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Abstract. We present a new method for studying the numerical radius of bounded op-
erators on Hilbert C∗-modules. Our method enables us to obtain some new results and
generalize some known theorems for bounded operators on Hilbert spaces to bounded ad-
jointable operators on Hilbert C∗-module spaces.

Keywords: numerical radius; inner product space; C∗-algebra

MSC 2020 : 47A12, 46C05, 47C10

1. Introduction

Let (H, 〈·, ·〉) be a Hilbert space and denote by B(H) the set of all bounded

linear operators on H . The numerical range and numerical radius of an element

T ∈ B(H) are defined byW (T ) = {〈Tx, x〉 : ‖x‖ = 1} and ω(T ) = {|λ| : λ ∈ W (T )},
respectively. These concepts turn out to be useful in some situations (see, e.g., [3],

[6], [7], [8]).

By a Hilbert C∗-module, we mean a linear space with an inner product which

takes values in a C∗-algebra. This notion has appeared first in a work of Kaplansky

(see [12]), who developed the theory for commutative unital algebras. The theory

was extended to general C∗-algebras by Paschke (see [21]) and Rieffel (see [22]). We

refer the reader to [15] for more information.

Some mathematicians studied basic properties of numerical range and numerical

radius for bounded adjointable operators on Hilbert C∗-modules, see [10], [19], [17].

Although it is possible to prove some inequalities in Hilbert C∗-module spaces us-

ing standard methods, due to the different structure of Hilbert C∗-modules, it seems

that different definitions of some concepts, which are natural extensions of some stan-

dard definitions, are needed for studying some inequalities in Hilbert C∗-modules.
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In this paper, we provide new definitions of the numerical range and numerical

radius for bounded adjointable operators on Hilbert C∗-modules, which are of course

the natural generalizations of these concepts to operators on Hilbert spaces. By

using these definitions and applying special techniques, we prove some fundamental

inequalities in the operating radius of adjointable boundary operators on Hilbert

C∗-modules in Section 2.

In Section 3, we use the method presented in Section 2 to provide some applica-

tions of our results. We also prove some new inequalities on the numerical radius of

bounded operators on Hilbert C∗-modules, which also extend some known inequali-

ties in the space of bounded operators on Hilbert spaces.

2. Main results

We start by recalling some definitions.

Definition 2.1. Let A be a C∗-algebra. A semi-inner product A-module is a

linear space E which is a right A-module with the compatible scalar multiplication

λ(xa) = (λx)a = x(λa) for all x ∈ E, a ∈ A and λ ∈ C

together with a map 〈·, ·〉E : E × E → A, which has the following properties:

(i) 〈x, αy + βz〉E = α〈x, y〉E + β〈x, z〉E , x, y, z ∈ E, α, β ∈ C,

(ii) 〈x, ya〉E = 〈x, y〉Ea, x, y ∈ E, a ∈ A,

(iii) 〈x, y〉∗E = 〈y, x〉E , x, y ∈ E.

For every x ∈ E, we put ‖x‖E = ‖〈x, x〉E‖1/2. A semi-inner product space E,
which satisfies

‖x‖E = 0 ⇔ x = 0,

is called an inner product A-module. A complete inner-product A-module is called

a Hilbert C∗-module.

Definition 2.2. Suppose that E, F are Hilbert C∗-modules. We define L(E,F )

to be the set of all maps t : E → F for which there is a map t∗ : F → E which

satisfies

〈tx, y〉E = 〈x, t∗y〉E , x ∈ E, y ∈ F.

L(E,E) is simply denoted by L(E). It is known that L(E) is a C∗-algebra.

Definition 2.3 ([20], page 89). A state on a C∗-algebra A is a positive linear

functional on A of norm one. We denote the state space of A by S(A).
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Definition 2.4. Suppose that E is a Hilbert right A-module. We define the

numerical range of t ∈ L(E) by

WA(t) = {̺〈x, tx〉E : x ∈ E, ̺ ∈ S(A), ̺〈x, x〉E = 1}.

We also define the numerical radius of t ∈ L(E) by

ωA(t) = sup
̺〈x,x〉E=1

|̺〈x, tx〉E |.

Note that our definition is a natural extension of the definition of numerical range

and numerical radius of bounded operators on Hilbert spaces. In fact, in this case

the C∗-algebra A is the set of complex numbers and S(A) contains only the identity

function on the set of complex numbers.

Hereafter, we assume that A is a C∗-algebra and E is an inner product A-module.

We need the following result.

Lemma 2.5 ([15], Lemma 3.1). Suppose that E is a Hilbert C∗-module and t is a

self-adjoint element of L(E). If ‖tx‖ > k‖x‖, x ∈ E for some constant k > 0, then t

is invertible in L(E).

In order to present the main results of this section, we need the following results.

Lemma 2.6. Let t ∈ L(E) and ̺ ∈ S(A). The following statements are equiva-

lent:

(a) ̺〈x, tx〉E = 0 for every x ∈ E with ̺〈x, x〉E = 1;

(b) ̺〈x, tx〉E = 0 for every x ∈ E.

P r o o f. The proof runs in a similar way as in the classical case of Hilbert spaces.

�

Lemma 2.7. Let t ∈ L(E), then |̺〈x, tx〉E | 6 ̺〈x, x〉EωA(t) for every ̺ ∈ S(A)

and x ∈ E.

