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PARTICLES IN THE SUPERWORLDLINE AND BRST

Eugenia Boffo

Abstract. In this short note we discuss N -supersymmetric worldlines of rela-
tivistic massless particles and review the known result that physical spin-N/2
fields are in the first BRST cohomology group. For N = 1, 2, 4, emphasis is
given to particular deformations of the BRST differential, that implement
either a covariant derivative for a gauge theory or a metric connection in the
target space seen by the particle. In the end, we comment about the possibility
of incorporating Ramond-Ramond fluxes in the background.

1. Introduction

In string theory, scattering amplitudes are calculated by inserting on the world-
sheet, describing the propagation of a free string, the vertices for external states.
Although such a procedure is common in the context of string theory, it is not
exclusive of Riemann surfaces and can be exported to particles’ worldlines. The
advantages of expressing a physical model on a worldsheet or worldline are not limi-
ted to the calculation of scattering amplitudes. Covariant quantization is also easy
to perform in this context. The Becchi-Rouet-Stora-Tyutin (BRST) quantization
[2], or the Batalin-Vilkovisky (BV) quantization [1] in more convoluted cases, are
powerful methods that allow to perturbatively compute the path integrals of the
worldsheet/worldline theory. BRST or BV supersede canonical quantization with
constraints if there is degeneracy due to gauge symmetries. Often the background
geometry is fixed from the outset and it is taken to be flat, but thanks to the coho-
mological nature of the aforementioned BRST and BV methods, deformations of
the background can be handled too. These are taken into account in the differential
for the complex. In particular, connection 1-forms with values in a Lie algebra are
easy to implement. The present article aims at exploring a few instances of curved
backgrounds for N -superworldines, with N = 1, 2, 4. In fact, particles constitute an
excellent playground. The smaller number of invariances that they enjoy, compared
to strings, facilitate the investigation while at the same time giving good insights
for the string case.

This note is organized as follows: After presenting the so called N-spinning
particle model in Section 2, i.e. an N -supersymmetric worldline, in Section 3 we
will review the background deformations studied in the literature for N = 1, 2, 4,
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and conclude in Section 4 by hinting at a strategy which implements R-R fluxes
in the background. We will keep the exposition quite basic and mainly address
an audience of theoretical physicists, at the same time stressing the underlying
algebraic and geometric aspects.

2. Particles in the N-superworldline

In the ‘70es Brink, Di Vecchia and Howe [6] first showed that in the worldline
formalism, a massless particle with N = 1 charge of supersymmetry describes a
Dirac spinor, satisfying the Dirac equation, upon first quantization. This observation
was later generalized to more values of N ∈ N and quantum equivalence with the
spin-N/2 particle proven. The interested reader can look at the review article [7]
and references within.

Let us be pedestrian and describe the field content and the Lagrangian theory
for generic N in the positive integers. The fields in the model consists of maps
from the (N -)superworldline to target space, which might have either even or odd
parity, according to the Z2 grading. Being functions on a supermanifold, in fact,
they should be thought as sections of a vector bundle over a regular base manifold
M0. The structure sheaf of a N -supermanifold, if U0 ⊂M0 is an open contractible
subset, consists of smooth functions of U0 in tensor product with the symmetric
algebra of a graded vector space V :

C∞(U0)⊗�•V .

Thus, for the N -superworldline with Grassmann even and odd coordinates respec-
tively (τ , θk)k=1,...,N , we are interested in maps of total degree 0 and hence parity
even. Moreover in the present note we will not need to go beyond linear order in
θk:

(1) Xµ(τ) + θkΨµ
k(τ), Xµ(τ), Ψµ

k(τ) :
(
I,ds2) 7→ (M, g) ,

where I ⊂ R ⊂ R1|N is a real interval of the line embedded in the (N -)superline,
and ds2 its metric. M is a 4-dimensional metric manifold with pseudo-Riemannian
metric g. The N fields Ψk are parity odd and thus satisfy, at the same instant and
for any k, j= 1, . . . , N , the graded commutativity relation:

Ψµ
k(τ)Ψν

j (τ) = −Ψν
j (τ)Ψµ

k(τ) .

