ1, θ2) =
√

1/min {θ1, θ2} and d (θ1, θ2) := max {θ1, θ2}−
min {θ1, θ2} . Hence we get by (33) the inequalities

√
2d (θ1, θ2) ≤ DJS,1/2(Pθ1 , Pθ2 ; FSM)1/2 ≤ 2c (θ1, θ2) d (θ1, θ2) ,

or DJS,1/2(Pθ1 , Pθ2 ; FSM)1/2 � d (θ1, θ2).

Example 4.5. In [37, p.360] there is the following model MF with four categories{
Pθ|Pθ(x) =

(
2 + θ

4

)[x=a1](
1− θ

4

)[x=a2](
1− θ

4

)[x=a3](
1− θ

4

)[x=a4]

, 0 < θ < 1

}
.

The reference in [37, loc.cit.] is to R.A. Fisher’s research in plant genetics. It is possible
to write down various explicit expressions for DJS (Pθ1 , Pθ2 ; F), e.g, by using (42). But
the resulting sums containing a number of logarithmic terms seem unwieldy. However,
for Pθ1 ∈ MF and Pθ2 ∈ MF, we have V (Pθ1 , Pθ2) = |θ1 − θ2| . Hence we obtain by

(27) and c (θ1, θ2) = (1/min {θ1, θ2})1/2
that

√
2

4 |θ1 − θ2| ≤ DJS,1/2 (Pθ1 , Pθ2 ; F)
1/2 ≤

2c (θ1, θ2) |θ1 − θ2| , or DJS,1/2 (Pθ1 , Pθ2 ; F)
1/2 � |θ1 − θ2| , which is both manageable and

informative.

5. ON ASYMPTOTIC EQUIVALENCE BETWEEN MAXIMUM LIKELIHOOD
ESTIMATE AND MINIMUM JSD-DIVERGENCE ESTIMATE

In this section, M = {Pθ | θ ∈ Θ} is a parametric model in P with full support for every
θ ∈ Θ, X = (X1, . . . , Xn) ∼ Pθo ∈ M are i.i.d. random variables. As is readily checked,
see e. g., [37, Eqn. (3), p.350], the maximum likelihood estimate is

θ̂n ∈ arg min
θ∈Θ

DKL(P̂n, Pθ), (51)

where P̂n is given by (22) for X. In the Lemma below the assumption of full support

supp(P̂n) = A for every n > N seems natural, as we are assuming that every ai is found
in the sample for a large N and will appear infinitely often as n→ +∞.
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Lemma 5.1. Pθo ∈ M, supp(Pθ) = A for every θ ∈ Θ, and supp(P̂n) = A for every
n ≥ N for some N > 1 with Pθo-probability one. Then it holds that

DJS

(
Pθo , Pθ̂n

)
→ 0, Pθo- almost surely, as n→ +∞. (52)

P r o o f . By (43) and triangle inequality it holds that√
DJS

(
Pθo , Pθ̂n

)
≤ c(n)V

(
Pθo , Pθ̂n

)
≤ c(n)

[
V
(
Pθo , P̂n

)
+ V

(
P̂n, Pθ̂n

)]
, (53)

where we have simplified the writing by letting c(n) denote the square root of the factor

multiplying V
(
Pθo , P

(n)

θ̂

)
in (43).

It follows by [14, Theorem 1, p.896], see in particular [14, Lemma 3, p.898] and [3,

Eqn. (17), p.1258], that there is complete convergence P̂n → Pθo implying by Borel-
Cantelli that

V (P̂n, Pθo)→ 0, Pθo-almost surely, as n→ +∞. (54)

Therefore, since Pθo ∈M, (51) and the reverse Pinsker’s inequality (25) entail, when
Pθo,min := minx∈A Pθo(x) > 0,

DKL

(
P̂n, Pθ̂n

)
≤ DKL

(
P̂n, Pθo

)
≤ 1

2Pθo,min
V
(
P̂n, Pθo

)2

→ 0 Pθo a.s. (55)

Then (24) gives

V
(
P̂n, Pθ̂n

)
→ 0, Pθo a.s.. (56)