P r o o f. Let x ∈ E and ̺〈x, x〉E 6= 0. Then

̺
〈 x

(̺〈x, x〉E)1/2
,

x

(̺〈x, x〉E)1/2
〉

E
= 1,

so that
∣

∣

∣
̺
〈 x

(̺〈x, x〉E)1/2
, t
( x

(̺〈x, x〉E)1/2
)〉

E

∣

∣

∣
6 ωA(t).

Hence

|̺〈x, tx〉E | 6 ̺〈x, x〉EωA(t).

549



Let ̺〈x, x〉E = 0. By the Cauchy-Schwarz inequality we have

|̺〈x, tx〉E |2 6 ̺〈x, x〉E̺〈tx, tx〉E .

It follows that |̺〈x, tx〉E | = 0. Therefore

|̺〈x, tx〉E | 6 ̺〈x, x〉EωA(t).

�

It is known that T ∈ B(H) is positive if and only if 〈Tx, x〉 > 0 and T = 0 if and

only if 〈Tx, x〉 = 0 for all x ∈ H . By applying standard argument, one can show

that the corresponding results hold for Hilbert C∗-modules.

Proposition 2.8. For every t ∈ L(E), the following statements hold.

(a) t = 0 if and only if 〈x, tx〉E = 0 for every x ∈ E.

(b) t is positive if and only if 〈x, tx〉E is positive for every x ∈ E.

(c) t is self-adjoint if and only if 〈x, tx〉E is self-adjoint for every x ∈ E.

The following lemma is an implication of part (a) of Proposition 2.8.

Lemma 2.9. Let t ∈ L(E), then t = 0 if and only if ̺〈x, tx〉 = 0 for every x ∈ E

and ̺ ∈ S(A).

Proposition 2.8 enables us to obtain the following.

Corollary 2.10. Let t ∈ L(E) and ̺ ∈ S(A), then for every x ∈ E

Re ̺〈x, tx〉E = ̺〈x,Re(t)x〉E .

P r o o f. Let b = Re(t) and c = Im(t). Then t = b+ ic. By linearity of ̺,

̺〈x, tx〉E = ̺〈x, bx〉E + i̺〈x, cx〉E , x ∈ E.

By Proposition 2.8 (c), 〈x, bx〉E , 〈x, cx〉E are self-adjoint. Since ̺ is positive, by [20],
Theorem 3.3.2, we have

Re ̺〈x, tx〉E = ̺〈x, bx〉E = ̺〈x,Re(t)x〉E , x ∈ E.

�

It is known that for every Hermitian element T of B(H), the numerical range of T

is a subset of the real line and if T is positive it is a subset of non-negative real

numbers. The next result shows that these properties hold in L(E).
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Theorem 2.11. Let t ∈ L(E), then the following statements hold.

(a) t is self-adjoint if and only if WA(t) is a subset of the real line.

(b) t is positive if and only if WA(t) ⊆ R
+.

P r o o f. (a) Let t be self-adjoint, x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

̺〈x, tx〉E = ̺〈t∗x, x〉E = ̺〈tx, x〉E = ̺(〈x, tx〉E)∗ = ̺〈x, tx〉E .

Then WA(t) ⊆ R.

Conversely, suppose that WA(t) ⊆ R. For every x ∈ E and ̺ ∈ S(A) with

̺〈x, x〉E = 1, we have

̺〈x, tx〉E = ̺〈x, tx〉E = ̺(〈x, tx〉E)∗ = ̺〈tx, x〉E = ̺〈x, t∗x〉E .

Therefore ̺〈x, (t− t∗)x〉E = 0 for every ̺ ∈ S(A) and every x ∈ E with ̺〈x, x〉E = 1.

By Lemma 2.6, ̺〈x, (t−t∗)x〉E = 0 for x ∈ E and ̺ ∈ S(A). According to Lemma 2.9,

t = t∗.

By using Proposition 2.8 (b) and Theorem 4.3.6 (iii) in [11], one can prove part (b)

similarly. �

We know that the numerical range of an operator T ∈ B(H) is convex. We have

to admit that we could not extend this result for adjointable operators on a Hilbert

C∗-module. Thus the following question remains open.

Question. Is the numerical range of an operator t ∈ L(E) convex?

R em a r k 2.12. Let E, F be Hilbert C∗-modules and t ∈ L(E,F ), x ∈ E.

In [15], Proposition 1.2, it is shown that

(2.1) |tx|2 6 ‖t‖2|x|2.

It follows from (2.1) that for every positive linear functional ̺,

(2.2) ̺〈tx, tx〉 6 ‖t‖2̺〈x, x〉.

For every T ∈ B(H) and x ∈ H , we have (see [24])

sup
θ∈[0,2π]

Re(eiθ〈Tx, x〉) = |〈Tx, x〉|.

Since for every ̺ ∈ S(A), ̺〈·, ·〉E is a semi-inner product, then for every t ∈ L(E)

and x ∈ E,

(2.3) sup
θ∈[0,2π]

Re(eiθ̺〈x, tx〉E) = |̺〈x, tx〉E |.

The above property enables us to obtain one of the main results of this section.
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Theorem 2.13. For every t ∈ L(E), we have

(a) 1
2‖t‖ 6 ωA(t) 6 ‖t‖;

(b) ωA(t) = ‖t‖ if t is normal.

