
Zpravodaj Československého sdružení uživatelů TeXu

Hans Hagen; Idris Samawi Hamid
Oriental TeX: Optimizing Paragraphs

Zpravodaj Československého sdružení uživatelů TeXu, Vol. 27 (2017), No. 1-2, 64–97

Persistent URL: http://dml.cz/dmlcz/150270

Terms of use:
© Československé sdružení uživatelů TeXu, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This document has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/150270
http://dml.cz

Oriental TEX: Optimizing Paragraphs
Hans Hagen, Idris Samawi Hamid

The article describes the state of the art in paragraph optimization for Arabic as
implemented in ConTEXt. The implementation is introduced using Latin script
examples. The article proceeds to describe the main features of Arabic script
and known approaches towards paragraph optimization. One of the described
approaches is then implemented and used to typeset a passage from the Qur↩ān.

Keywords: microtypography, OpenType, ConTEXt, LuaTEX

Introduction

One of the objectives of the Oriental TEX project has always been to play with
paragraph optimization. The original assumption was that we needed an advanced
non-standard paragraph builder to Arabic done right but in the end we found
out that a more straightforward approach is to use a sophisticated OpenType
font in combination with a paragraph postprocessor that uses the advanced
font capabilities. This solution is somewhat easier to imagine than a complex
paragraph builder but still involves quite some juggling.

At the June 2012 meeting of the ntg there was a talk about typesetting
Devanagari and as fonts are always a nice topic (if only because there is something
to show) it made sense to tell a bit more about optimizing Arabic at the same
time. In fact, that presentation was already a few years too late because a couple
of years back, when the oriental TEX project was presented at tug and Dante
meetings, the optimizer was already part of the ConTEXt core code. The main
reason for not advocating is was the simple fact that no font other than the (not
yet finished) Husayni font provided the relevant feature set.

The lack of advanced fonts does not prevent us from showing what we’re
dealing with. This is because the ConTEXt mechanisms are generic in the sense
that they can also be used with regular Latin fonts, although it does not make
that much sense. Anyhow, in the next section we wrap up the current state of
typesetting Arabic in ConTEXt. We focus on the rendering, and leave general
aspects of bidirectional typesetting and layouts for another time.

This article is written by Idris Samawi Hamid and Hans Hagen and is typeset
by ConTEXt MkIV which uses LuaTEX. This program is an extension of TEX
that uses Lua to open up the core machinery. The LuaTEX core team consists
of Taco Hoekwater, Hartmut Henkel and Hans Hagen.

64 doi: 10.5300/2017-1-2/64

Manipulating glyphs
When discussing optical optimization of a paragraph, a few alternatives come to
mind:

• One can get rid of extensive spaces by adding additional kerns between
glyphs. This is often used by poor man’s typesetting programs (or routines)
and can be applied to non-connecting scripts. It just looks bad. Of course,
for connected scripts like Arabic, inter-glyph kerning is not an option, not
even in principle.

• Glyphs can be widened a few percent and this is an option that LuaTEX
inherits from its predecessor pdfTEX. Normally this goes unnoticed al-
though excessive scaling makes things worse, and yes, one can run into such
examples. This strategy goes under the name hz-optimization (the hz refers
to Hermann Zapf, who first came up with this solution).1

• A real nice solution is to replace glyphs by narrower or wider variants. This
is in fact the ideal hz solution – including Arabic script as well – but for
it to happen one not only needs fonts with alternative shapes, but also a
machinery that can deal with them.

• An already old variant is the one first used by Gutenberg, who used alter-
native cuts for certain combinations of characters. This is comparable with
ligatures. However, to make the look and feel optimal, one needs to analyze
the text and make decisions on what to replace without loosing consistency.

The solution described here does a bit of everything. As it is mostly meant for
a connective script, the starting point is how a scribe works when filling up a
line nicely. Depending on how well one can see it coming, the writing can be
adapted to widen or narrow following words. And it happens that in Arabic script
there are quite some ways to squeeze more characters in a small area and/or
expand some to the extreme to fill up the available space. Shapes can be wider or
narrower, they can be stacked and they can get replaced by ligatures. Of course
there is some interference with the optional marks on top and below but even
there we have some freedom. The only condition is that the characters in a word
stay connected.2

So, given enough alternative glyphs, one can imagine that excessive interword
spacing can be avoided. However, it is non-trivial to check all possible combina-
tions. Actually, it is not needed either, as carefully chosen aesthetic rules put

1Sometimes hz-optimization also goes under the rubric of “Semitic justification”. See, e.g.,
Bringhurst in pre-3rd editions of his Elements of Typographic Style. This technique does not
work well for Arabic script in general because glyphs are connected in two dimensions. On
the other hand, a certain basic yet ubiquitous Semitic justification can be achieved by using
the tat.w̄ıl character, commonly called the kash̄ıdah (U+0640). We will discuss this later in this
article.

2Much of this is handled within the GPOS features of the OpenType font itself (e.g., mark
and mkmk)

65

some bounds on what can be done. One should more think in terms of alternative
strategies or solutions and this is the terminology that we will therefore use.

Scaling glyphs horizontally is no problem if we keep the scale factor very
small, say percentages. This also means that we should not overestimate the
impact. For the Arabic script we can stretch more – using non-scaling methods
but again there are some constraints, that we will discuss later on.

In the next example, we demonstrate some excessive stretching:

In practice, fonts can provide intercharacter kerning, which is demonstrated next:

Some poor man’s justification routines mess with additional inter-character kern-
ing. Although this is, within reasonable bounds, ok for special purposed like
titles, it looks bad in text. The first line expands glyphs and spaces, the second
line expands spaces and add additional kerns between characters and the third
line expands and add extra kerns.

Unfortunately we see quite often examples of the last method in novels and even
scientific texts. There is definitely a down side to advanced manipulation.