By (43), and since P̂n,min → Pθo,min as n → +∞ Pθo-a.s., as is easily verified, c(n)
converges Pθo-almost surely to a finite positive limit by the assumptions about full
supports and by the continuous mapping theorem for a.s. convergence. The assertion
now follows by continuity of the square root. �

We define the minimum JSD -divergence estimate θ̂JS given X as

θ̂n,JS ∈ arg min
θ∈Θ

DJS(P̂n, Pθ). (57)

This minimization can be done in practice, e. g., by the techniques applied in Section 6
below. The result in the next Proposition shows that the computable θ̂n,JS is asymp-
totically equivalent to the maximum likelihood estimate. This holds, as soon as the
generative model is written in an programming language with expressiveness to include
the true distribution, even if the likelihood is implicit or intractable.

Proposition 5.2. Pθo ∈ M, supp(Pθ) = A for every θ ∈ Θ, and supp(P̂n) = A for
every n ≥ N for some N > 1 with Pθo-probability one. Then it holds that

DJS

(
Pθ̂n,JS , Pθ̂n

)
→ 0, Pθo- almost surely, as n→ +∞, (58)

and
V
(
Pθo , Pθ̂n,JS

)
→ 0, Pθo- almost surely, as n→ +∞. (59)
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P r o o f . As in the proof of preceding lemma we have√
DJS

(
Pθ̂n,JS , Pθ̂n

)
≤ c(n)

(
V
(
Pθ̂n,JS , Pθo

)
+ V

(
Pθo , Pθ̂n

))
. (60)

The triangle inequality gives furthermore

V
(
Pθ̂n,JS , Pθo

)
≤ V

(
Pθo , P̂n

)
+ V

(
P̂n, Pθ̂n,JS

)
. (61)

By the left hand side inequality in (43) of proposition 3.2 and (57), since Pθo ∈M,

V
(
P̂n, Pθ̂n,JS

)
≤ c1

√
DJS

(
P̂n, Pθ̂n,JS

)
≤ c1

√
DJS

(
P̂n, Pθo

)
. (62)

By the right hand side inequality in (43) in proposition 3.2√
DJS

(
P̂n, Pθo

)
≤ c(n)V

(
P̂n, Pθo

)
→ 0, a.s. Pθo , (63)

since by the proof of lemma 5.1, c(n) converges Pθo a.s. to a finite limit as n → +∞.

Thus by (62) and (61) V
(
Pθ̂n,JS , Pθo

)
→ 0, Pθo a.s., as n → +∞. It holds by a result

in the proof of Lemma 5.1 that V
(
Pθo , Pθ̂n

)
→ 0, Pθo a.s., as n → +∞. When these

facts are used in the right hand side of (60), the proof is completed. �

When X is an i..i.d. n-sample, then with multiplications of (1) and ni is the number
of occurrences of ai in X, the loglikelihood function of θ is for Pθ ∈ P

lX(θ) =

k∑
i=1

ni ln pi(θ). (64)

By (15), DJS(P̂n, Pθ) = πDKL(P̂n, Pθ) − DKL(M̂n, Pθ), where M̂n = πP̂n + (1 − π)Pθ.

By definition of KL, DKL(P̂n, Pθ) = −πn lX(θ) − H
(
P̂n

)
. This entails, since H

(
P̂n

)
does not depend on θ, that

arg min
θ∈Θ

DJS(P̂n, Pθ) = arg min
θ∈Θ

[
−π
n
lX(θ)−DKL(M̂n, Pθ)

]
. (65)

Some auxiliary piece of notation is helpful for simplification. L(θ) := −πn lX(θ) and

D(θ) := DKL(M̂n, Pθ). Both L(θ) and D(θ) are non-negative. Set A = {θ ∈ Θ|L(θ) ≥
D(θ)}, Ac is the complement set. IA(θ) denotes the indicator function. Then

L(θ)−D(θ) = IA(θ) · |L(θ)−D(θ)| − IAc(θ) · |L(θ)−D(θ)| .