P r o o f. In order to prove (a), note that for every ̺ ∈ S(A) and x, y ∈ E with

̺〈x, x〉E 6 1 and ̺〈y, y〉E 6 1, we have

2Re ̺(〈x, ty〉E + 〈y, tx〉E) = Re ̺(〈x + y, t(x+ y)〉E − 〈x− y, t(x− y)〉E)
6 |̺(〈x+ y, t(x+ y)〉E − 〈x− y, t(x− y)〉E)|
6 |̺〈x+ y, t(x+ y)〉E |+ |̺〈x − y, t(x− y)〉E |
6 ̺(〈x+ y, x+ y〉E + 〈x− y, x− y〉E)ωA(t)

= (2̺〈x, x〉E + 2̺〈y, y〉E)ωA(t)

6 4ωA(t)

by Lemma 2.7. Then

(2.4) Re ̺(〈x, ty〉E+〈y, tx〉E) 6 2ωA(t), ̺ ∈ S(A), ̺(〈x, x〉E) 6 1, ̺(〈y, y〉E) 6 1.

Putting y = tx(̺〈tx, tx〉E)−1/2 in (2.4) we see that

Re ̺
(〈

x, t
( tx

(̺〈tx, tx〉E)1/2
)〉

E
+

〈 tx

(̺〈tx, tx〉E)1/2
, tx

〉

E

)

6 2ωA(t)

for every ̺ ∈ S(A) and x ∈ E with ̺(〈x, x〉E) 6 1. This means that

(2.5) Re ̺〈x, t2x〉E + ̺〈tx, tx〉E 6 2ωA(t)(̺〈tx, tx〉E)1/2, ̺ ∈ S(A), ̺(〈x, x〉E) 6 1.

By replacing t by eiθ/2t in (2.5),

Re ̺〈x, (eiθ/2t)2x〉E +̺〈tx, tx〉E 6 2ωA(t)(̺〈tx, tx〉E)1/2, ̺ ∈ S(A), ̺(〈x, x〉E) 6 1.

By taking supremum over all θ ∈ [0, 2π], we have

sup
θ∈[0,2π]

Re(eiθ̺〈x, t2x〉E) + ̺〈tx, tx〉E 6 2ωA(t)(̺〈tx, tx〉E)1/2,

̺ ∈ S(A), ̺(〈x, x〉E) 6 1.

By (2.3) then sup
θ∈[0,2π]

Re(eiθ̺〈x, t2x〉E) = |̺〈x, t2x〉E |. Therefore,

|̺〈x, t2x〉E |+ ̺〈tx, tx〉E 6 2ωA(t)(̺〈tx, tx〉E)1/2

6 2ωA(t)‖tx‖, ̺ ∈ S(A), ̺(〈x, x〉E) 6 1.

Since |̺〈x, t2x〉E | > 0 for every ̺ ∈ S(A) and x ∈ E with ̺(〈x, x〉E) 6 1, we have

(2.6) ̺〈tx, tx〉E 6 2ωA(t)‖tx‖E .
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By taking supremum over all ̺ ∈ S(A) we see that

‖tx‖2E = ‖〈tx, tx〉E‖ 6 2ωA(t)‖tx‖E .

Therefore for every x ∈ E with ‖x‖E = 1, ‖tx‖E 6 2ωA(t). Thus

1

2
‖t‖ 6 ωA(t).

For every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

|̺〈x, tx〉E |2 6 ̺〈x, x〉E̺〈tx, tx〉E 6 ̺〈x, x〉2E‖t‖2 = ‖t‖2

by (2.2). By taking supremum over all ̺〈x, x〉E = 1,

ωA(t) 6 ‖t‖.

(b) By (2.5), for every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

|̺〈x, t2x〉E |+ ̺〈tx, tx〉E 6 2ωA(t)(̺〈tx, tx〉E)1/2.

It follows that for x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

|̺〈x, t2x〉E | 6 2ωA(t)(̺〈tx, tx〉E)1/2 − ̺〈tx, tx〉E
= −(−2ωA(t)(̺〈tx, tx〉E)1/2 + ̺〈tx, tx〉E)
= −(ωA(t)− (̺〈tx, tx〉E)1/2)2 + ω2

A(t)

6 ω2
A(t).

By taking supremum over all x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

(2.7) ωA(t
2) 6 ω2

A(t).

By induction, one can show that for every n > 1,

ωA(t
2n) 6 ωA(t)

2n .

Since t is normal,

‖t‖2n = (‖t∗t‖2n)1/2 = ‖(t∗t)2n‖1/2 = ‖(t∗)2n t2n‖1/2 = ‖(t2n)∗t2n‖1/2 = ‖t2n‖
6 2ωA(t

2n) 6 2ωA(t)
2n .

It follows that ‖t‖ 6 21/2
n

ωA(t). By letting n → ∞, we see that ‖t‖ 6 ωA(t). This

together with (a) proves (b). �
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The following result follows immediately from Theorem 2.13.

Corollary 2.14. ωA(t) = ‖t‖ for every self-adjoint element of L(E).

It is known that the numerical radius function defines an equivalent norm onB(H).

The next theorem shows that this result holds when the Hilbert space H is replaced

by an arbitrary C∗-algebra.

Theorem 2.15. ωA : L(E) → [0,∞) defines a norm which is equivalent to the

norm on L(E).

P r o o f. Let ωA(t) = 0. Then for every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

we have

|̺〈x, tx〉E | = 0.

