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A PRIORI BOUNDS FOR POSITIVE RADIAL SOLUTIONS
OF QUASILINEAR EQUATIONS OF LANE–EMDEN TYPE

Soohyun Bae

Abstract. We consider the quasilinear equation ∆pu+K(|x|)uq = 0, and
present the proof of the local existence of positive radial solutions near 0 under
suitable conditions on K. Moreover, we provide a priori estimates of positive
radial solutions near ∞ when r−`K(r) for ` ≥ −p is bounded near ∞.

1. Introduction

We consider the equation
(1.1) ∆pu+K(|x|)uq = 0 ,
where ∆pu = div(|∇u|p−2∇u), n > p > 1 and q > p − 1. Let r = |x| and
d
dru(r) = ur(r). Then, the radial version of (1.1) is

(1.2) r1−n(rn−1|ur|p−2ur)r +K(r)uq = 0 .
For p = 2, the basic assumption of K for local solutions is (K):

(i) K(r) ≥ 0, 6≡ 0; K(r) is continuous on (0,∞);
(ii)

∫
0 rK(r) dr <∞, i.e., rK(r) is integrable near 0.

Under condition (K), (1.2) with p = 2 and u(0) = α > 0, has a unique positive
solution uα ∈ C2(0, ε) ∩ C[0, ε) for small ε > 0. In order to obtain local solutions
(1.2) near 0, we assume (KP): (i) of (K), and for r > 0 small,∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1K(s)ds)

1
p−1 dt <∞ .

For p = 2, this integrability is (ii) of (K). If K(r) = rl, then it is easy to see that
(KP) holds for l > −p. As a typical example, the equation
(1.3) ∆pu+ |x|luq = 0
possesses a local radial solution uα with uα(0) = α for each α > 0, and has the
scaling invariance:

(1.4) uα(r) = αu1(α 1
m r)
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with m = p+l
q−(p−1) . Moreover, (1.3) has a singular solution which is invariant under

the scaling in (1.4), the so-called self-similar solution. That is,
U(x) = L|x|−m,

where L is defined by

(1.5) L = L(n, p, q, l) = [mp−1(n− 1− (m+ 1)(p− 1))]
1

q−(p−1) .

This singular solution can be defined for l > −p and q > (p−1)(n+l)
n−p because

n− 1− (m+ 1)(p− 1) > 0. Then, we observe the asymptotic self-similar behavior.

Theorem 1.1. Let n > p > 1 and q > (p−1)(n+l)
n−p with l > −p. If r−lK(r) → 1

as r → ∞, then any positive solution u of (1.2) near ∞ satisfies one of the two
asymptotic behavior: either
(1.6) lim inf

r→∞
rmu(r) ≤ L ≤ lim sup

r→∞
rmu(r) <∞

with L = L(n, p, q, l) given by (1.5) or r(n−p)/(p−1)u(r)→ C > 0 as r →∞.
Moreover, (1.6) can be the asymptotic self-similarity

lim
r→∞

rmu(r) = L .

In a forthcoming paper, we study entire solutions of (1.2) with this asymptotic
behavior in a supercritical range.

1.1. Lower bound. The p-Laplace equation has the radial form

(1.7) (|ur|p−2ur)r + n− 1
r
|ur|p−2ur = 0 ,

where n > p > 1. Then, (1.7) possesses a solution |x|−θ with θ = n−p
p−1 . Let u be a

positive radial solution satisfying the quasilinear inequality

(1.8) r1−n(rn−1|ur|p−2ur)r = (|ur|p−2ur)r + n− 1
r
|ur|p−2ur ≤ 0 .