Applying features to Latin script

It is easiest is to start out with Latin, if only because it’s more intuitive for most
of us to see what happens. This is not the place to discuss all the gory details
so you have to take some of the configuration options on face value. Once this
mechanism is stable and used, the options can be described. For now we stick to
presenting the idea.

Let’s assume that you know what font features are. The idea is to work with
combinations of such features and figure out what combination suits best. In
order not to clutter a document style, these sets are defined in so called goodie
files. Here is an excerpt of demo.lfg:

66

return {
name = "demo",
version = "1.01",
comment = "An example of goodies.",
author = "Hans Hagen",
featuresets = {

simple = {
mode = "node",
script = "latn"

},
default = {

mode = "node",
script = "latn",
kern = "yes",

},
ligatures = {

mode = "node",
script = "latn",
kern = "yes",
liga = "yes",

},
smallcaps = {

mode = "node",
script = "latn",
kern = "yes",
smcp = "yes",

},
},
solutions = {

experimental = {
less = {

"ligatures", "simple",
},
more = {

"smallcaps",
},

},
},

}

We see four sets of features here. You can use these sets in a ConTEXt
feature definition, like:

67

\definefontfeature
[solution-demo]
[goodies=demo,
featureset=default]

You can use a set as follows:
\definefont

[SomeTestFont]
[texgyrepagellaregular*solution-demo at 10pt]

So far, there is nothing special or new, but we can go a step further.
\definefontsolution

[solution-a]
[goodies=demo,
solution=experimental,
method={normal,preroll},
criterium=1]

\definefontsolution
[solution-b]
[goodies=demo,
solution=experimental,
method={normal,preroll,split},
criterium=1]

Here we have defined two solutions. They refer to the experimental solution in
the goodie file demo.lfg. A solution has a less and a more entry. The featuresets
mentioned there reflect ways to make a word narrower or wider. There can be
more than one way to do that, although it comes at a performance price. Before
we see how this works out we turn on a tracing option:
\enabletrackers

[builders.paragraphs.solutions.splitters.colors]
This will color the words in the result according to what has happened. When a
featureset out of the more category has been applied, the words turn green, when
less is applied, the word becomes yellow. The preroll option in the method
list makes sure that we do a more extensive test beforehand.
\SomeTestFont \startfontsolution[solution-a]
\input zapf \par
\stopfontsolution

In Figure 1 we see what happens. In each already split line words get wider
or narrower until we’re satisfied. A criterium of 1 is pretty strict.3 Keep in mind
that we use some arbitrary features here. We try removing kerns to get narrower
although there is nothing that guarantees that kerns are positive. On the other

3This number reflects the maximum badness and future versions might have a different
measure with more granularity.

68

normal solution

Figure 1: Solution a.

hand, using ligatures might help. In order to get wider we use smallcaps. Okay,
the result will look somewhat strange but so does much typesetting nowadays.

There is one pitfall here. This mechanism is made for a connective script
where hyphenation is not used. As a result a word here is actually split up when
it has discretionaries and of course this text fragment has. It goes unnoticed in
the rendering but is of course far from optimal.
\SomeTestFont \startfontsolution[solution-b]
\input zapf \par
\stopfontsolution
In this example (Figure 2) we keep words as a whole but as a side effect we skip
words that are broken across a line. This is mostly because it makes not much
sense to implement it as Latin is not our target. Future versions of ConTEXt
might get more sophisticated font machinery so then things might look better.

We show two more methods:
\definefontsolution

[solution-c]
[goodies=demo,
solution=experimental,
method={reverse,preroll},
criterium=1]

\definefontsolution

69

normal solution

Figure 2: Solution b.

[solution-d]
[goodies=demo,
solution=experimental,
method={random,preroll,split},
criterium=1]

In Figure 3 we start at the other end of a line. As we sort of mimick a scribe, we
can be one who plays safe at the start of corrects at the end. In Figure 4 we add
some randomness but to what extent this works well depends on how many words
we need to retypeset before we get the badness of the line within the constraints.

Salient features of Arabic script

Before applying the above to Arabic script, let’s discuss some salient aspects of
the problem. As a cursive script, Arabic is extremely versatile and the scribal
calligraphy tradition reflects that. Digital Arabic typography is only beginning
to catch up with the possibilities afforded by the scribal tradition. Indeed, early
lead-punch typography and typesetting of Arabic script was more advanced than
most digital typography even up to this day. In any case, let us begin to organize
some of that versatility into a taxonomy for typography purposes.

70

normal solution

Figure 3: Solution c.

normal solution

Figure 4: Solution d.

71

What’s available?
We have to work within the following parameters:

• No hyphenation ever (well, almost never)
It is commonly pointed out that there is no hyphenation is Arabic. This is
something of a half-truth. In the manuscript tradition one actually does
find something akin to hyphenation. In the ancient Kufic script, breaking a
word across lines is actually quite common. But even in the more modern
Naskh script, the one most normal Arabic text fonts are based on, it does
occur, albeit rarely and presumably when the scribe is out of options for
the line he is working on. Indeed, one could regard it as a failure on the
part of the scribe once he reaches the end of the line.4
But there is still an important rule, regardless of whether we use Naskh,
Kufic, or any other Arabic script. Consider the word below:

It is a single word composed of two cursive strings. One could actually
hyphenate it, with our rule being to break it at the end of the first cursive
string and before the beginning of the second cursive string:

Again, it’s a rare phenomenon and hardly ever occurs in modern typesetting,
lead-punch or digital, if at all. On the other hand, it could have some creative
uses in future Arabic script typography.

• Macrotypography (aesthetic features)
In Arabic there are often numerous aesthetic ways of writing out the exact
same semantic string:5

4Indeed, even Latin hyphenation, when it occurs, can be considered a “failure” of sorts.
5This five character string can be represented in Latin by the five character string “al-

hmd (not including the “-”). It is pronounced “al-hamdu”. Note that Arabic script is mainly
consonantal: pure vowels are not part of the alphabet and are, instead, represented by diacritics.