The smooth maps can be organized, following the principle of invariance, in a
Lagrangian and subsequently an action functional. We require invariance under
local Diff(R) and local supersymmetry. To make this happen, additional fields must
be introduced: e(τ), the einbein of I, that takes into account the freedom in the
parametrization of the line, and χj(τ), which are j Grassmann odd variables for
local supersymmetries. Furthermore, we will present the action in the so-called first
order formalism, whose name is reminiscent of the fact that it yields first order
differential equations. Namely there is another function Pµ of even Grassmann
degree, so that (Xµ, Pν) are coordinates for T ∗M .
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For simplicity, take N = 1 and the Lorentzian metric g = dxµηµνdxν . Then,
after integration over the odd coordinates, the action reads:

(2) S =
∫

I
dτ PµẊµ + iΨµΨ̇µ −

e

2P
2 − iχΨµPµ .

Under infinitesimal diffeomorphisms of the line I, with vector field Y ∂τ , the fields
transform as:

(3)
δXµ = Y Ẋµ , δe = Y ė+ Ẏ e ,

δΨν = Y Ψ̇ν , δχ = Y χ̇+ Ẏ χ .

Instead the infinitesimal variations δε of the fields under supersymmetry, generated
by an odd parameter ε(τ), look like:

(4)
δεX

µ = iεΨµ , δεe = 2iχε ,

δεΨµ = −εPµ , δεχ = ε̇ .

The classical dynamics in gauge fixed form, e = 1 and χ = 0, corresponds to:
Ẋµ(τ) = Pµ(τ) , Ṗµ(τ) = 0 , Ψ̇µ(τ) = 0 ,

i.e. free massless particle and constant, parity odd variables.
Concerning the first quantization of the system, one can resort to canonical

constrained quantization. The orthosymplectic algebra:
(5) [Xµ, Pν ] = iδµν , {Ψµ,Ψν} = ηµν ,

can be represented on the space of spinors. A state in the (infinite-dimensional)
Hilbert space is generated from the highest weight vector |0〉 as
(6) |ρ〉 = e−iP ·Xu(P ) |0〉 ,
where u(P ) is a spinor. Then the (super)algebra of the constraints H := P 2 and
q0 := ΨµPµ,
(7) {q0, q0} = H , [q0, H] = 0 ,
imposes the conditions that |ρ〉 satisfies ΨµPµ |ρ〉 = 0, which is the Dirac equation,
as well as the massless Klein-Gordon equation P 2 |ρ〉 = 0.

3. BRST cohomology

For the classical particle model presented in (2), old constrained (Dirac) quan-
tization is sufficient to disclose its quantum mechanical aspects, especially the
representation on spinors. Nevertheless the technique of BRST quantization [9]
can also be applied. It was devised in order to obtain an explicitly covariant
quantization of regular gauge theories, whereas here the algebra of symmetries is
Z2-graded, but the standard formulation is extended naturally without any effort
to graded/super Lie algebras. We already pointed out in the introduction that
one of the strengths of BRST resides in the possibility of investigating various
different backgrounds. Before digging into this, a quick intro is due. As it stands,
however, BRST cohomology is a vast topic on its own and a precise introduction is
an enormous task, beyond the scopes of the present note. Let us anyway try to lay
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down some of the fundamentals: one wants to have a double complex Cp,q made up
with a projective resolution of the g-module C∞(M) for the (super)Lie algebra g,
where each term is in tensor product with Λpg∗[1].1 The total complex is C•, sum
over all p and q of Cp,q = Λpg∗[1]⊗ Λqg[1]⊗ C∞(M), with a total differential D
that sends Cp,q with fixed p− q to those with p− q+ 1 (though it can increase p by
1 and decrease q by 1). By construction, there is an isomorphism of the degree 0
cohomology groups:

H0(C•, D) ∼= H0(g, C∞(M0)
) ∼= C∞(M̃) ,

where C∞(M0) are the functions of M modulo those that vanish on a closed
embedded submanifold M0, and M̃ = M//G is the symplectic reduction, for G
the Lie group integrating the Lie algebra g. Hence studying the cohomology of the
double complex is equivalent to construct the smooth functions on M̃ . Furthermore,
D is given by the graded Poisson bracket of an element Q ∈ C1, thus having total
“ghost number”2 equal to 1, D = {Q,−}. D2 = 0 follows from {Q,Q} = 2Q2 = 0,
and can be seen as an “enhanced” Chevalley-Eilenberg differential. Then Q itself
serves as the differential operator (derivation for a graded Poisson algebra).

For our purposes, we will make use of the cohomological nature and especially
of the differential in order to consider curved target spaces. Furthermore, since we
are in the conditions where quantization (done by replacing the Poisson algebra
of functions with the commutator algebra of observables, which acts on a Hilbert
space) “commutes” with symplectic reduction [10], we will be talking about this
quantized setting.

Practically, in the present case where the super Lie algebra is that of superdif-
feomorphisms of R1|N (see again (3) and (4) for N = 1), we need to introduce a
pair of ghost-antighost fields for each conserved charge, namely the total energy P 2

and the N -supercharges Ψµ
i Pµ. The parity of the new variables will be opposite to

that of the charges, which is odd for the latter ones. Eventually we should enlarge
the orthosymplectic algebra with the set c, b, βk, γj and the relations:

(8) {+1
c ,
−1
b } = 1 , [+1

γj ,
−1
βk] = δjk .

On top of each generator the respective ghost number is displayed. Together with
the Clifford algebra of Ψk and the canonical Weyl algebra of positions Xµ and
momenta Pν of T ∗M , (8) gives the BRST algebra relevant for this case.

Let us discuss Q for a flat target space and its generalizations to curved back-
grounds for specific values of N in the next sections.

3.1. N = 1 and U(1) background. When dealing with 1 odd coordinate and the
induced supersymmetry transformation of the worldline, a ghost degree 1 element

1The number in square brackets is a shift by 1 of the vector space, so that for example at p = 0
we have functionals g[1] 7→ R. Effectively it means that if g is a regular (ungraded) algebra, now
the basis has degree −1 and thus the coordinate functions are of degree +1 and their parity is
hence odd.
2In Physics’ parlance, the ghost number is −1 for basis elements of g and +1 for its dual.
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that behaves as a differential is

(9) Q = cH + γq0 − γ2b ,

for H := 1
2P

2 and q0 := ΨµPµ as before. BRST cohomology yields equivalent
results to the quantization covered in the previous section: there is a Dirac spinor in
the cohomology group H0(Q,H) at ghost degree 0, for H a Hilbert space containing
(6) as well as some ghost states.

Let us now instead consider a coupling to the electromagnetic potential:

(10) δq = ΨµAµ(x) , Aµ(x)dxµ ∈ Ω1(M,u(1)
)

A first condition to ensure nilpotency, if by q we denote q := q0 + δq and by Πµ

the covariant derivative Πµ := Pµ +Aµ, is that H must be:

(11) H = {q, q} = {ΨνΠν ,ΨρΠρ} = {Ψν ,Ψρ}ΠρΠν + ΨνΨρ[Πν ,Πρ] .

Then a second condition comes from [q,H] != 0, whose explicit calculation can be
instructive. Using just Leibniz rule, as well as symmetry/antisymmetry arguments,
we can suggest the following algebraic manipulations:

[q,H] = ΨµΨνΨρ[Πµ, [Πν ,Πρ]] + {Ψµ,Ψν}Ψρ[Πν ,Πρ]Πµ

−Ψν{Ψµ,Ψρ}[Πν ,Πρ]Πµ + Ψµ{Ψν ,Ψρ} ([Πµ,Πρ]Πν + Πρ[Πµ,Πν ])(12)
= ΨµΨνΨρ[Πµ, [Πν ,Πρ]] + {Ψµ,Ψν}Ψρ[Πµ, [Πρ,Πν ]](13)
= (ΨµΨνΨρ ±ΨνΨµΨρ) [Πµ, [Πν ,Πρ]] + Ψρ[Πµ, [Πρ,Πµ]](14)

= Ψ[µΨν]Ψρ[Πµ, [Πν ,Πρ]](15)

The conclusion follows from Jacobi identity (Bianchi identity for the covariant
derivative Π): The new operator is nilpotent regardless of whether or not Aµ is a
Maxwell field, i.e. if it fulfills the Maxwell equations for the U(1)-gauge theory.