We are thus in the right hand side of (65) searching for θ ∈ Θ such that |L(θ)−D(θ)|
is minimized, i. e., θ such that |L(θ)−D(θ)| should be as close to zero, as possible.
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By reverse Pinsker (25) DKL(M̂n, Pθ) ≤ V (Mn, Pθ)
2
/2 mini pi(θ). By Pinsker (24)

DKL(M̂n, Pθ) ≥ V
(
M̂n, Pθ

)2

/2. Here V
(
M̂n, Pθ

)
= π

∑k
i=1 |p̂i − pi(θ)|. By standard

probability, V
(
M̂n, Pθ

)
is an outcome of π

∑d
i=1

∣∣∣ ξin − pi(θ)∣∣∣, where each ξi is binomially

distributed Bin(n, pi(θ)). In view of [3, p.1258],
∑d
i=1

∣∣∣ ξin − pi(θ)∣∣∣ → 0, Pθ-a.s., as

n → +∞. Hence we would expect, at least when θ is sufficiently close to the true
parameter value, that with a small distortion proportional to

∑k
i=1 |p̂i − pi(θ)|,

− π

n
lX(θ)−DKL(M̂n, Pθ) ≈ −

π

n
lX(θ)−O

(
k∑
i=1

|p̂i − pi(θ)|

)
. (66)

One so-called non-parametric kernel method for simulator based likelihood-free inference
on θ, c.f. [20, p.10], is exemplified by

D
(m)

JS (θ) :=
1

m

m∑
l=1

DJS(P̂n, Q̂
(l)), (67)

where Q̂(l) are empirical distributions corresponding to m independent synthetic i.i.d. n-
samples ∼ Pθ, l = 1, . . . ,m. This is called a kernel-GAN in [44], where the asymptotics
for m→ +∞ is studied. Then from (65) and (66)

arg min
θ∈Θ

D
(m)

JS (θ) ≈ arg min
θ∈Θ

[
−π
n

k∑
i=1

ni
1

m

m∑
l=1

ln q̂
(l)
i −O

(
k∑
i=1

1

m

m∑
l=1

∣∣∣q̂(l)
i − pi(θ)

∣∣∣)] .
Here for large m and n, we expect 1

m

∑m
l=1 ln q̂

(l)
i ≈ ln pi(θ) and the distortion term

O ≈ 0. Hence, a minimized D
(m)

JS seems to deliver an estimate of MLE for an im-

plicit likelihood function. A rigorous analysis of D
(m)

JS will be presented elsewhere. We
illustrate this by means of a simulation recycling the example 4.4.

Example 5.3. The model in (47) is, of course, not implicit and the MLE based on an

n-sample is explicit, i. e., θ̂n = 1
n

∑k1
i=1 ni, when k1 is given in advance. Let us take

k = 4 and k1 = 3 in example 4.4. In this experiment we simulate P̂n, too. One hundred
i.i.d. random samples from P0.25 yielded P̂100 with p̂1 = 0.08, p̂2 = 0.09, p̂3 = 0.06,

p̂4 = 0.77, so that θ̂100 = (8 + 9 + 6)/100 = 0.23. Thereafter we compute D
(1000)

JS,1/2 (θ) in

(67) for θ ∈ (0, 3
4 ) with the step 0.01 on a grid, on which DJS,1/2(P̂100, Pθ; FSM) is also

evaluated by (49). D
(1000)

JS,1/2 (θ) and DJS,1/2(P̂100, Pθ; FSM) can then be plotted. We plot
also a third function of θ to be defined next.

The following statements are valid for all M. By standard probability, the frequencies(
ξ

(l)
j

)k
j=1

in any Q̂(l) have a multinomial distribution w.r.t. Pθ. Hence it holds for any

Q̂(l) that

pθ := Pθ

(
Q̂(l) = P̂n

)
= Pθ

(
ξ

(l)
1 = n1, . . . , ξ

(l)
k = nk

)
=

n!∏k
i=1 ni!

k∏
i=1

pi (θ)
ni .
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Fig. 1. D
(1000)

JS,1/2 (θ) (blue) , DJS,1/2(P̂100, Pθ; FSM) (red), and

− 1
200

ln(pθ) (yellow).

This connects to the method of types, [10, Chapter 11.1]. Then it can be shown for

sufficiently large n and any m > 1, that D
(m)

JS (θ) ≤ −πn ln(pθ). This is valid for any
DJS. The proof, which would require additional machinery, is omitted here and only a

graphical evidence is given. We plot D
(1000)

JS,1/2 (θ), DJS,1/2(P̂100, Pθ; FSM) and − 1
200 ln(pθ)

in Figure 1, where D
(1000)

JS,1/2 (θ) is, by graphical inspection, seen to be small close to
θo = 0.25.