Hence ̺〈x, tx〉E = 0 for every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1. By Lemma 2.6,

̺〈x, tx〉E = 0 for every x ∈ E and ̺ ∈ S(A), and by Lemma 2.9, t = 0. For every

λ ∈ C,

ωA(λt) = sup
̺〈x,x〉E=1

|̺〈x, (λt)x〉E | = |λ| sup
̺〈x,x〉E=1

|̺〈x, tx〉E | = |λ|ωA(t).

Let t1, t2 ∈ L(E). For every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

|̺〈x, (t1 + t2)x〉E | 6 |̺〈x, t1x〉E |+ |̺〈x, t2x〉E | 6 ωA(t1) + ωA(t2).

By taking supremum over all ̺〈x, x〉E = 1,

ωA(t1 + t2) 6 ωA(t1) + ωA(t2).

Thus ωA(·) defines a norm L(E). By Theorem 2.13 this norm is equivalent to the

original norm on L(E). �

The following lemma is a simple consequence of the classical Jensen and Young

inequalities.

Lemma 2.16 ([9]). For a, b > 0 and 0 6 α 6 1,

aαb1−α 6 αa+ (1 − α)b 6 (αar + (1− α)br)1/r for r > 1.

The following result shows that ωA(t) = 1
2‖t‖ under some circumstances on

t ∈ L(E).
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Theorem 2.17. Let E be a Hilbert C∗-module, t ∈ L(E). If ran(t) is closed and

t2 = 0, then

ωA(t) =
1

2
‖t‖.

P r o o f. Let x be a unit element in E. Since ran(t) is closed, E = ran(t)⊕ker(t∗).

Therefore, every x ∈ E has a unique decomposition x = y+ z, where y ∈ ran(t) and

z ∈ ker(t∗). Since t2 = 0, by Lemma 2.9, ̺〈x, t2x〉E = 0 for x ∈ E and ̺ ∈ S(A). So

̺〈t∗x, tx〉E = 0. Thus ran(t) ⊥ ran(t∗). For x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

̺〈x, tx〉E = ̺〈y + z, t(y + z)〉E = ̺〈y, tz〉E.

For every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

|̺〈x, tx〉E |2 = |̺〈y, tz〉E |2 6 ̺〈y, y〉E̺〈tz, tz〉E 6 ‖t‖2̺〈y, y〉E̺〈z, z〉E

6 ‖t‖2
(̺〈y, y〉E + ̺〈z, z〉E

2

)2

=
1

4
‖t‖2̺〈x, x〉E =

1

4
‖t‖2

by (2.2) and by Lemma 2.16. By taking supremum over ̺〈x, x〉E = 1,

(2.8) ωA(t) 6
1

2
‖t‖.

By Theorem 2.13,

(2.9)
1

2
‖t‖ 6 ωA(t).

By (2.8) and (2.9) we have ωA(t) =
1
2‖t‖. �

3. Some applications

In this section we show that the results of the previous section enable us to gener-

alize some results about the numerical radius of the operators on Hilbert spaces to

the numerical radius of the operators on Hilbert C∗-modules.

In [14], Kittaneh proved the following statement.

Theorem 3.1 (Kittaneh [14], Theorem 1). Let T ∈ B(H), then

1

4
‖T ∗T + TT ∗‖ 6 ω2

A(T ) 6
1

2
‖T ∗T + TT ∗‖.

The above result can be generalized as follows.
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Theorem 3.2. If t ∈ L(E), then

1

4
‖t∗t+ tt∗‖ 6 ω2

A(t) 6
1

2
‖t∗t+ tt∗‖.

P r o o f. Let t ∈ L(E). There are self-adjoint elements b, c ∈ L(E) such that

t = b+ ic. For every vector x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

(3.1) |̺〈x, tx〉E |2 = (̺〈x, bx〉E)2 + (̺〈x, cx〉E)2 >
1

2
(̺〈x, bx〉E + ̺〈x, cx〉E)2

=
1

2
(̺〈x, (b + c)x〉E)2.

Since ̺〈x, (b + c)x〉E ∈ R, then (̺〈x, (b + c)x〉E)2 = |̺〈x, (b + c)x〉E |2. We have
1

2
sup

̺〈x,x〉E=1

|̺〈x, (b + c)x〉E |2 =
1

2

(

sup
̺〈x,x〉E=1

̺〈x, (b + c)x〉E
)2

6 sup
̺〈x,x〉E=1

|̺〈x, tx〉E |2

=
(

sup
̺〈x,x〉E=1

|̺〈x, tx〉E |
)2

6 ω2
A(t).

Therefore

(3.2)
1

2
ω2
A(b+ c) 6 ω2

A(t).

By Corollary 2.14, we have ωA(b + c) = ‖b+ c‖. Thus
1

2
‖b+ c‖ 6 ω2

A(t).

Since

1

2
(̺〈x, (b − c)x〉E)2 =

1

2
(̺〈x, bx〉E − ̺〈x, cx〉E)2 6

1

2
(|̺〈x, bx〉E |+ |̺〈x, cx〉E |)2

6 ̺〈x, bx〉2E + ̺〈x, cx〉2E = |̺〈x, tx〉E |2 6 ω2
A(t),

we have
1

2
ω2
A(b− c) 6 ω2

A(t).