If ur(r0) ≤ 0 for some r0 > 0, then ur(r) ≤ 0 for r > r0. Hence, u is monotone
near ∞. Assume ur ≤ 0 for r ≥ r0 with some r0 > 1. Setting V (t) = rθu(r)
for t = log r ≥ t0 = log r0, we see that g(t) = θV (t) − V ′(t) = rθ+1(−ur(r)) =
r
n−1
p−1 (−ur(r)) satisfies

d

dt
(gp−1(t)) = (n− 1)gp−1(t) + rn[(−ur)p−1]r ≥ 0

for t ≥ t0. Hence, g is increasing for t ≥ t0. Then, V satisfies that for t > T ≥ t0,
V ′(t)− θV (t) ≤ V ′(T )− θV (T ) .

Suppose V ′(T ) < 0. Setting c = θV (T )−V ′(T ), we have (e−θtV (t))′ ≤ −ce−θt and

V (t) ≤ eθ(t−T )(V (T )− c

θ
) + c

θ
= eθ(t−T )V

′(T )
θ

+ c

θ
.

Hence, V has a finite zero. Therefore, in order for u to be positive near ∞, V must
be increasing and (rθu(r))r ≥ 0 near ∞. This is true obviously in the other case
that ur > 0 near ∞.
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Lemma 1.2. Let n > p > 1. If u is a positive radial solution satisfying (1.8) near
∞, then r

n−p
p−1 u(r) is increasing.

Now, we classify positive solutions of (1.8) near ∞ into two groups according to
their behaviors. If r

n−p
p−1 u converges to a positive constant at ∞, then we call u a

fast decaying solution. Otherwise, u is a slowly decaying solution if r
n−p
p−1 u(r)→∞

as r →∞.

1.2. Known results. One of Liouville’s theorems related to p-Laplace equation is
the nonexistence of nontrivial nonnegative solutions in W 1,p

loc (Rn) ∩ C(Rn) to the
following quasilinear inequality

−∆pu ≥ c|x|luq

with c > 0 and l > −p, when n > p > 1 and

q ≤ (p− 1)(n+ l)
n− p

.

See [1, Theorem 3.3 (iii)]. For the existence of nontrivial solutions to

∆pu+ uq = 0 ,

on Rn with n > p > 1 and q > p−1, it is necessary and sufficient that q ≥ n(p−1)+p
n−p

[6]. On the other hand, (1.3) with q = qs := n(p−1)+p+pl
n−p admits the one-parameter

family of positive solutions given by

uα(x) = α

(1 + ξ(α
p
n−p |x|)

p+l
p−1 )

n−p
p+l

with ξ = ξp,n = p−1
(n−p)(n+l)1/(p−1) and uα(0) = α > 0. A radial solution u(x) = u(|x|)

of (1.3) satisfies the equation

(1.9) (|ur|p−2ur)r + n− 1
r
|ur|p−2ur + rluq = 0 .

For l > −p, (1.9) with u(0) = α > 0, has a unique positive solution u ∈ C1(0, ε) ∩
C[0, ε) for small ε > 0 such that |ur|p−2ur ∈ C1[0, ε). If q < qs, then every local
solution of (1.9) has a finite zero [2, 5]. In the opposite case q > qs, every local
solution of (1.9) is to be a slowly decaying solution [2, 3, 5].

2. Local existence

Let n ≥ p > 1, l > −p and q ≥ p− 1. First, in order to prove the local existence
of positive radial solutions of (1.3), we consider the integral equation

u(r) = α−
∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+luq(s)ds)

1
p−1 dt

with α > 0.
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2.1. Integral representation. On a space
S = {u ∈ C[0, ε] | 0 ≤ u ≤ α}

we study a nonlinear operator T from S to C[0, ε] by
T (u)(r) = α− T1(u)(r),

where
T1(u)(r) =

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+luq(s)ds)

1
p−1 dt .

For ε > 0 small enough, T1 satisfies that

0 ≤ T1 ≤ α
q
p−1

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+lds)

1
p−1 dt ≤ ( αq

n+ l
)

1
p−1

p− 1
p+ l

ε
p+l
p−1 ≤ α .