6. SIMULATION EXPERIMENTS

In this Section we run a simulation experiment to study the properties of maximum
likelihood and minimum JSD estimates. We apply software documented in [4]. In our
simulations we use the following categorical distribution on A = {i ∈ Z+ | i = 1, . . . , k}

pi(θ) = C(θ)−1e−θ(i−1), i ∈ A, (68)

where, if the model parameter θ > 0, the normalization constant C(θ) = eθA(θ) with
A(θ) = (e−θ − e−θ(k+1))/

(
1− e−θ

)
. If θ < 0, then A(θ) = (e−θ(k+1) − e−θ)/

(
e−θ − 1

)
.
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(a) (b) (c)

Fig. 2. Pθ calculated based on (a) k = 5, θ = 0.1, (b) k = 10,

θ = 0.1, and (c) k = 10, θ = 0.5.

Here the likelihood is neither implicit nor analytically intractable. The loglikelihood
function in (64) becomes lX(θ) = −θ

∑k
i=1 ini − n lnA(θ), and the MLE θ̂n satisfies the

equation A
′
(
θ̂n

)
/A
(
θ̂n

)
= −

∑k
i=1 ip̂i, where p̂i = ni/n.

We test parameter estimation with (a) k = 5, θ = 0.1, (b) k = 10, θ = 0.1, and (c)
k = 10, θ = 0.5 (Figure 2). We use the categorical distributions (a)–(c) to simulate
1000 observation sets with n = {50, 100, 500, 1000} data points. Each observation set

is then used to calculate the maximum likelihood estimate θ̂n and the minimum JSD
estimate θ̂n,JS, see (57). Moreover we calculate minimum JSD estimates based on JSD
with π = {0.4, 0.5, 0.6}. Figure 3 shows the estimated parameter values.

To evaluate and compare the parameter estimates, we calculate the root mean squared
error (RMSE) between the estimated and true parameter values. This captures both
the estimator bias and variance. The errors are presented in Table 1. We observe that
when the sample size is small, the minimum JSD estimates are associated with larger
errors than the maximum likelihood estimates, but the difference disappears as sample
size increases. This is as expected, since the estimates are asymptotically equivalent.
The estimation error also approaches zero as sample size increases, and depends on both
k and θ. Namely we observe that the increase in k between setups (a) and (b) decreases
the estimation error and the increase in θ between setups (b) and (c) increases the error.
The increase in error is due to an overestimation bias seen as a right-hand tail in the
histograms in Figure 3 (c). We observe a bias here because the model used in this
experiment is such that the parameter θ tends to be overestimated when the expected
counts npi are small in some categories i. This effect will appear for A with a large
cardinality, as there will be several cases of rarely observed categories.

7. THIRD EXAMPLE: MULTIVARIATE BERNOULLI DISTRIBUTION

7.1. Bounds on JSD of two multivariate bernoulli distributions

Here we use the boundings and the decomposition above to establish that the JSD for d
-variate Bernouli distributions behaves like DJS (Pθ1 , Pθ2) � φ

′′
(1)

∑d
j=1 (θj,1 − θj,2)

2
,

where θj,l are the respective marginal probabilities of success of the two d-variate
Bernoulli distributions.

Let k = 2d and A = {a(1), . . .a(k)} = {0, 1}d is the binary hypercube, where a(i) =
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(a) (b) (c)

Fig. 3. Distribution over 1000 ML and minimum JSD estimates

calculated based on n observations when (a) k = 5, θ = 0.1 (b)

k = 10, θ = 0.1 (c) k = 10, θ = 0.5.
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(a)

n 50 100 500 1000
ML 0.097 0.070 0.031 0.022
min JSD π = 0.4 0.099 0.070 0.031 0.022
min JSD π = 0.5 0.100 0.071 0.031 0.022
min JSD π = 0.6 0.100 0.071 0.031 0.022

(b)

n 50 100 500 1000
ML 0.051 0.035 0.016 0.011
min JSD π = 0.4 0.054 0.036 0.016 0.011
min JSD π = 0.5 0.056 0.037 0.016 0.011
min JSD π = 0.6 0.057 0.037 0.016 0.011