72

Normally we combine OpenType features into feature sets that are each
internally and aesthetically coherent. So in the above example we have
used three different sets, reading from right to left. We’ll call them simple,
default, and dipped.
Just as Latin typography uses separate fonts to mark off different uses of
text (bold, italic, etc.), an advanced Arabic font can use aesthetic feature
sets to similar effect. This works best on distinguishing long streams of text
from one another, since the differences between feature sets are not always
noticeable on short strings. That is, two different aesthetic sets may type a
given short string, such as a single word, exactly the same way. Consider
the above three sets (simple, default, and dipped) once more:

For the above string the default and dipped aesthetic sets (middle and left)
give the exact same result, while the basic one (right) remains, well, quite
basic.
Let’s go back to our earlier example:

Note that the simple version is wider than the default, and the dipped
version is (slightly) thinner than the default. This relates to another point:
An aesthetic feature set can serve two functions:
1. It can serve as the base aesthetic style.
2. It can serve as a resource for glyph substitution for a given string in

another base aesthetic style.
This brings us back to our main topic.

73

• Microtypography (paragraph optimization features)
Here our job is to optimize the paragraph for even spacing and aesthetic
viewing. It turns out that there are a number of ways to look at this issue,
and we will begin exploring these in the next subsection.

Two approaches
Let us start off with a couple of samples. Qur↩ānic transcription has always been
the gold standard of Arabic script. Figure 5 we see a nice example of scribal
optimization. The scribe here is operating under the constraint that each page
ends with the end of a Qur↩ānic verse (designated by the symbol U+06DD).
That is, no verse is broken across pages. That constraint, which is by no means
mandatory or universal, gives the scribe lots of space for optimization, even more
than normal.

In Figure 6 we have a page of the famous al-Husayni Mus.h. af of 1919–1923,
which remains up to this day the only typeset copy of the Qur↩ān to attain general
acceptance in the Muslim world. Indeed, it remains the standard “edition” of
the Qur↩ān and even later scribal copies, such as the one featured in Figure 5
are based on its orthography. Unlike the scribal version, the typesetters of the
al-Husayni Mus.h. af did not try to constrain each page to end with the end of
a Qur↩ānic verse. Again, that is a nice feature to have as it makes recitation
somewhat easier but it is by no means a mandatory one.

In any case, both samples share verses 172–176 in common, so there is lots to
compare and contrast. We will also use these verses as our main textual sample
for paragraph optimization.

Using figures 5 and 6 as benchmarks, we can begin by analyzing the approaches
to paragraph optimization in Arabic script typography into two kinds:

• Alternate glyphs
Much of pre-digital Arabic typography uses this method. Generally, a wide
variant of a letter is used to take up the space which would normally get
absorbed by hyphenation in Latin. Here are examples of three of the most
common substitutions, again, reading from right to left:

Each of the six strings above occurs in Figure 6. Identifying them is an
exercise left to the reader. We call these kinds of alternate glyphs alternate-
shaped glyphs.
The three substitutions above are the most common alternate-glyph sub-

74

Figure 5: Scribal Optimization. Scribe: ’Uthmān T. āhā. Qur↩ān, circa 1997.

75

Figure 6: Scribal Optimization. Scribe: ’Uthmān T. āhā. Qur↩ān, circa 1997.

76

stitutions found in pre-digital Arabic script typography, including some
contextual variants (initial, medial, final, and isolated) where appropriate.
(The scribal tradition contains a lot more alternate-shaped glyphs. A few
lead-punch fonts implement some of them, and we have implemented many
of these in our Husayni font.) The results generally look quite nice and much
more professional than most digital Arabic typography, which generally
dispenses with these alternates.
But one also finds attempts at extending individual characters without
changing the shape very much. One finds this already in Figure 6. We
call these kinds of alternate glyphs naturally curved widened glyphs, or just
naturally widened glyphs for short. Sometimes this is done for the purpose
of making enough space for the vowels (which in Arabic take the form of
diacritic characters). For example:

As you can see, there are two letters that have been widened for vowel
accommodation. In Figure 6 there are some good but near-clumsy attempts
at this. We say, “near-clumsy” because the typographers and typesetters mix
natural, curved, widened variants of letters with flat, horizontal, extended
versions. One reason for this is that a full repertoire of naturally curved
glyph alternates would be much too unwieldy for even the best lead-punch
typesetting machines and their operators. Even with these limitations one
can find brave examples of lead-based typesetting that do a good job of
sophisticated paragraph optimization via glyph alternates, both widened
and alternate-shaped. Figure 7 is a representative example (in the context
of columns).
Careful examination of this two-column sample will reveal the tension
between naturally widened and horizontally extended glyphs in the execution
of paragraph optimization. On the other hand, there is one apparent “rule”
that one finds in this and other examples of lead-punch Arabic script
typesetting:

Generally, there is only one naturally widened character per word
or one alternate-shaped character per word.

In Figure 5 one can see that this “rule” is not always observed by scribes,
see, e.g., the middle word in line 9 from the top, which uses two of the
alternate-shaped characters we encountered above (can you identify that
word?). But we still need some constraints for decent-looking typesetting,

77

Figure 7: Mixed Alternate Glyphs in Two Columns. From the classical dictionary
Mukhtār al-S. ih. āh. .

78

and the above tentative rule is a good place to start the analysis. For
widened characters in particular we see that even the scribe (Figure 5)
closely approximates this rule. So let’s begin improving on our tentative
rule somewhat, and expand it into a number of possibilities. Let’s look at
the naturally-widened-glyph case first:

Generally, there is only one naturally widened character allowed
per word. However, two extended non-consecutive characters
may be allowed. (The logic of the experimental font Husayni
already has contraints that prevent consecutive curved widened
characters).