Hence, T (S) ⊂ S. Minkowski’s inequality for p ≥ 2 shows that for u1, u2 ∈ S,

‖T (u2)− T (u1)‖ ≤
∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+l∣∣u q

p−1
2 − u

q
p−1
1
∣∣p−1

ds)
1
p−1 dt

≤ q

p− 1α
q−(p−1)
p−1

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+l ds)

1
p−1 dt ‖u2 − u1‖

= q

p− 1α
q−(p−1)
p−1 ( 1

n+ l
)

1
p−1

p− 1
p+ l

ε
p+l
p−1 ‖u2 − u1‖ .

For 1 < p < 2, we observe that for u1, u2 ∈ S,

‖T (u2)− T (u1)‖ ≤
∫ r

0
t

1−n
p−1

α
q(2−p)
p−1

p− 1 (
∫ t

0
sn−1+l ds)

2−p
p−1 (

∫ t

0
sn−1+l|uq2 − u

q
1| ds) dt

≤ q

p− 1α
q−(p−1)
p−1

∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1+l ds)

1
p−1 dt ‖u2 − u1‖

= q

p− 1α
q−(p−1)
p−1 ( 1

n+ l
)

1
p−1

p− 1
p+ l

ε
p+l
p−1 ‖u2 − u1‖ .

Now, we assume that
p− 1
p+ l

max{( αq

n+ l
)

1
p−1 ,

q

p− 1α
q−(p−1)
p−1 ( 1

n+ l
)

1
p−1 }ε

p+l
p−1 < min{α, 1}.

Then, T is a contraction mapping in S and thus T has a unique fixed point ūα.
Generally, we consider the integral equation under condition (KP),

u(r) = α−
∫ r

0
t

1−n
p−1 (

∫ t

0
sn−1K(s)uq(s)ds)

1
p−1 dt .

Then, the integrability of (KP) shows in the same way the local existence of a
positive solution uα with uα(0) = α > 0 to (1.2). Then, it is easy to see that there
exists a sequence {rj} going to 0 such that

(2.1) lim
j→∞

rn−1
j |ur(rj)|p−2ur(rj) = 0 ,

and uα(r) is decreasing as long as u remains positive. Moreover, uα is strictly
decreasing after K becomes positive.
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2.2. Fowler transform. Let n > p > 1 and q > (n+l)(p−1)
n−p with l > −p. Set

m = p+l
q−(p−1) . Fowler transform V (t) = rmu(r), t = log r, of a positive solution to

(1.2) satisfies
(2.2) (p− 1)(mV − V ′)p−2(V ′′ −mV ′)− ξ(mV − V ′)p−1 + k(t)V q = 0 ,

where ξ = n−1−(m+1)(p−1) = Lq−(p−1)

mp−1 with L given by (1.5), and k(t) = r−lK(r).
Furthermore, if −rm+1ur(r) = mV − V ′ > 0, then (2.2) can be rewritten as

(p− 1)(V ′′ −mV ′)− ξ(mV − V ′) = − k(t)V q

(mV − V ′)p−2

and
(p− 1)V ′′ + aV ′ − ξmV = − k(t)V q

(mV − V ′)p−2 ,

where a = n− 1− (2m+ 1)(p− 1). Setting b = ξm = Lq−(p−1)

mp−2 , we have

(p− 1)V ′′ + aV ′ − (b− k(t)V q−1

(mV − V ′)p−2 )V = 0 .

That is,

(2.3) (p− 1)V ′′ + aV ′ − 1
mp−2L

q−(p−1)V + k(t)
(mV − V ′)p−2V

q = 0 ,

which holds as long as the local solution remains positive.

3. A priori estimates

In order to obtain upper bounds, we argue similarly as in Lemma 2.16, Lemma
2.20, Theorem 2.25 in [4].