(c)

n 50 100 500 1000
ML 0.082 0.058 0.026 0.018
min JSD π = 0.4 0.099 0.067 0.026 0.018
min JSD π = 0.5 0.106 0.070 0.027 0.018
min JSD π = 0.6 0.114 0.074 0.027 0.018

Tab. 1. RMSE evaluated based on 1000 MLE or minimum JSD

estimates calculated based on n observations when (a) k = 5, θ = 0.1

(b) k = 10, θ = 0.1 (c) k = 10, θ = 0.5.

(
a

(i)
1 , . . . , a

(i)
d

)
, a

(i)
j ∈ {0, 1}. We take θj ∈ (0, 1), j = 1, . . . , d. Let θ = (θ1, . . . , θd). We

set

pi(θ) :=

d∏
j=1

pθj (a
(i)
j ), (69)

where pθj (a
(i)
j ) is given as in (3), i. e., it is the probability mass function of a Bernoulli

random variable with θj as the probability of success. Then with

Pθ(x) :=

k∏
i=1

pi(θ)
[x=a(i)], x ∈ A, (70)

the model MMBe =
{
Pθ | θ ∈ Θ = (0, 1)d

}
is the family of multivariate Bernoulli distri-

butions on the binary hypercube {0, 1}d. This means modeling the bits a
(i)
j as indepen-

dent Bernoulli r.v.’s. It holds that supp (Pθ) = A for all θ ∈ Θ.

Let Pθ1 ∈ MMBe and Pθ2 ∈ MMBe, where θs = (θ1,s, . . . , θd,s) for s = 1, 2. If we set

M = πPθ1 +(1−π)Pθ2 , then for any x ∈ {0, 1}d, we have M(x) = π
∏k
i=1 pi(θ1)[x=a(i)] +

(1 − π)
∏k
i=1 pi (θ2)

[x=a(i)]
. This mixture of distributions is not in MMBe. In fact, mix-

tures of multivariate Bernoulli distributions are not identifiable, [21]. Of course, the
variation distance is also hard to evaluate analytically for multivariate Bernoulli distri-
butions. However, another round of reverse Pinsker inequalities will render the bounds
in Proposition 4.2 useful.
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Proposition 7.1. Pθ1 ∈ MMBe and Pθ2 ∈ MMBe. Then

DJS (Pθ1 , Pθ2) ≥ 4φ
′′
(1)

 d∏
j=1

min(1− θj,2, θj,2)

 · d∑
j=1

(θi,1 − θj,2)
2
. (71)

P r o o f . For the proof of (71), we plan to use the left hand inequality in (27). The
following steps are done.

Step 1. Let, as in Example 2.3, pθj,1 ∈ MBe and pθj,2 ∈ MBe be two Bernoulli distribu-
tions with probabilities of success θj,1 and θj,2, respectively. Then [39, Lemma 2
(a), pp.29–30] tells that

DKL

(
pθj,1 , pθj,2

)
≥ 2 (θj,1 − θj,2)

2
. (72)

Step 2. In view of the definition of DKL we get by (70) and (69)

DKL(Pθ1 , Pθ2) =

k∑
i=1

d∏
j=1

pθj,1(a
(i)
j ) ln

∏d
j=1 pθj,1(a

(i)
j )∏d

j=1 pθj,2(a
(i)
j )

.

Hence, from a standard property of KL for product distributions, we get that

DKL(Pθ1 , Pθ2) =

d∑
j=1

DKL

(
pθj,1 , pθj,2

)
≥ 2

d∑
j=1

(θj,1 − θj,2)
2
. (73)

Step 3. By reverse Pinsker (25), (27) and (73)

DJS (Pθ1 , Pθ2) ≥ 4π(1− π)

d∑
j=1

(θj,1 − θj,2)
2

min
x∈{0,1}d

Pθ2(x). (74)

Step 4. It remains to establish that minx∈{0,1}d Pθ2(x) =
∏d
j=1 min{1− θj,2, θj,2}. This

requires some additional auxiliary quantities and is done in Appendix A.1.