For example, we prefer to get widening like the following:

But as, e.g., a last resort or for stylistic purposes we can also do

Or even better, we mix it up a bit. That is, if there is more than one
widened character, one should be longer than the other, e.g.:

One will notice that the middle substitution (where the first widened
character is longer than the second) does not look as good as the two outer
ones (where the second is longer than the first). These kinds of aesthetic
issues can be formalized for future work. In the meantime, here is a working
modified version of the rule for naturally-widened-glyphs:

Generally, there is only one naturally widened character allowed
per word. However, two non-consecutive widened characters may
be allowed. In that case, the second widened character should be
longer than the first.

79

One case where cases of two naturally widened character will be common
is in poetry, which involves wide lines. We’ll say more about this in the
section on flat extending.
Now let’s look at the alternate-shaped case:

Generally, there is only one alternate-shaped character allowed per
word. However, two non-consecutive alternate-shaped characters
may be allowed.

So we prefer, e.g.,

but we could have, e.g, as a last resort or as a stylistic option,

Again, in poetry this kind of multiple substitution within a single word could
occur frequently. A challenge will be to develop a system of parameters
where we can almost predict which kinds of substitution will happen under
a given set of values of those parameters.

• Flat extending
In the transition from lead-punch to digital typography, alternate-glyph
substitution largely vanished.6 The problem of spacing remained, and a

6Indeed, as was the case with Latin typography, Arabic script typography took a sharp turn
for the worse with the advent of digital typography. On the other hand, Latin typography
recovered much more quickly, in large part thanks to Knuth’s development of TEX.

80

477

�	áÓ�
�	àA
�
¿ �	à@�

�ð ;H.� A
��m�
�Ì'
�
@ �ð �é�

�ÓA�J
 �®�
�
Ë
�
@ �Ð �ñ�K

�	à �	P �ñ
�
Ë
�
@ 	à� A

���	�B�
��
@

�
½Ë�

�	X ú
�
Î �« ø �Q �k. , A �Ò�î �	DÓ� 15

�Ñ
�
º �k fé �Ò

�
º �k �	àñ

�
º�K
 �ð ; �Q �	k

�
B
��
@ �	¡ �	®�m��'
 A �Ó �P �Y��̄ B

��
@�
�é�	JÓ�

���
�J. �K
 �Õ

�
Ë �ð �Q �	k

�
B
��
@ �	 �ª �	� A �Òë� Y� �g

�
@

. ��ø
 ñ�
��®
�
Ë
�
@

�ð ��é��J
ë� A �Ü
�
Ï�@ �I�

���̄ �P �ð . É�
��® �ª
�
Ë
�
@ ��I �	k

�
@ ��I�	K A

�
¿ �ð ���	®

��	JË
�
@ �I�

��	K
�
A �Ò �£@� ,

�Xñ �k. �ñ
�
Ë
�
@ ��ø
 ñ�

��®
�
Ë
�
@ �	àA

�
¿ �	àA�

�	̄
�	à@�

�ð , A �Ò�î �	D�J
�K. É�
�ª 	®�
�
Ë
�
@ ú

	̄
�

����Q�	̄ C
� �	̄ . P� A

��	JË
�
@ ú

	̄
�
�è� A
��Ò �j�Ü

�
Ï�@ �è�

�YK
Y�
�m
�Ì'
�
A
�
¿ , �Xñ �k. �ñ

�
Ë
�
@ [202] �I� �î�E. A

���
: �Q«� A

����Ë
�
@

�
ÈA��̄ . Y� K
Y�

�m
�Ì'
�
A
�
¿ , 	�� �Q �ª

�
Ë
�
AK.� A�îE.� A �Ó �	àA

�
¿ 20

�Q �Ó
�
B
��
@ �é �K. A

��� ��� �ð C
� �
¿ A ��� ��� �	̄ �Q �Ò �	m

�Ì'
�
@ �I�

���̄ �P �ð �h. A
�g.
��	Q Ë
�
@

���� �P
�Q �Ô

�	g B
� ��ð �h �Y ��̄ A �Ü

��	ß
�
A
�
¿ �ð �h �Y ��̄ B

� ��ð �Q �Ô
�	g A �Ü

��	ß
�
A
�
¾ �	̄

��YÒ�
��J ����
 A �Ü

��	ß @� A �Ò�î �	DÓ� Y� g� @ �ð
��
É
�
¿ �ð .��

�
º �ª

�
Ë
�
@ ú

�
Î �« �Q�Ó

�
B
��
@ �	àA

�
¿ ��é��J
ë� A �Ü

�
Ï�@ ��ø
 ñ�

��®
�
Ë
�
@ �	àA

�
¿ �	à@�

�ð
��YÒ�
��J ����
 C

� �	̄ . è�
��Y 	�� �	áÓ� �ñ �ë A �Ó ñ�

�m�
�	' �	áÓ� �Z �ú
æ

����Ë
�
@
��YÒ�
��J ����
 B

� �	X @� é� ��
�	�k.�

�	áÓ� X�
�Y�Üß.� ø
 ñ�

��®�K
 �ð
�ñ �ë A �Ü

��	ß @� , fé �ª �Ó Q�
�	k
�
B
��
@

�
É�J
 �Ó �ð . �½Ë�

�	Y
�
» �ñ �ë ��I�J
 �k �	áÓ� ��

�
º �ª

�
Ë
�
@ B

� �ð �é�
�Ò
�
Ê
��	¢Ë
�
@ �	áÓ� �Pñ

��	JË
�
@ 25

. A �Òî�
E�
�
A ��®�J. Ë�

¨
�
@ �ñ�	K

�
@ �	áÓ�

��YÒ�
��J ����

��é��J
ë� A �Ü
�
Ï�@ �ð . é� «� �ñ

�	K �	áÓ� A�î
��	E
�
B� �H� @

�Q��

�	m
�Ì'
�
@ ¨

�
@ �ñ�	K

�
@ �	áÓ�

��YÒ�
��J ����
 �Xñ �k. �ñ

�
Ë
�
A�	̄

A�	K A
�
¿ @ �	X @� , A �ª�Ó é� �J

�	̄ �Q �£ �	áÓ�
��YÒ�
��J ����
 B

� �Yg� @ �ñ
�
Ë
�
@ �I.