By Corollary 2.14, we have ωA(b − c) = ‖b− c‖. Hence
1

2
‖b− c‖2 6 ω2

A(t).

Moreover,

2ω2
A(t) >

1

2
‖b+ c‖2 + 1

2
‖b− c‖2 = 1

2
‖(b+ c)2‖+ 1

2
‖(b− c)2‖

>
1

2
‖(b+ c)2 + (b− c)2‖ = ‖b2 + c2‖.

Therefore
1

4
‖t∗t+ tt∗‖ 6 ω2

A(t).
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For x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

|̺〈x, tx〉E |2 = ̺〈x, bx〉2E + ̺〈x, cx〉2E 6 ̺〈x, x〉E̺〈bx, bx〉E + ̺〈x, x〉E̺〈cx, cx〉E
= ̺〈x, b2x〉E + ̺〈x, c2x〉E = ̺〈x, (b2 + c2)x〉E 6 ωA(b

2 + c2)

= ‖b2 + c2‖ =
1

2
‖t∗t+ tt∗‖

by Corollary 2.14. It follows that ω2
A(t) 6

1
2‖t∗t+ tt∗‖. �

In [1], the authors obtained the following statement.

Theorem 3.3 ([1], Theorem 2.1). Let T ∈ B(H), then

ω4(T ) 6
1

4
ω2(T 2) +

1

8
ω(T 2P + PT 2) +

1

16
‖P‖2,

where P = T ∗T + TT ∗.

In order to find a generalization of the above theorem, we need the following.

Lemma 3.4. Let t ∈ L(E), then

ωA(t) = sup
θ∈[0,2π]

‖Re(eiθt)‖ =
1

2
sup

θ∈[0,2π]

‖t+ eiθt∗‖.

P r o o f. For any t ∈ L(E),

ωA(t) = sup
̺〈x,x〉E=1

|̺〈x, tx〉E | = sup
̺〈x,x〉E=1

sup
θ∈[0,2π]

̺〈x,Re(eiθt)x〉E

6 sup
̺〈x,x〉E=1

sup
θ∈[0,2π]

|̺〈x,Re(eiθt)x〉E | = sup
θ∈[0,2π]

sup
̺〈x,x〉E=1

|̺〈x,Re(eiθt)x〉E |

= sup
θ∈[0,2π]

ωA(Re(e
iθt)) = sup

θ∈[0,2π]

‖Re(eiθt)‖

by (2.3) and Corollary 2.14. For every θ ∈ [0, 2π],

‖Re(eiθt)‖ = ωA(Re(e
iθt)) = sup

̺〈x,x〉E=1

|̺〈x,Re(eiθt)x〉E |

= sup
̺〈x,x〉E=1

|̺Re〈x, (eiθt)x〉E | 6 sup
̺〈x,x〉E=1

|̺〈x, (eiθt)x〉E |

= sup
̺〈x,x〉E=1

|̺〈x, tx〉E | = ωA(t)

by Corollary 2.14. So sup
θ∈[0,2π]

‖Re(eiθt)‖ 6 ωA(t). Hence

ωA(t) = sup
θ∈[0,2π]

‖Re(eiθt)‖ =
1

2
sup

θ∈[0,2π]

‖eiθt+ e−iθt∗‖

=
1

2
sup

θ∈[0,2π]

‖t+ e−2iθt∗‖ =
1

2
sup

θ′∈[0,2π]

‖t+ eiθ
′

t∗‖,

where we put −2θ = θ′. �
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We can now generalize Theorem 3.3 for Hilbert C∗-modules.

Theorem 3.5. Let t ∈ L(E), then

ω4
A(t) 6

1

4
ω2
A(t

2) +
1

8
ωA(t

2p+ pt2) +
1

16
‖p‖2,

where p = t∗t+ tt∗.

P r o o f. By Lemma 3.4, we have

ωA(t) = sup
θ∈[0,2π]

‖Re(eiθt)‖.

The rest of the proof is similar to the proof of Theorem 2.1 in [1]. �

Sattari et al. in [23] obtained the following statement.

Theorem 3.6 ([23], Theorem 2.4). Let T ∈ B(H), then

ω2r(T ) 6
1

2
(ωr(T 2) + ‖T ‖2r).

The following result shows that the above theorem is true for bounded operators

on Hilbert C∗-modules.

Theorem 3.7. Let t ∈ L(E), then

ω2r
A (t) 6

1

2
(ωr

A(t
2) + ‖t‖2r).

P r o o f. In [2], Theorem 2, it is shown that for every semi-inner product (H, 〈·, ·〉),

(3.3) |〈a, b〉| 6 |〈a, e〉〈e, b〉|+ |〈a, b〉 − 〈a, e〉〈e, b〉| 6 〈a, a〉1/2〈b, b〉1/2

for every a, b, e ∈ H with 〈e, e〉 = 1. Observing that

(3.4) |〈a, e〉〈e, b〉| − |〈a, b〉| 6 |〈a, b〉 − 〈a, e〉〈e, b〉|,

we have by (3.3) and (3.4) that

|〈a, e〉〈e, b〉| 6 〈a, a〉1/2〈b, b〉1/2 − |〈a, b〉 − 〈a, e〉〈e, b〉|
6 〈a, a〉1/2〈b, b〉1/2 + |〈a, b〉| − |〈a, e〉〈e, b〉|