�
We set next

b (θ1, θ2) =
1

min
{[∏d

j=1 min{1− θj,1, θj,1}
]
,
[∏d

j=1 min{1− θj,1, θj,1}
]} .

Proposition 7.2. Pθ1 ∈ MMBe and Pθ2 ∈ MMBe. Then

DJS (Pθ1 , Pθ2) ≤ φ
′′
(1) · b (θ1, θ2)

d∑
j=1

(θj,1 − θj,2)
2
. (75)
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P r o o f . By construction supp (Pθ1) = supp (Pθ2) = {0, 1}d. Thus we can use (40),
where 0 ≤ DRJS (Pθ1 , Pθ2) < +∞, to get DJS (Pθ1 , Pθ2) ≤ φ

′′
(1)DJe (Pθ1 , Pθ2) . Let us

apply the reverse Pinsker (25) of Lemma 3.1 in each individual DKL

(
pθj,1 , pθj,2

)
in the

sum in the right hand side of (73). This givesDKL(Pθ1 , Pθ2) ≤ 4
∑d
j=1 c1(j) (θj,1 − θj,2)

2
,

where c1(j) = 1/(2min{1 − θj,2, θj,2}). We repeat this for DKL(Pθ2 , Pθ1). By the defi-

nition of Jeffreys’ divergence (8) we obtain DJe (Pθ1 , Pθ2) ≤ 4
∑d
j=1 c1(j) (θj,1 − θj,2)

2
+

4
∑d
j=1 c2(j) (θj,1 − θj,2)

2
, where c2(j) = 1/(2min{1− θj,1, θj,1}). With

c (θ1, θ2) := min
1≤j≤d

{min{1− θj,1, θj,1},min{1− θj,2, θj,2}} ,

we get DJe (Pθ1 , Pθ2) ≤ 4
c(θ1,θ2)

∑d
j=1 (θj,1 − θj,2)

2
. Since the positive numbers 1 − θj,l

and θj,l are strictly smaller than 1 for all j and l = 1, 2, it holds that

c (θ1, θ2) > min


 d∏
j=1

min(1− θj,1, θj,1)

 ,
 d∏
j=1

min(1− θj,1, θj,1)

 .

Hence we have (75) as asserted. �

An instance of the bound (43) in Proposition 4.2 for Pθ1 ∈ MMBe and Pθ2 ∈ MMBe is

DJS (Pθ1 , Pθ2) ≤ φ
′′
(1)a(θ1, θ2)V (Pθ1 , Pθ2)2, (76)

where

a(θ, θ(o)) =

(∏d
j=1 min{1− θj,1, θj,1}+

∏d
j=1 min{1− θj,2, θj,2}∏d

j=1 min{1− θj,2, θj,2}
∏d
j=1 min{1− θj,1, θj,1}

− 1

)
.

To verify this, we need to compute minx∈{0,1}d Pθ1(x) and minx∈{0,1}d Pθ2(x). This is
found in Appendix A.1.

Observation 7.3. Let us consider an n sample of data denoted by X = (X1, . . . , Xn),

where Xl ∈ {0, 1}d, Xl =
(
x

(l)
1 , . . . , x

(l)
d

)
, and x

(l)
j ∈ {0, 1}, j = 1, . . . , d. The MLE of θ

in MMBe is given by θ̂n = (θ̂1,n, . . . , θ̂d,n), where

θ̂j,n :=
number of l s.t. x

(l)
j = 1

n
.

We assume that θ̂j,n > 0 for every j. Then we set pθ̂j,n

(
a

(i)
j

)
= θ̂

[
(
a
(i)
j

)
=1]

j,n · (1 −

θ̂j,n)
[
(
a
(i)
j

)
=0]
, a

(i)
j ∈ {0, 1}, and pi(θ̂n) :=

∏d
j=1 pθ̂j,n

(
a

(i)
j

)
. When Pθ̂,n(x) is defined

following (22), we note that Pθ̂,n ∈MMBe.
To get to the point of this observation, we need to complicate the notation by setting

θ̂n (X) = θ̂n. For another sample Y = (Y1, . . . , Ym), Yl ∈ {0, 1}d, we find as above

Pθ̂m(Y) ∈MMBe. Thus we can analyze DJS

(
Pθ̂n(X), Pθ̂m(Y)