��
»�Q�Ü

�
Ï�@ �ð . A�ê«� �ñ

�	K �	áÓ� A�î
��	E
�
B� P�ð

�Qå
����Ë
�
@

16
�é�	JÓ�]

�é�	J �« T., p. 212.

24
�	áÓ� �Z �ú
æ

����Ë
�
@
��YÒ�
��J ����
] �	áÓ�

��YÒ�
��J ����
 T., p. 214.

25
�	áÓ�] �	áÓ� �ð T., p. 214.

28 é� �J

�	̄ �Q �£] é� �J

�	̄ �Q �£ T., p. 215.

15–16 A �Òë� Y� �g
�
@] The word A �Òë� Y� �g

�
@ is a correction, by the author, in the margin. Part of the pronoun A �Òë� is

cut off in the manuscript, but from the context, as well from comparison with T., there is no doubt that

A �Òë� Y� �g
�
@ is meant.

28 é� �J

�	̄ �Q �£] In A. we find éJ
 	̄Q 	£, but from the context and the commentary, it is clear that the author meant

Figure 8: Poetry Justification in ArabTEX.

simple yet inelegant solution was adopted: flat, horizontal extending of
characters. Now this solution did have some precedent in pre-digital Arabic
typography, as you can see in Figure 6 and Figure 7. This solution had
the advantage that it required only a single character: a simple horizontal
bar called a tat.w̄ıl or more commonly a kashidah (U+0640). This character
could then be repeated as often as necessary to fill any extra space.
Now an examination of pre-digital books shows a (rather wise) reticence
to using this method too slavishly. That reticence has now been thrown to
the winds. This can be seen by looking at the standard implementation of
flat extending as provided by Microsoft Word. This program provides three
levels of extending that it calls “justification”. See Figure 9 for examples
of all three. The minimum level is actually very close to the default (i.e.,
no-justification) level. Note that the sample text used in Figure 9 is the
same as that used in the earlier samples from the Qur↩ān.
Older implementations of Arabic script within TEX, such as ArabTEX and
Omega/Aleph, also provided facilities for flat extending. The most common
use was in poetry, which requires a fixed width for each stanza.
In Omega/Aleph, a method based on \xleaders was used, based on a very
thin tat.w̄ıl glyph (much thinner than U+0640) that could be used for very
fine extending optimization based on TEX’s badness parameter. One nice
application is in marginal notes: See Figure 10, where the marginal note on
the right is zoomed in. On the other hand, we see that the leaders method

81

يْتَ َ ٢٧١ ياَ أيَ ُّهَا الَّذِينَ آمَنُوا كُلُوا مِنْ طيَِّبَاتِ مَا رَزَقْ نَاكُمْ وَاشْكُرُوا للَِّهِ إِنْ كُنْتُمْ إيَِّاهُ تَ عْبُدُونَ َْ ََ رََّ لَلَ يْكُمُ الْ َ ا إِنََّّ
َ وَلََْمَ الْْنِْزيِرِ وَمَا أهُِلَّ بهِِ لغَِيِْْ اللَّ هِ لََ وَََ لَ الَلَ فَ مَ إِلَْ لَلَيْ هِ ۖ وَالدَّ ْْ ررَُّ يَي ْ رَ بَ ا َْ نِ ا ُُ ورر رََِ يمر ۖ فَ إِنَّ اللَّ هَ يَ

ُِ وَيَهْ تَ رُونَ بِ هِ َ نَ ا قلَِ يم ٢٧١ ُْ ونَ مَ ا ألَْ زَهَ اللَّ هُ مِ نَ الْكِتَ ا أوُلََٰئِ َ مَ ا يَ وْكُلُونَ ُِ برُُ ولَِِّمْ إََِّ ۖ إِنَّ الَّ ذِينَ يَكْتُ
رُ ألَِ يمر النَّ َِيَامَ ِ وَََ ي ُ زكَِّيهِمْ وَاَُ مْ لَ ذَا هُ مُ اللَّ هُ يَ وَْ الْ ُْ أوُلََٰئِ َ الَّ ذِينَ اشْ تَ رَوُا الةَّ مَلََ باِاُْ دَ َٰ ٢٧١ ارَ وَََ يُكَلِّ

ُِرةَِ غْ َْ َُ باِلْ ا أَصْبَ رَهُمْ لَلَى النَّارِ ۖ وَالْعَذَا َْ لَِ بوَِنَّ اللَّهَ لَ زَّ ٢٧١ فَ َُ باِلََْقِّ ذََٰ ُُ وا ُِ ۖ هَ الْكِتَا تَ لَ ْْ وَإِنَّ الَّ ذِينَ ا
ُِي شََِاقلَ بعَِيدلَ ُِ لَ ٢٧١ الْكِتَا

ََ رََّ ٢٧١ يَ ا أيَ ُّهَ ا الَّ ذِينَ آمَنُ وا كُلُ وا مِ نْ طيَِّبَ اتِ مَ ا رَزَقْ نَ اكُمْ وَاشْ كُرُوا للَِّ هِ إِنْ كُنْ تُمْ إيَِّ اهُ تَ عْبُ دُونَ َ ا إِنََّّ
َ وَلََْ مَ الْْنِْزيِ رِ وَمَ ا أهُِ لَّ بِ هِ لغَِ يِْْ اللَّ هِ لَلَ يْكُ يْتَ َ وَال دَّ َْ لََ وَََ لَ الَلَ فَ مَ إِلَْ ۖ مُ الْ ْْ ررَُّ يَي ْ رَ بَ ا َْ نِ ا فَ
ُُ ورر رََِ يمر ۖ لَلَيْ هِ ُِ وَيَهْ تَ رُونَ بِ هِ َ نَ ا ٢٧١ إِنَّ اللَّ هَ يَ ُْ ونَ مَ ا ألَْ زَهَ اللَّ هُ مِ نَ الْكِتَ ا إِنَّ الَّ ذِينَ يَكْتُ
َِيَامَ ِ وَََ ي ُ زكَِّيهِمْ ۖ قلَِ يم هُ مُ اللَّ هُ يَ وَْ الْ ُْ رُ أوُلََٰئِ َ مَ ا يَ وْكُلُونَ ُِ برُُ ولَِِّمْ إََِّ النَّ ارَ وَََ يُكَلِّ وَاَُ مْ لَ ذَا
ُِرةَِ ٢٧١ ألَِ يمر غْ َْ َُ بِ الْ َْ ا أَصْ بَ رَهُمْ لَلَ ى النَّ ارِ ۖ أوُلََٰئِ َ الَّ ذِينَ اشْ تَ رَوُا الةَّ مَلََ باِاُْ دَ َٰ وَالْعَ ذَا ٢٧١ فَ