3.2. N = 2 and SU(n) background. A 2-supersymmetric worldline is associated
with a spin-1 field, which is a gauge boson for either an abelian gauge theory or
Yang-Mills gauge theory [8]. Since in the present situation there are two copies of
Ψµ, it is convenient to form complex linear combinations and therefore represent the
fundamental and antifundamental representation of SU(2) by the homomorphisms
Hom(SU(2),End(C2)):

(16) Ψµ = 1√
2

(Ψµ
1 + iΨµ

2 ) , Ψ̄µ = 1√
2

(Ψµ
1 − iΨµ

2 ) ,

so that the anticommutators lead to:

(17) {Ψµ, Ψ̄ν} = ηµν = {Ψ̄µ,Ψν}, {Ψ̄µ, Ψ̄ν} = 0 = {Ψµ,Ψν} .

Notice that there is an extra SO(2) ≡ U(1) group that acts on the space spanned
by the Gamma matrices Ψ and Ψ̄, and it is easy to be convinced that a good guess
for the U(1) generator is J = ΨµΨ̄µ − 1:

[J,Ψν ] = Ψν , [J, Ψ̄ν ] = −Ψ̄ν .
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BRST cohomology. In the previous Section 3.1 we did not analyse the ghost
degree 0 cohomology of Q because it coincides with Dirac quantization very
straightforwardly. For the current case let us unveil the cocycles and coboundaries
of the BRST differential. At ghost degree zero, the cocycles are the field equations,
instead the coboundaries are the gauge symmetries. First of all, we need a Hilbert
space where the differential will act. The Hilbert space is constructed as the
representation space of a maximal commuting subalgebra of the BRST algebra3

[Xµ, Pν ] = iδµν , {Ψµ, Ψ̄ν} = ηµν , [γ̄, β] = 1 = [γ, β̄] , {c, b} = 1 .
For example the set (Xµ,Ψµ, γ, β, c) can be taken as creation operators, while all
the barred operators will annihilate the highest weight vector |0〉 ∈ H.4 To limit
the number of states from above, it is convenient to restrict to ker J in H, where
the “number” constraint yields the BRST operator J given by:
(18) J = Ψ · Ψ̄ + βγ̄ − γβ̄ − 1 .
The space ker J in H physically correspond to the vector space of 1-particles. Hence
a generic state in H ∩ ker J with C∞(M) coefficients is:

(19)
(
Aµ(x)Ψµ + γf(x) + βg̃(x) + c

(
Ãµ(x)Ψµ + γf̃(x) + βg(x)

))
|0〉 .

A cocycle or otherwise the kerQ for flat derivatives, i.e. Q = cP 2 + γ̄Ψ · P + γΨ̄ ·
P − γγ̄b, is the following:

cP 2Aµ(x)Ψµ |0〉 − cΨ · Pg(x) |0〉 = 0 ,(20)
γP ·A(x) |0〉 − γg(x) |0〉 = 0 .(21)

A further equation for the field f(x) is omitted. Replacing g from (21) into (20)
one finds the linearized Yang-Mills equations, at first order in A.

The coboundaries in ghost degree 0 stems from the ghost degree −1 state
|λ〉 = λ(x)β |0〉:
(22) δAµ(x)Ψµ |0〉 = {Q, |λ〉} = ΨµPµλ(x) |0〉 ,
which is the sought-after U(1) gauge symmetry.