)
by the inequalities above.
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Suppose X and Y are data from two different data generating sources, or two opera-
tive taxonomic units in the terminology of [26] or two different simulator based models.
A third sample Z = (Z1, . . . , Zr), Zl ∈ {0, 1}d of data is to be analyzed w.r.t. similarity
to operative taxonomic units represented by X and Y, respectively. This compari-

son or discrimination can be done by finding the smaller of DJS

(
Pθ̂n(X), Pθ̂r(Z)

)
and

DJS

(
Pθ̂m(Y), Pθ̂r(Z)

)
. By the bounds above, this is graphically performed by expressions

of the form DJS

(
Pθ̂n(X), Pθ̂r(Z)

)
� φ

′′
(1)
∑d
j=1

(
θ̂j,r (Z)− θ̂j,n (X)

)2

. This concept of

discrimination between operative taxonomic units was the rationale for JSD in [26].
Jardine and Sibson argue in [26, pp.13−16] that DJS(P,Q) is a mathematical model for
the notion of D-similarity in biological taxonomy. Actually, in their numerical studies in
Appendix 1 of [26] these authors restrict themselves to DJS,1/2 of two categorical distri-
butions on a binary A. We may thus also perceive JSD as Jardine-Sibson Divergence.

8. DISCUSSION

In our work we have shown how the JSD can be conveniently decomposed such that
useful upper and lower bounds can be derived in explicit terms. The bounds are used
to prove consistency and asymptotic equivalence results for the JSD based estimator.
These statements provide a foundation for practical applications, where ML estimator
would not be available. This observation and the simulation experiments provided and
discussed in Section 6 suggest that there is a rich field of additional theoretical and
numerical questions related the JSD to be considered from an inferential perspective.

In the simulation example it was observed that the parameter θ tends to be overesti-
mated when all categories are not represented in the observation set, which occurs when
the expected counts npi are small in some categories i. The overestimation bias can be
observed as a right-hand tail in the histograms in Figure 3 (c). Hence, even when the
assumption of a full support is fulfilled, there may be practical predicaments.

In the simulation example the mapping between model parameters and category
probabilities is known so that we are able to calculate Pθ based on θ. This allowed
comparison between the maximum likelihood and minimum JSD estimates. However, we
emphasise that our main interest and motivation behind the present work are complex
simulator models, where the exact dependencies between the model parameters and
category probabilities are unknown and maximum likelihood estimation has to be done
by a simulator based inference.
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A. APPENDIX: AUXILIARIES ON MULTIVARIATE BERNOULLI DISTRIBUTONS

A.1. The minimum probability

In this Section we find expressions for minx∈{0,1}d Pθ(x). Let first a∗ = (a∗1, . . . , a
∗
d) ∈ {0, 1}d,

where

a∗j :=

{
1 1/2 < θj < 1;
0 0 < θj < 1/2,

(77)

with θj = 1/2 being resolved arbitrarily. Let a∗∈ {0, 1}d be the binary complement of a∗, i. e.,
it satisfies a∗j = 1, if a∗j = 0 and a∗j = 0 if a∗j = 1.

Proposition A.1. For every x ∈ {0, 1}d and every Pθ ∈ MMBe it holds that

Pθ(a∗) ≤ Pθ(x) ≤ Pθ(a∗). (78)

P r o o f . Let

αj(θ) :=

{ θj
1−θj

if 1/2 ≤ θj < 1;
1−θj
θj

if 0 < θj < 1/2.
(79)

Then every Pθ ∈ MMBe can be written as

Pθ(x) = Pθ(a
∗) ·

d∏
j=1

αj(θ)
−|xj−a∗j |, (80)

see [22, pp.222–223]. We cite (4) to get

DCD(pθj , q) = lnαj(θ), (81)

and we can up-date the expression in (80) as

Pθ(x) = Pθ(a
∗) · e−

∑d
j=1DCD(pθj

,q)·|xj−a∗j |. (82)

Since DCD(pθj , q) ≥ 0,
∑d
j=1DCD(pθj , q) ·

∣∣xj − a∗j ∣∣ ≥ 0, we have established the right hand
inequality in (78). Next, by (82)