for every a, b, e ∈ H with 〈e, e〉 = 1. Therefore

(3.5) |〈a, e〉〈e, b〉| 6 1

2
(〈a, a〉1/2〈b, b〉1/2 + |〈a, b〉|), a, b, e ∈ H, 〈e, e〉 = 1.
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Since (E, ̺〈·, ·〉) is a semi-inner product space for every ̺ ∈ S(A), if we put a = t∗x,

b = tx and e = x with ̺(〈x, x〉) = 1, we get by (3.5) that

|̺〈t∗x, x〉E̺〈x, tx〉E |r 6

((̺〈t∗x, t∗x〉E)1/2(̺〈tx, tx〉E)1/2 + |̺〈t∗x, tx〉E |
2

)r

=
((̺〈x, x〉E)1/2‖t∗‖(̺〈x, x〉E)1/2‖t‖+ |̺〈x, t2x〉E |

2

)r

=
(‖t‖2 + |̺〈x, t2x〉E |

2

)r

6
1

2
(‖t‖2r + |̺〈x, t2x〉E |r) 6

1

2
(‖t‖2r + ωr

A(t
2))

by (2.2) and Lemma 2.16. Since |̺〈t∗x, x〉E̺〈x, tx〉E | = |̺〈x, tx〉E |2, we have

|̺〈x, tx〉E |2r 6
1

2
(‖t‖2r + ωr

A(t
2)).

By taking supremum over all x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1,

ω2r
A (t) 6

1

2
(‖t‖2r + ωr

A(t
2)).

�

Next, we need the following result.

Lemma 3.8 ([16], McCarty inequality). Let T ∈ B(H), T > 0 and x ∈ H , then

(i) 〈Tx, x〉r 6 ‖x‖2(1−r)〈T rx, x〉 for r > 1,

(ii) 〈Tx, x〉r > ‖x‖2(1−r)〈T rx, x〉 for 0 < r 6 1.

The following result follows immediately from Lemma 3.8.

Corollary 3.9. Let t ∈ L(E), t > 0 and x ∈ E, then for every ̺ ∈ S(A)

(i) (̺〈x, tx〉E)r 6 ‖x‖2(1−r)̺〈x, trx〉E for r > 1 and

(ii) (̺〈x, tx〉E)r > ‖x‖2(1−r)̺〈x, trx〉E for 0 < r 6 1.

Lemma 3.10 ([13], Cauchy-Schwarz inequality). Let T ∈ B(H) and 0 6 α 6 1,

then

|〈x, T y〉|2 6 〈x, |T |2αx〉〈y, |T ∗|2(1−α)y〉, x, y ∈ H.
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The following result is a consequence of Lemma 3.10.

Corollary 3.11. For ̺ ∈ S(A), ̺〈·, ·〉E is a semi-inner product. Suppose that
t ∈ L(E) and 0 6 α 6 1, then

|̺〈x, ty〉E |2 6 ̺〈x, |t|2αx〉E̺〈y, |t∗|2(1−α)y〉E , x, y ∈ E.

If α = 1
2 , then

|̺〈x, ty〉E |2 6 ̺〈x, |t|x〉E̺〈y, |t∗|y〉E , x, y ∈ E.

The above results enable us to state the following.

Theorem 3.12. Let t ∈ L(E), r > 1 and 0 6 α 6 1, then

ω2r
A (t) 6 ‖α(t∗t)r + (1 − α)(tt∗)r‖.

P r o o f. Let x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1. Then

|̺〈x, tx〉E |2 6 ̺〈x, |t|2αx〉E̺〈x, |t∗|2(1−α)x〉E 6 (̺〈x, |t|2x〉E)α(̺〈x, |t∗|2x〉E)1−α

6 (α̺〈x, |t|2x〉rE + (1− α)̺〈x, |t∗|2x〉rE)1/r

6 (α̺〈x, |t|2rx〉E + (1 − α)̺〈x, |t∗|2rx〉E)1/r

= (̺〈x, (α|t|2r + (1− α)|t∗|2r)x〉E)1/r

6 ‖α|t|2r + (1− α)|t∗|2r‖1/r = ‖α(t∗t)r + (1− α)(tt∗)r‖1/r

by Lemma 2.16 and Corollaries 3.9 and 3.11. �

In 2009, Dragomir obtained the following statement.

Theorem 3.13 ([5], Theorem 2). For any T, S ∈ B(H), any 0 < α < 1 and r > 1,

we have the inequality

ω2r(S∗T ) 6 ‖α(T ∗T )r/α + (1 − α)(S∗S)r/(1−α)‖.

In the following we show that B(H) can be replaced by L(E) in Dragomir’s

theorem.