َُ باِلََْقِّ لَِ بوَِنَّ اللَّهَ لَ زَّهَ الْكِتَا ُِي شََِاقلَ بعَِيدلَ ۖ ذََٰ ُِ لَ ُُوا ُِ الْكِتَا تَ لَ ْْ ٢٧١ وَإِنَّ الَّذِينَ ا

 ٢٧١ يَ ا أيَ ُّهَ ا الَّ ذِينَ آمَنُ وا كُلُ وا مِ نْ طيَِّبَ اتِ مَ ا رَزَقْ نَ اكُمْ وَاشْ كُرُوا للَِّ هِ إِنْ كُنْ تُمْ إيَِّ اهُ تَ عْبُ دُونَ
َ وَلََْ مَ الْْنِْزيِ رِ وَمَ ا أهُِ لَّ بِ هِ لغَِ يِْْ اللَّ هِ يْتَ َ وَال دَّ َْ ََ رََّ لَلَ يْكُمُ الْ َ ا ْْ ررَُّ ۖ إِنََّّ َْ نِ ا لََ فَ يَي ْ رَ بَ ا

ُُ ورر رََِ يمر ۖ وَََ لَ الَلَ فَ مَ إِلَْ لَلَيْ هِ ُْ ونَ مَ ا ألَْ زَهَ اللَّ هُ مِ نَ ٢٧١ إِنَّ اللَّ هَ يَ إِنَّ الَّ ذِينَ يَكْتُ
ُِ وَيَهْ تَ رُونَ بِ هِ َ نَ ا قلَِ يم هُ مُ اللَّ هُ أوُلََٰئِ َ مَ ا يَ وْكُلُونَ ُِ برُُ ولَِِّمْ إََِّ النَّ ارَ وَََ يُكَ ۖ الْكِتَ ا ُْ لِّ

رُ ألَِ يمر َِيَامَ ِ وَََ ي ُ زكَِّيهِمْ وَاَُ مْ لَ ذَا أوُلََٰئِ َ الَّ ذِينَ اشْ تَ رَوُا الةَّ مَلََ باِاُْ دَ َٰ ٢٧١ يَ وَْ الْ
ُِرةَِ غْ َْ َُ بِ الْ َْ ا أَصْ بَ رَهُمْ لَلَ ى النَّ ارِ ۖ وَالْعَ ذَا َُ بِ ٢٧١ فَ لِ َ بِ وَنَّ اللَّ هَ لَ زَّهَ الْكِتَ ا ۖ الََْقِّ ذََٰ

ُِي شََِاقلَ بعَِيدلَ ُِ لَ ُُوا ُِ الْكِتَا تَ لَ ْْ ٢٧١ وَإِنَّ الَّذِينَ ا

 Figure 9: Flat justification from Microsoft Word 2010.

82

þ¸ºþ

��R£W�7£S��§�R'¬���%§
��¬�®a§�§b���R£��e£?�ú�V�?�_§H£Üa�å�?V�K��¬V��	̈Þ

F���f����e����Y�V���"��
�����V���?��"�F�����
�R����Sz�����̀
����@R�����S����'¬�����R�����P��R�����e�����̀
������������'§����������S§����������bN�����������>̀�R¦����������hV�����������K������������Ñ�
�R����b��i�d�������Ý>�����S¦����h������'�������
�!6�������������b��!��R�������������e��������������K��������������e�������������[��������������e¬���������������
�R���¬��j�������Þ>���S��Ò��R��e���K���e��\�Ý
>������e�����\��R�����e������K������e�����\�Ýa��������L®
�R��������������������������������������e���������������������������������������K���������������������������������������e��������������������������������������\�Ü

ì��R£W§K��¬V�ú§ë�#£a�¦Þ¼´

ì���ë�Z¬?̀i��*£��Q����Y¬���Q��%£Ú£'��Y����î®"�ä���§̂b�V§K£��,¦
F�O£�
�>̀ä���Q§�î®"����R£b��i�d�ú�×�?�S°K��a��>£��K�����Ý�a£]��S°G��a��§§b���Ý�a£
W��K°K��a�a§�§b���Üa��¦á��!�Y¬�a¬Q�V�K��V��	��î®"�V�i£�F�ú§�a£�L®è×@ç
���=£S�e¬ú��R£Ð�'�e7�ú�Üa����Q§V�i£�F����̀�R�¬/£��dL§���R£?§[��a�"��R£b§®e¬ú�a��=£�eS�e¬ú�
�R£W§"�N¬��ú��R£W§[£7���K�ú�>�S�e£�̀ßN�K�b£R�[��Ý§̂b��þ§�ð¬�ci�Ü�å¦��i¬§̂b���G�§¼¹