Pθ(a∗) = Pθ(a
∗) · e−

∑d
j=1DCD(pθj

,q)·|a∗j−a∗j | = Pθ(a
∗) · e−

∑d
j=1DCD(pθj

,q)
, (83)

since
∣∣a∗j − a∗j ∣∣ = 1 for all j by definition of the complement. Clearly, e

−
∑d
j=1DCD(pθj

,q) ≤

e
−
∑d
j=1DCD(pθj

,q)·|xj−a∗j | for every x ∈ {0, 1}d, and hence we have shown that Pθ(a∗) ≤ Pθ(x)
for every x ∈ {0, 1}d. �

Next we prove the formula completing the proof of Proposition 7.1 and the inequality (76).

Proposition A.2.

min
x∈{0,1}d

Pθ(x) =

d∏
j=1

min{1− θj , θj}. (84)
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P r o o f . From (78), Pθ(a∗) = minx∈{0,1}d Pθ(x). We have in view of (83) and (81) that

Pθ(a∗) = Pθ(a
∗) · e−

∑d
j=1DCD(pθj

,q)
= Pθ(a

∗) ·
d∏
j=1

αj(θ)
−1. (85)

By (69), (70) and (77) we have Pθ(a
∗) =

∏d
j=1 θ

[a∗j=1]

j (1 − θj)[a
∗
j=0] =

∏d
j=1 max{1 − θj , θj},

which entails Pθ(a∗) =
∏d
j=1

max{1−θj ,θj}
αj(θ)

. We take a generic factor in this product. If 1/2 <

θj < 1, then 1− θj < 1− 1/2 = 1/2 and max{1− θj , θj} = θj . The case 1/2 < θj < 1 in (79)

gives αj(θ) =
θj

1−θj
. Hence

max{1− θj , θj}
αj(θ)

=
θj
θj

1−θj

= 1− θj = min{1− θj , θj}.

The case 0 < θj < 1/2 is handled in the same manner. Finally, in case θj = 1/2, αj(θ) = 1 and
max{1− θj , θj} = min{1− θj , θj}. Thus the proof is completed. �

A.2. A bound in terms of the Chan–Darwich metric

We define the uniform distribution Q ∈ MMBe by Q(x) = 1
2d

for all x ∈ {0, 1}d. We recall
Chan–Darwich metric in (2).

Proposition A.3. For any Pθ ∈ MMBe and the uniform distribution Q in MMBe we have

DCD(Pθ, Q) =

d∑
j=1

DCD(pθj , q), (86)

where DCD(pθj , q) is given in (4).

P r o o f . The first step applies the definition (2) to write DCD(Pθ, Q) in terms of a∗ and a∗.
The second step combines step one with the preceding findings.

Step 1. We prove first that for every x ∈ {0, 1}d by (78) ln Pθ(x)
Q(x)

≤ d ln 2 + lnPθ(a
∗) and

ln Pθ(x)
Q(x)

≥ d ln 2 + lnPθ(a∗). Hence by the definition in (2) the equality

DCD(Pθ, Q) = ln
Pθ(a

∗)

Pθ(a∗)
(87)

follows as asserted.

Step 2. Next we observe that (85) gives also that Pθ(a
∗)

Pθ(a
∗)

=
∏d
j=1 αj(θ). Hence (81) and (87)

establish (86). We note that (86) agrees with (4) for d = 1, since then Q equals q of
Example 2.3.

�

In view of (87), Pθ(a∗) = Pθ(a
∗) · e−DCD(Pθ,Q), which can be used in the bound (45) to get

an upper bound for DJS(Pθ1 , Pθ2). The upper bound in (45) is strictly increasing in DCD. We
apply the triangle inequality

eDCD(Pθ1 ,Pθ2 ) ≤ eDCD(Pθ1 ,Q)eDCD(Pθ2 ,Q) =
Pθ1(a∗1)

Pθ1(a∗1)
· Pθ2(a∗2)

Pθ2(a∗2)

and from (86) we obtain that DCD(Pθ1 , Pθ2) ≤
∑d
j=1DCD(pθj,1 , q)+

∑d
j=1DCD(pθj,2 , q). These

two inequalities give obviously an upper bound for DJS (Pθ1 , Pθ2) by insertion in (45).

(Received December 8, 2020)
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