3.1. Upper bound. Let n > p ≥ −`. If u is a positive solution satisfying the
inequality
(3.1) (rn−1|ur|p−2ur)r ≤ −crn−1+`uq

near ∞ for some c > 0, then

(3.2) rn−1|ur|p−2ur ≤ rn−1
0 |ur(r0)|p−2ur(r0)− c

∫ r

r0

sn−1+`uq(s) ds

for r > r0, if r0 is sufficiently large. Then, we may assume that ur(r0) ≤ 0. Indeed,
if ur(r0) > 0, then

rn−1|ur|p−2ur ≤ rn−1
0 |ur(r0)|p−2ur(r0)− cuq(r0) 1

n+ `
(rn+` − rn+`

0 )

as long as ur is positive. Hence, ur is eventually negative. Therefore, (3.2) gives

rn−1|ur|p−2ur ≤ −cuq(r)
1

n+ `
(rn+` − rn+`

0 )

and thus,
ur

uq/(p−1) ≤ −c1r
1+`
p−1
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for some c1 > 0. Hence, we obtain

u(r) ≤
{

Cr−
p+`

q−(p−1) if ` > −p ,
C(log r)−

p−1
q−(p−1) if ` = −p

for some C > 0. Combining the a priori estimates and Lemma 1.2, we have the
following assertion.

Theorem 3.1. Let n > p ≥ −` and q > (p−1)(n+`)
n−p . Then, every positive solution

to (3.1) near ∞ satisfies that

C1r
− p+`
q−(p−1) ≥ u(r) ≥ C2r

−n−pp−1

for ` > −p and
C1(log r)−

p−1
q−(p−1) ≥ u(r) ≥ C2r

−n−pp−1

for ` = −p.

In Theorem 3.1, we use the notation ` instead of l to consider the case of ` = −p.
It is interesting to study the existence of positive entire solutions of (1.1) with the
logarithmic asymptotic behavior at ∞.

Lemma 3.2. Let q > (p−1)(n+l)
n−p . Assume K(r) = O(rl) at ∞ for some l > −p. If

u is a positive solution to (3.1) near ∞ and u(r) = O(r−m−ε) with some ε > 0 at
∞, then u(r) = O(r

p−n
p−1 ) at ∞.

Proof. Integrating (1.2) over [r,∞), we obtain

u(r) =
∫ ∞
r

t
1−n
p−1 (

∫ t

0
K(s)uq(s)sn−1 ds)

1
p−1 dt .

On the other hand, we have∫ t

0
K(s)uq(s)sn−1 ds ≤ C + C

∫ t

1
sn−1+l−q(m+ε) ds

=
{
C + Ctn+l−q(m+ε) if n+ l 6= q(m+ ε) ,
C + C log t if n+ l = q(m+ ε) .

If n+ l < q(m+ ε), we are done. If n+ l ≥ q(m+ ε), then

u(r) ≤
{
Cr

p−n
p−1 + Cr

p−n
p−1 (log r)

1
p−1 if n+ l = q(m+ ε) ,

Cr
p−n
p−1 + Cr

p+l
p−1−

q(m+ε)
p−1 if p+ l < q(m+ ε) < n+ l .

In case n + l = q(m + ε), we replace ε by n−p
p−1 −m − δ in the above arguments,

where δ > 0 is so small that δ < n−p
p−1 −m. Note that m < n−p

p−1 iff q > (p−1)(n+l)
n−p .

u(r) ≤

Cr
p−n
p−1 if n+ l = q(m+ ε) ,

Cr
p−n
p−1 + Cr

p+l
p−1 + q(p+l)

(p−1)2−
q2(m+ε)

(p−1)2 if p+ l < q(m+ ε) < n+ l .
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In case q(m+ ε) < n+ l, we iterate this process to obtain

u(r) ≤ Cr
p−n
p−1 + Cr

p+l
p−1

∑j−1
i=0

( q
p−1 )i− q

j(m+ε)
(p−1)j

= Cr
p−n
p−1 + Cr−m−ε( q

p−1 )j

for any positive integer j. Since q > p− 1, we reach the conclusion after a finite
number of iterations. �

Lemma 3.3. Let q > (p−1)(n+l)
n−p . Assume K(r) = O(rl) at ∞ for some l > −p. If

u(r) = o(r−m) at ∞, then (rmu(r))r < 0 near ∞.