�R£C�Ó£��a��R�¬������ß�R£W�â�§�R£K§�°a%§�R'¬j�U§�R£W§�V�\§�R£W§_�Ù£�\§�R£m��
§
�£̀��¬�!§�R£W§��O� ®§ß�b£��R�L§�R£���!�c�R£W§/�å®§éÝ��¦B�¡£��¦á����'�-��d�K£��3�e�̀
�R£ §£�̂�Y§Ü

a�¦̂ ��ì§̂b�ë�R£?�à£§�R£e�K��§Üa�R�W¬�G�£d�O§\£V�i£�F��§?̀���R£?§[£b��Y�V§b�����
ä��¬b£��e��ÝF�j��§�¬V�\£�J��V�ú��R£ §£�̂�Y�>�S�e£�̀ä���J��Q�ì>���±è=çëÝêa�½´

���Q§�R�¬/£��dL���>̀×�b£��e�§]?éäa�ìV�\£ëÚ�'£��ú��RÑ¬+��°0��R�e£�̀�§£�̂�Z��Ý�a£
ú

¼¹¼»§̂b��þ§ÜÜÜ�R���!�c�RW§/�b®!§Þ��RW§K��Ð�(§V�\��R���̄¹½Þ¶¸¶¶〈

ú
¼¸�R_S�e¬ú�ÞN� ¦R�P����!.T�Ü
‖�R_�eS�e¬ú�ÞN� ¦R�P����!.T�Ü

Figure 10: Marginal-note justification in Omega/Aleph.

creates extending that may be considered too perfectly even: Do we want
to impose the rule that only one character should be extended per word
(or at most two non-consecutive characters)? I have seen a lot of older
digital Arabic typography that does even extending, including the poetry
in the ArabTEX sample in figure 8. Compare this with the Microsoft Word
method (Figure 9). The method used in Microsoft Word, with only one
extension per word, seems to be the current standard for flat-extending
justification.
On the other hand, the justification used in Microsoft Word is not particu-
larly aesthetically pleasing. The answer will lie, again, in parameterization
of some sort to be determined. As TEXies, we want to be able to have fine
control over this kind of behavior in any case. In the meantime, we mirror
the same rule we arrived at for naturally-widened-glyphs:

Generally, there is only one flat extended character allowed per
word. However, two non-consecutive extended characters may be
allowed. In that case, the second extended character should be
longer than the first.

For example:

83

In accordance with our working rule, the top substitution uses only one flat
extended character. The bottom uses two, but the second is longer than
the first.

In our own estimation, the smaller the type, as in, e.g., footnotes and marginal
notes, the less aesthetic variants that are needed. And the less aesthetic variants
needed, the better that flat extending will work as a solution. Consider another
example of the same word processed in three different variants:

In this case our default is on the left. The variant on the right is about as basic
as one can get; the default on the left is a sophisticated aesthetic variant. The
middle one is, well, in between. Let’s try them with flat extending, using only
one extended character per word:

On the left, we have an aesthetic combination of letters followed by a flat tat.w̄ıl.
This is what Microsoft Word would give us, and the result is aesthetically dis-
tasteful. In the word on the right, however, the flat extension fits well with the
basic nature of the feature set. As for the middle one, it could go either way and
we leave it to the reader to decide what one thinks.

Now let’s repeat with more naturally curved widening:

Here, the variant on the left comes out much nicer. The one on the right looks
okay with curved widening, although one could arguably do better with flat
extending, at least in some contexts. The middle one, again, could go either way,
though we think it does somewhat better with curved widening compared to the
one on the right. The variant on the left only works well with curved widening.

84

Towards a ConTEXt solution
In what follows, we will focus on a solution to the problem of paragraph optimiza-
tion via alternate glyphs (including alternately-shaped and naturally-widened
variants). It turns out that the \xleaders method used by Omega/Aleph does
not work in LuaTEX, so flat extending could not be naively implemented that
way. At the moment flat extending is yet to be implemented in ConTEXt.

Since flat extending is so ubiquitous in current Arabic script typography, and
since it does have important applications (poetry and small font sizes where one
prefers simpler aesthetic variants), one could ask why this was not implemented
first. In part, this is because the immediate priority of the Oriental TEX project
has been top-notch, unparalleled aesthetic sophistication of the script. As we
noted above, flat extending does not work so well with sophisticated aesthetic
variation. So although the flat-extending problem is apparently simpler, it is
understandable that we have focused on the more difficult problem first. A
clear understanding of the issues and challenges involved with the more general
alternate glyph method will help us implement a solution to the the flat-extended
problem as a special case. We will come back to this issue towards the end.

Let us now consider the current experimental ConTEXt setup for paragraph
optimization for Arabic script.

Applying Features to Arabic script

We’re now ready for the real thing: Arabic script. The initial setup is not that
different from the Latin script case.

Applying Features to Arabic script

We’re now ready for the real thing: Arabic script. The initial setup is not that
different from the Latin script case.
\definefontfeature

[husayni-whatever]
[goodies=husayni,
featureset=default]

\definefontsolution
[FancyHusayni]
[goodies=husayni,
solution=experimental]

\definefont
[FancyHusayni]
[file:husayni*husayni-whatever at 24pt]

85

But here the definitions in the goodies file look way more complex. Here we have
only one shrink set but multiple expansion sets.

local yes = "yes"
local basics = {

analyze = yes,
mode = "node",
language = "dflt",
script = "arab",

}
local analysis = {

ccmp = yes,
init = yes, medi = yes, fina = yes,

}
local regular = {

rlig = yes, calt = yes, salt = yes, anum = yes,
ss01 = yes, ss03 = yes, ss07 = yes, ss10 = yes, ss12 = yes,
ss15 = yes, ss16 = yes, ss19 = yes, ss24 = yes, ss25 = yes,
ss26 = yes, ss27 = yes, ss31 = yes, ss34 = yes, ss35 = yes,
ss36 = yes, ss37 = yes, ss38 = yes, ss41 = yes, ss42 = yes,
ss43 = yes, js16 = yes,

}
local positioning = {

kern = yes, curs = yes, mark = yes, mkmk = yes,
}
local minimal_stretching = {

js11 = yes, js03 = yes,
}
local medium_stretching = {

js12=yes, js05=yes,
}
local maximal_stretching= {

js13 = yes, js05 = yes, js09 = yes,
}
local wide_all = {

js11 = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,
}
local shrink = {

flts = yes, js17 = yes, ss05 = yes, ss11 = yes, ss06 = yes,
ss09 = yes,

}
local default = {

86

basics, analysis, regular, positioning,
}
return {

name = "husayni",
version = "1.00",
comment = "Goodies that complement the" ..