Curved SU(n) background. In the N = 2 case with “covariant” charges q =
ΨµΠµ and q̄ = Ψ̄νΠν ,5 the BRST differential is
(23) Q = cH + γq̄ + γ̄q − γγ̄b ,
and therefore
{γq̄, γq̄}+ 2{γ̄q, γq̄}+ {γ̄q, γ̄q} = 2γγ̄{Ψν , Ψ̄ρ}ΠρΠν +

(
γ̄2ΨνΨρ + γγ̄Ψ̄νΨρ

+ γ2Ψ̄νΨ̄ρ + γγ̄ΨνΨ̄ρ
)
[Πν ,Πρ] .(24)

3With obvious reference to Ψ and Ψ̄, (γ, γ̄, β, β̄) are the complex linear combinations such as:
γ = 1

2 (γ1 + iγ2) and γ̄ = 1
2 (γ1 − iγ2).

4We can also choose between two inequivalent representations, originating from |0〉 given by either
a constant function or by the product (convolution) of Dirac distributions in one variable. Our
chosen option is the former.
5The non-abelian indices are omitted.
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Compared to the previous subsection where we dealt with the N = 1 particle,
triplets of Ψ and Ψ̄ will arise when proceeding further with the nilpotency check. As
long as they are of the same type, we could use Jacobi identity, but for mixed terms
this is not sufficient. The clever observation of [8] was to evaluate the expression
on the vectors lying in H and in the kernel (in H) of the BRST “number” operator
J (18), since effectively, any state in H ∩ ker J consists of 1-particles and therefore
will be annihilated by the action of n ≥ 2 barred operators. Thus (24) boils down
to:
(25) γγ̄{q, q̄}|H∩ker J = γγ̄

(
2{Ψν , Ψ̄ρ}ΠρΠν +α(ΨνΨ̄ρ−ΨρΨ̄ν)[Πν ,Πρ]

)
|H∩ker J .

We have the freedom to choose a C-number α for the second term because that
is in fact made up with two annihilators (barred operators), but α 6= 0 for later
convenience. From [γq̄ + γ̄q, {q, q̄}] we hence find

1
2 [H, γ̄q + γq̄] = (γΨ̄µ + γ̄Ψµ)[Πµ,Π2] + α(γΨ̄µ + γ̄Ψµ)Ψ[νΨ̄ρ]Πµ[Πν ,Πρ]

− α(Ψ[νΨ̄ρ])(γΨ̄µ + γ̄Ψµ)[Πν ,Πρ]Πµ(26)

= (γΨ̄µ + γ̄Ψµ)[Πµ,Π2] + α(γΨ̄µ + γ̄Ψµ)Ψ[νΨ̄ρ](Πµ[Πν ,Πρ]

− [Πν ,Πρ]Πµ) + α(γηµ[νΨ̄ρ] − γ̄Ψ[νηρ]µ)[Πν ,Πρ]Πµ .(27)
Setting α = 2, moving all annihilators to the right and forgetting the terms that
kill the restricted Hilbert space, we get:

1
2 [H, γ̄q + γq̄] =(γΨ̄µ + γ̄Ψµ)[Πρ, [Πµ,Πρ]] + 2γΨ̄µ[Πρ, [Πρ,Πµ]](28)

Hence we recover the result that the deformed BRST operator Q is nilpotent iff
Yang-Mills equations are fulfilled:
(29) ∇ ? F = 0, ∇ := −iΠ, F ∈ Ω2, F := [∇µ,∇ν ]dxµ ∧ dxν ,
where ? is the Hodge star operator. This observation is quite remarkable: compared
to the previous Section 3.1 the target space seen by the particle is now dynamical.