Theorem 3.14. For any t, s ∈ L(E), any 0 < α < 1 and r > 1, we have the

inequality

ω2r
A (s∗t) 6 ‖α(t∗t)r/α + (1− α)(s∗s)r/(1−α)‖.
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P r o o f. Let x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1. Then

|̺〈x, s∗ty〉E |2 = |̺〈sx, ty〉E |2 6 ̺〈sx, sx〉E̺〈tx, tx〉E = ̺〈x, s∗sx〉E̺〈x, t∗tx〉E
= ̺〈x, ((s∗s)1/(1−α))1−αx〉E̺〈x, ((t∗t)1/α)αx〉E
6 (̺〈x, (s∗s)1/(1−α)x〉E)1−α(̺〈x, (t∗t)1/αx〉E)α

6 (1− α)̺〈x, (s∗s)1/(1−α)x〉E + α̺〈x, (t∗t)1/αx〉E
6 ((1− α)(̺〈x, (s∗s)1/(1−α)x〉E)r + α(̺〈x, (t∗t)1/(1−α)x〉E)r)1/r

6 ((1− α)̺〈x, (s∗s)r/(1−α)x〉E + α̺〈x, (t∗t)r/(1−α)x〉E)1/r

= (̺〈x, ((1 − α)(s∗s)r/(1−α) + α(t∗t)r/(1−α))x〉E)1/r

6 ‖(1− α)(s∗s)r/(1−α) + α(t∗t)r/(1−α)‖1/r

by Lemma 2.16, Corollary 3.9 (i) and Corollary 3.11. By taking supremum over

̺〈x, x〉E = 1,

ω2r
A (s∗t) 6 ‖α(t∗t)r/α + (1− α)(s∗s)r/(1−α)‖.

�

In 2005, Dragomir proved the following statement.

Theorem 3.15 ([4]). Let T , S be two bounded linear operators on a Hilbert space

(H, 〈·, ·〉). If r > 0 and ‖T − S‖ 6 r, then

∥

∥

∥

T ∗T + S∗S

2

∥

∥

∥
6 ω(T ∗S) +

1

2
r2.

The following theorem generalizes the above result for operators on Hilbert C∗-

modules.

Theorem 3.16. Suppose that t, s ∈ L(E), then

∥

∥

∥

t∗t+ s∗s

2

∥

∥

∥
6 ωA(s

∗t) +
1

2
‖t− s‖2.

P r o o f. For any x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1, we get

(3.6) ‖t− s‖2 = ‖(t− s)∗(t− s)‖ = ωA((t− s)∗(t− s))

> ̺〈x, (t − s)∗(t− s)x〉E = ̺〈(t− s)(x), (t − s)(x)〉E
= ̺〈x, t∗tx〉E − 2Re ̺〈sx, tx〉E + ̺〈x, s∗sx〉E
= ̺〈x, (t∗t+ s∗s)x〉E − 2Re ̺〈x, s∗tx〉E

by Lemma 2.14.
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By (3.6),

̺〈x, (t∗t+ s∗s)x〉E 6 ‖t− s‖2 + 2Re ̺〈x, s∗tx〉E 6 ‖t− s‖2 + 2|̺〈x, s∗tx〉E |
6 ‖t− s‖2 + 2ωA(s

∗t).

By taking supremum over ̺〈x, x〉E = 1,

ωA(t
∗t+ s∗s) 6 ‖t− s‖2 + 2ωA(s

∗t).

Since t∗t+ s∗s is self-adjoint, by Corollary 2.14 then

‖t∗t+ s∗s‖ = ωA(t
∗t+ s∗s) 6 ‖t− s‖2 + 2ωA(s

∗t).

Therefore
∥

∥

∥

t∗t+ s∗s

2

∥

∥

∥
6 ωA(s

∗t) +
1

2
‖t− s‖2.

�

The following theorem is established by Dragomir in [4].

Theorem 3.17. Let T , S be two bounded linear operators on a Hilbert space

(H, 〈·, ·〉), then
∥

∥

∥

T + S

2

∥

∥

∥

2

6
1

2

(∥

∥

∥

T ∗T + S∗S

2

∥

∥

∥
+ ω(S∗T )

)

.

The next result shows that Theorem 3.17 is true for operators on Hilbert C∗-

modules.

Theorem 3.18. Let t, s ∈ L(E). Then

∥

∥

∥

t+ s

2

∥

∥

∥

2

6
1

2

(
∥

∥

∥

t∗t+ s∗s

2

∥

∥

∥
+ ωA(s

∗t)
)

.

P r o o f. Let x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1. Then

2ωA(s
∗t) + ‖t∗t+ s∗s‖ = 2ωA(s

∗t) + ωA(t
∗t+ s∗s)

= 2 sup
̺〈x,x〉E=1

|̺〈x, (s∗t)x〉E |+ sup
̺〈x,x〉E=1

̺〈x, (t∗t+ s∗s)x〉E

> sup
̺〈x,x〉E=1

(2|̺〈x, (s∗t)x〉E |+ ̺〈x, (t∗t+ s∗s)x〉E)

> 2|̺〈x, (s∗t)x〉E |+ ̺〈x, (t∗t+ s∗s)x〉E
> 2Re ̺〈x, (s∗t)x〉E + ̺〈x, (t∗t+ s∗s)x〉E
= ̺〈(t+ s)x, (t+ s)x〉E = ̺〈x, (t+ s)∗(t+ s)x〉E

by Corollary 2.14.
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By taking supremum over ̺〈x, x〉E = 1 we have

(3.7) ωA((t+ s)∗(t+ s)) 6 2ωA(s
∗t) + ‖t∗t+ s∗s‖.

Since (t+ s)∗(t+ s) is self-adjoint, by Corollary 2.14 then

(3.8) ωA((t+ s)∗(t+ s)) = ‖(t+ s)∗(t+ s)‖ = ‖t+ s‖2.

By (3.7) and (3.8) we have

‖t+ s‖2 6 2ωA(s
∗t) + ‖t∗t+ s∗s‖.