"Husayni font by prof.Hamid.",
author = "Idris Samawi Hamid and Hans Hagen",
featuresets = {

default = {
default,

},
minimal_stretching = {

default,
js11 = yes, js03 = yes,

},
medium_stretching = {

default,
js12=yes, js05=yes,

},
maximal_stretching= {

default,
js13 = yes, js05 = yes, js09 = yes,

},
wide_all = {

default,
js11 = yes, js12 = yes, js13 = yes, js05 = yes,
js09 = yes,

},
shrink = {

default, flts = yes,
js17 = yes,
ss05 = yes, ss11 = yes, ss06 = yes, ss09 = yes,

},
},

solutions = {
experimental = {

less = {
"shrink",

},
more = {

"minimal_stretching", "medium_stretching",

87

"maximal_stretching", "wide_all"
},

},
},
...

}
There are some 55 stylistic and 21 justification features. Not all make sense

when optimizing. We predefine some Lua tables to make the sets and solutions
easier to understand. The default rendering looks as follows:
\FancyHusayni
\righttoleft
\definefontfeature[rasm][script=arab,ss05=yes,js06=no,ss55=yes]
\addff{rasm}
\getbuffer[sample] \par

Note that we already have a degree of widened substitution in this example.
This is all for the accommodation of vowels, and is defined entirely in the Open-
Type tables of the font. We also added some special orthography (the rasm font
feature to get the Qur↩ānic features just right). You can also do this by adding the
feature to the lfg file (local regular =). There is no paragraph optimization
as yet, although the default LuaTEX engine does a good job to start with.

88

Next we show a more optimized result:
\setupfontsolution

[FancyHusayni]
[method={preroll,normal},
criterium=1]

\startfontsolution[FancyHusayni]
\FancyHusayni
\righttoleft

\definefontfeature[rasm][script=arab,ss05=yes,js06=no,ss55=yes]
\addff{rasm}

\getbuffer[sample] \par
\stopfontsolution

Now let’s see what happens when \parfillskip = 0pt, i.e., the last line has
no extra space after the end of the paragraph. This is important for getting, e.g.,
the last line of the page to end with the end of a verse as we discussed earlier:
\setupfontsolution

[FancyHusayni]
[method={preroll,normal},
criterium=1]

89

\startfontsolution[FancyHusayni]
\FancyHusayni
\righttoleft

\definefontfeature[rasm][script=arab,ss05=yes,js06=no,ss55=yes]
\addff{rasm}

\parfillskip=0pt
\getbuffer[sample] \par

\stopfontsolution

Just as the effects are more visible in the \parfillskip = 0pt case, the
impact is much larger when the available width is less. In figures 11, 12, 13, 14,
and 15 we can see the optimizer in action when that happens.

In our estimation, the current experimental solution works best for alternate-
shaped glyphs, although there is some success with naturally widened characters.
Clearly, some widened substitutions work better than others. A lot of fine
tuning is needed, both within the OpenType features as well as the optimization
algorithm.

Without going into a detailed analysis at the moment, we restrict ourselves
to two critical observations.

90

normal narrow

Figure 11: A narrower sample (a).

91

normal narrow

Figure 12: A narrower sample with no parfillskip (b).

92

normal narrow

Figure 13: An even narrower sample (c).

93

normal narrow

Figure 14: An even narrower sample (d).

94

normal narrow

Figure 15: An even narrower sample (e).

95

First, in our tests one will notice that the glyph substitutions tend to take
place on the right side of the line. They should be more evenly distributed
throughout each line.

Second, we can say that the current method works better for alternate-shaped
glyph substitution than it does for naturally-widened glyph substitution. This
leads us to the next step in this research project:

Within the Husayni font there is now a mapping between flat extending via
tat.w̄ıl and curved widening via alternate glyphs. Consider the following manually
typed utf text using the tat.w̄ıl character (U+0640):

\ARROW\
In flat-extended typography that comes out like this:

Husayni, through the optional Stylistic Alternates feature (salt) will map the
flat tat.w̄ıl-extended characters to curved widened characters. So with salt=yes
selected in ConTEXt we get

This opens up a way to connect a forthcoming solution to the flat tat.w̄ıl-
extended character method with the curved widened-glyph method. A future
version of the optimizer may be able to optimize the paragraph in terms of the
tat.w̄ıl character and a set of rules along the lines we discussed earlier. Then we
can simply convert the result to curves using the tat.w̄ıl character. At least this is
one possibility.

The second author is currently working on an updated version of the Husayni
font. The updates include improved character shapes and possibly the use of the
OpenType variable font mechanism to provide a bold typeface.

Conclusion

In this article, we introduced the ConTEXt paragraph optimizer and showed
how it can be used in conjunction with a sophisticated OpenType font for Arabic
script typesetting. We argue that the current paragraph optimizer, even in its
experimental status at the moment, represents one of the greatest and most
important steps in the evolution of digital Arabic script typography. Its potential

96

impact on for Arabic script typesetting is immense, and we excitedly look forward
to its completion.

Orientálský TEX: Optimalizace odstavcového zlomu

Článek popisuje systém pro optimalizaci odstavcového zlomu při sazbě arabštiny
ve formátu ConTEXt. Implementace je představena na úryvcích v latince. Článek
následně popisuje základní vlastnosti arabského písma a známé postupy při
optimalizaci odstavcového zlomu. V závěru článku je jeden z popsaných postupů
využit při sazbě pasáže z Koránu.

Keywords: mikrotypografie, OpenType, ConTEXt, LuaTEX

97