3.3. N = 4 and gravity backgrounds. In theN = 4 case there are first-quantized
spin-2 particles in the first BRST cohomology group. The larger amount of parity
odd coordinates makes the formulas more involved. Hence we will be sketchy and
just briefly enunciate the results of [4] and [5]. Now the complex linear combinations
of Gamma matrices enjoy an SO(4) symmetry, which can be used to restrict the
Hilbert space. In [4] the full so(4) algebra was used, whereas in [5] the authors
resorted to the subgroup U(1) × U(1) ⊂ SO(4). Let us point out that in ghost
degree 0, the cohomology of the differential Q+ τ iJi on the Hilbert space coincides
with the cohomology of Q on H

i
∩ker Ji when the Ji are charges for the U(1)×U(1)

subgroup (hence i = 1, 2). For the more general case this is not necessarily true
and truncating to ker Ji is a very strong requirement.

To summarize, it was respectively proven that:
• for a maximal gauge fixing of SO(4) the reduced Hilbert space contains only

the graviton, auxiliary fields and ghost fields. Acting with n ≥ 3 barred
operators annihilate every state in the vector space. Eliminating terms with
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such a number of barred operators in the calculation of Q2, with covariant
Q constructed with the Levi-Civita connection, the obstruction to be zero is
exactly Einstein’s equations;

• when gauge fixing U(1) × U(1), then the Hilbert space restricted to the
kernel of the number operator for U(1)× U(1) contains also a 2-form B and
a dilaton. Nilpotency of a Q constructed with a non-symmetric covariant
derivative (which has H = dB) is ensured iff the (g,H, φ) triplet satisfies the
Supergravity equations of motion. The observation that the vector space of
states is (contained) in the kernel of polynomials with a number n ≥ 3 of
barred operators, is again used to prove the result.

4. Conclusion

The cohomological methods of BRST and BV have proven useful in perturbative
quantization, when attempting to calculate the path integral of a degenerate action,
i.e. an action that enjoys some gauge symmetries. Besides keeping covariance explicit,
BRST (and BV) allows to consider more general, curved backgrounds in target
space. In this short note we have reviewed the case of N = 1, 2, 4 supersymmetry of
particles in the worldline, and assumed interactions with a gauge potential due to
bosons of the same spin (or higher, in the N = 1 case) as that of the first-quantized
particles found in the BRST-cohomology. Interactions between gauge bosons and
physical states of the Hilbert space were implemented semiclassically through a
deformed BRST differential. We saw that the dynamics of the background field
was not fixed in the N = 1 case, whereas for N = 2 the Yang-Mills background was
found to satisfy the Yang-Mills equations. Eventually N = 4, admitting a spin-2
field, had a a deformed Q which behaved as a differential iff Einstein’s equations or
(g,H, φ) Supergravity equations were satisfied. A crucial step in the proofs was to
restrict the Hilbert space to a certain fixed value of multiparticle states (1-particles
for Yang-Mills, 2-particles for (Super-)gravity). This truncation of the Hilbert is
actually more than just a trick to implement nilpotency of a generic operator: the
BRST operator Q+τ iJi (extended with the number operator for SO(2n) symmetry,
n > 1) should yield non-trivial Q-cohomology only when looking at H•(Q, ker J |H).
This happens because the number operator J has a simple diagonal multiplicative
action and therefore any state that is not in its kernel is always J-exact.

An important step towards the recovery of the full Supergravity equations would
be to study Ramond-Ramond forms in target spaces. However, in superstrings, these
p-forms come from target space spinors defined on the worldsheet. Then the tensor
product decomposition of two spinors decomposes into the direct sum of p-forms
(the Ramond-Ramond forms). By analogy with the string, in the superworldline for
a relativistic massless particle we are thus forced to introduce further fields with
spinorial indices. An available option would be to “resolve” the Gamma matrix Ψµ,
in the following fashion:
(30) Ψµ = θασµ

αβ̇
λ̃β + θ̃α̇σ̃

µ α̇βλβ ,

and only later check whether Ψµ still satisfies the Clifford algebra. The spinors θ
and λ and their chiral companions are also required to have opposite Grassmann
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degree (resp. odd and even), and they respect some relations. Moreover σµ = (1, σi)
are the extended Pauli matrices and σ̃µ α̇β = εα̇γ̇εβγσµγγ̇ . The outcomes of this
ansatz are discussed in a separate article [3].
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