Thus 2‖ 1
2 (t+ s)‖2 6 ‖ 1

2 (t
∗t+ s∗s)‖+ ωA(s

∗t). �

Mirmostafaee et al. in [18] proved for the following statement.

Theorem 3.19 ([18], Theorem 3.1). Let Tj ∈ B(H) have the Cartesian decom-

position Tj = Bj + iCj for j = 1, . . . , n and r > 1, then

ωr

( n
∑

j=1

Tj

)

6
(
√
2n

)r−1
n
∑

j=1

‖|Bj|2r + |Cj |2r‖1/2.

Now, we are ready to state the following extension of Theorem 3.19.

Theorem 3.20. Let tj ∈ L(E) have the Cartesian decomposition tj = bj + icj

for j = 1, . . . , n and r > 1, then

(3.9) ωr
A

( n
∑

j=1

tj

)

6
(
√
2n

)r−1
n
∑

j=1

‖|bj|2r + |cj |2r‖1/2.

P r o o f. According to Boher’s inequality (see [9]) for every finite positive num-

bers a1, . . . , an and r > 1,

(3.10)

( n
∑

i=1

ai

)r

6 nr−1
n
∑

i=1

ari .

For every 1 6 j 6 n, ̺ ∈ S(A) and x ∈ E with ̺〈x, x〉E = 1, we have

|̺〈x, tjx〉E |2 6 ̺〈x, |tj |x〉E̺〈x, |t∗j |x〉E 6

(̺〈x, |tj |x〉E + ̺〈x, |t∗j |x〉E
2

)2

6
̺〈x, |tj |x〉2E + ̺〈x, |t∗j |x〉2E

2
6

̺〈x, |tj |2x〉E + ̺〈x, |t∗j |2x〉E
2

=
̺〈x, (|tj |2 + |t∗j |2)x〉E

2

by Corollaries 3.9 and 3.11.
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It follows that for every x ∈ E and ̺ ∈ S(A) with ̺〈x, x〉E = 1, we have

∣

∣

∣

∣

̺

〈

x,

n
∑

j=1

tjx

〉

E

∣

∣

∣

∣

r

6

( n
∑

j=1

(1

2
̺〈x, (t∗j tj + tjt

∗
j )x〉E

)1/2
)r

=

( n
∑

j=1

̺〈x, (|bj |2 + |cj |2)x〉1/2E

)r

6

n
∑

j=1

nr−1(̺〈x, |bj |2x〉E + ̺〈x, |cj |2x〉)r/2

6

n
∑

j=1

nr−1(2r−1(̺〈x, |bj |2x〉rE + ̺〈x, |cj |2x〉r))1/2

6

n
∑

j=1

(
√
2n

)r−1
(̺〈x, |bj |2rx〉E + ̺〈x, |cj |2rx〉E)1/2

6

n
∑

j=1

(
√
2n

)r−1
(

sup
̺∈S(A)

̺〈x, |bj |2r + |cj |2rx〉E
)1/2

=
n
∑

j=1

(
√
2n

)r−1‖〈x, |bj |2r + |cj |2rx〉E‖1/2

6

n
∑

j=1

(
√
2n

)r−1‖|bj|2r + |cj |2r‖1/2

by (3.10) and Corollary 3.11. By taking supremum over all ̺ ∈ S(A) and x ∈ E

with ̺(〈x, x〉) = 1 we get (3.9). �

In order to obtain an application of the above result, we need the following.

Lemma 3.21 ([9], Hardy’s inequalities). If r > 1 and (an) are positive real num-

bers such that 0 <
∞
∑

n=1
arn < ∞, then

∞
∑

n=1

(

1

n

n
∑

j=1

aj

)r

6

( r

r − 1

)r ∞
∑

n=1

arn.

Theorem 3.22. Let {tn} be a sequence in L(E) and r > 1. Suppose that for

every j > 1, tj = aj + ibj is the Cartesian decomposition of tj and 0 <
∞
∑

n=1
‖|bn|2r +

|cn|2r‖r/2 < ∞, then
∞
∑

n=1

ωr
A

( t1 + . . .+ tn

n

)

6 2(r−1)/2
( r

r − 1

)r ∞
∑

n=1

‖|bn|2r + |cn|2r‖r/2.
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P r o o f. Let tj = bj + icj where bj , cj ∈ L(E)sa. By Theorem 2.5,

(3.11) ωr
A

( n
∑

j=1

tj

)

6
(
√
2n

)r−1
n
∑

j=1

‖|bj|2r + |cj |2r‖1/2

and thus

(3.12) ωr
A

( t1 + . . .+ tn

n

)

6
(
√
2
)r−1 1

n

n
∑

j=1

‖|bj|2r + |cj |2r‖1/2.

Hence

∞
∑

n=1

ωr
A

( t1 + . . .+ tn

n

)

6 2(r−1)/2
∞
∑

n=1

1

n

n
∑

j=1

‖|bj |2r + |cj |2r‖1/2

6 2(r−1)/2
( r

r − 1

)r ∞
∑

n=1

‖|bn|2r + |cn|2r‖r/2

by Lemma 3.21. �

4. Concluding remarks

We presented a new method for studying the numerical range of bounded operators

on Hilbert C∗-modules. We proved that some results concerning numerical radius of

bounded operators on Hilbert spaces remain true when the operators are defined on

a Hilbert C∗-module. It seems that our method is also applicable for proving other

inequalities for operators on Hilbert C∗-modules.
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