Proof. Let V (t) = rmu(r), t = log r. Then, V satisfies (2.3). Suppose V ′(T ) = 0
for some T near ∞ and k(t)V q−(p−1)(t) < mp−2b for t ∈ [T,∞). Then, V ′′(T ) > 0
and V (t) is strictly increasing near T but for t > T . Since V → 0 at∞, there exists
T1 > T such that V ′(T1) = 0 and

V ′′(T1) = 1
p− 1(b− 1

mp−2 k(T1)V q−(p−1)(T1))V (T1) ≤ 0 ,

a contradiction. �

Theorem 3.4. Let q > (p−1)(n+l)
n−p . Assume K(r) = O(rl) at ∞ for some l > −p.

If u(r) = o(r−m) at ∞, then u(r) = O(r
p−n
p−1 ) at ∞.

Proof. Let ϕ(r) = rmu(r). Then, ϕ satisfies

ϕrr + (1 + a

p− 1)1
r
ϕr −

b

(p− 1)r2ϕ+ k

(p− 1)(mϕ− rϕr)p−2r2ϕ
q = 0 .

For ε > 0, define the elliptic operator

Lεϕ = ∆ϕ− [2m+ (n− 1)p− 2
p− 1 ]x · ∇ϕ

|x|2
−m(L

q−(p−1)

mp−1 − ε) ϕ

|x|2
,

where Lq−(p−1)

mp−1 = n− 1− (m+ 1)(p− 1) . It follows from Lemma 3.3 that for any
ε > 0, there exists Rε > 0 such that

Lεϕ = mε
ϕ

r2 −
kϕq

(p− 1)r2(mϕ− rϕr)p−2 ≥ (mε− kϕq−(p−1)

(p− 1)mp−2 ) ϕ
r2 ≥ 0

in Rn\BRε(0). For 0 < ε < n− 1− (m+ 1)(p− 1), let ηε(x) = |x|σε with σε being
the negative root of σ(σ − 1) + (n− 1− 2m− (n− 1)p−2

p−1 )σ −m(L
q−(p−1)

mp−1 − ε) = 0,
i.e.,

σε = 1
2

[
−(n− 2− 2m− (n− 1)p− 2

p− 1)−
√
D

]
,

where D = (n−1−2m−(n−1)p−2
p−1 )2 +4m(L

q−(p−1)

mp−1 −ε). Setting Cε = ϕ(Rε)R−σεε ,
we see that Lε(ϕ−Cεηε) ≥ 0 in Rn\BRε(0) and ϕ(Rε) = Cεηε(Rε), ϕ−Cεηε → 0
as r →∞. Then, the maximum principle implies that ϕ−Cεηε ≤ 0 in Rn\BRε(0).
Hence, ϕ(r) ≤ Cεηε(r) at ∞. Then, Lemma 3.2 implies the conclusion. �
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Proof of Theorem 1.1. When k(t) = r−lK(r) → 1 as t = log r → +∞, it
follows from Theorem 3.1 and (2.3) that slowly decaying solutions satisfy

lim inf
r→∞

rmu(r) ≤ L ≤ lim sup
r→∞

rmu(r) <∞ .

Indeed, at every local minimum (maximum) point of V (t) = rmu(r), V satisfies
1

mp−2L
q−(p−1)V ≥ (≤) k(t)

(mV )p−2V
q .

If V is monotonically increasing near +∞, then it is easy to see that V → L as
t → +∞ by (2.3). If V is monotonically decreasing and V → 0, then it follows
from Lemma 1.2 and Theorem 3.4 that r

n−p
p−1 u(r)→ C for some C > 0. �
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