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Abstract. The notions of compatible mappings play a crucial role in metrical fixed point
theory. Partial metric spaces are a generalization of the notion of a metric space in the
sense that distance of a point from itself is not necessarily zero. In this paper, we prove
coincidence and fixed point theorems for a pair of single-valued and multi-valued weak
compatible mappings on a complete partial metric space. Our main results generalize, in
particular, the results of Kaneko and Sessa (1989), Pathak (1995) and Kessy, Kumar and
Kakiko (2017). Examples that illustrate the generality of our results are also provided.
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1. Introduction and preliminaries

The Banach contraction principle has been generalized in different dimensions.

One of the concepts is using commuting maps, Sessa [22] introduced the concept

of weakly commuting maps. Jungck [12] made more generalized commuting and

weakly commuting maps called compatible maps. Further, Murthy et al. [18], Pathak

and Khan [21], Al-Thagafi and Shahzad [2], Bouhadjera and Djoud [8], Abbas and

Rhoades [1] gave another generalizations of noncommuting mappings without conti-

nuity in generalized metric spaces. Kaneko and Sessa [13] extended the concept of

compatible mappings due to Jungck [12] to include multi-valued mappings F as well

as single-valued mappings f . They followed the works of Kubiak [15] and Nadler [19]

and proved coincidence and fixed point theorems for a hybrid pair of compatible map-

pings. Pathak [20] extended the concept of compatible hybrid mappings to f -weak
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compatible hybrid mappings and proved a coincidence theorem, an extension of the

results of Kaneko and Sessa [13], for the mappings satisfying the following contractive

condition:

(1.1) H(Fx, Fy) 6 hmax
{

d(fx, fy), d(fx, Fx), d(fy, Fy),

1

2
[d(fx, Fy) + d(fy, Fx)]

}

for all x, y in a complete metric space (X, d), where 0 6 h < 1.

On the other hand, Mathews [16] introduced the distance notion which he named

partial metric while studying denotational semantics in data flow networks, and gen-

eralized Banach contraction principle to partial metric spaces. Matthews also in [17]

investigated rigorously the topological aspects for partial metric spaces. Inspired by

results in [16], Ciric et al. [10] proved some common fixed point theorems for general-

ized contractions on partial metric spaces. Altun and Romaguera [3] introduced the

notion of 0-Cauchy sequence, 0-complete partial metric spaces and proved some char-

acterizations of partial metric spaces in terms of completeness and 0-completeness.

In 2012 Aydi et al. [5] introduced and studied the notion of partial Haus-

dorff metric and used it to obtain the Nadler’s fixed point theorem for multi-

valued contraction mappings [19] in partial metric spaces. This important no-

tion of multivalued contraction has been introduced on other distance spaces as

well, for example, metric like spaces and existence of fixed point for generalized

multivalued contractions have been investigated [6], [7]. In [11], Haghi showed

vividly that some partial metric fixed point results can be obtained from their

corresponding results in metric spaces. Recently, there has been several stud-

ies on possible generalizations of the existing metric fixed point results to par-

tial metric spaces. We refer the reader to Vetro and Vetro [24], where they

have proved the coincidence point and common fixed point theorems for two

self-mappings satisfying generalized contractive conditions, defined by implicit

relations in the setting of partial metric space. This paper forms a part of

the studies for metric fixed point results for a hybrid pair of weak compatible

mappings.

In this paper we therefore establish the coincidence and fixed point theorems for

a hybrid pair of weak compatible mappings in partial metric spaces that satisfy the

following condition:

(1.2) Hp(Fx, Fy) 6 hmax
{

p(fx, fy), p(fx, Fx), p(fy, Fy),

1

2
[p(fx, Fy) + p(fy, Fx)]

}

for all x, y in a complete partial metric space (X, p), where 0 6 h < 1.
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In the sequel, we will require the following definitions and preliminary results.

Definition 1.1. Let X be a nonempty set. Let F : X → 2X , where 2X de-

notes the collection of all nonempty subsets of X , be a multi-valued mapping and

f : X → X be a single-valued mapping. Then a point s in X is called a fixed point

of the mappings F and f if s = fs ∈ Fs. A point z ∈ X is called a coincidence point

of F and f if fz ∈ Fz.

Definition 1.2 ([17]). Let X be a nonempty set. A partial metric space is a pair

(X, p), where p is a function p : X×X → [0,∞), called the partial metric, such that

for all x, y, z ∈ X it satisfies the following properties:

(P1) x = y ⇔ p(x, y) = p(x, x) = p(y, y);

(P2) p(x, x) 6 p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, y) + p(z, z) 6 p(x, z) + p(z, y).

Clearly, if p(x, y) = 0, then by (P1), (P2) and (P3), x = y. But the converse is in

general not true.

An example of partial metric space is the pair ([0,∞), p), where p(x, y) =

max{x, y} for all x, y ∈ [0,∞). More examples may be found in [16], [9].

Each partial metric p on X generates a T0 topology τp on X , whose basis is the

collection of all open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :

p(x, y) < p(x, x) + ε} for all x ∈ X and a real number ε.

Let (X, p) be a partial metric space. Let G be a nonempty subset of X . It is

well known [4] that x ∈ X is a point of closure of G, denoted x ∈ G, if and only if

p(x,G) = p(x, x). Also, the set G is said to be closed in (X, p) if and only if G = G.

Definition 1.3 ([17]). (i) A sequence {xn} in a partial metric space (X, p) is

said to converge to some x ∈ X if p(x, x) = lim
n→∞

p(x, xn).

(ii) A sequence {xn} in a partial metric space (X, p) is a Cauchy sequence if

lim
n,m→∞

p(xn, xm) exists and is finite.

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence

{xn} in X converges with respect to the topology τp to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm).

Lemma 1.4 ([17]). Let (X, p) be a partial metric space. Then the mapping

ps : X ×X → [0,∞) given by

ps(x, y) = 2p(x, y)− p(x, x) − p(y, y)

for all x, y ∈ X defines a metric on X .
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Thus, a partial metric on a nonempty set X induces a metric d on X , where

d = ps.

Lemma 1.5 ([9]).

(i) A sequence {xn} is a Cauchy sequence in a partial metric space (X, p) if and

only if it is a Cauchy sequence in the metric space (X, ps).

(ii) A partial metric space (X, p) is complete if and only if the metric space (X, ps)

is complete.

In 2012, Aydi et al. [5] extended Nadler’s [19] multivalued concept in a metric

space to a multivalued partial metric space by introducing partial Hausdorff metric

as follows.

Let (X, p) be a partial metric space. Let CBp(X) be the family of all nonempty,

closed and bounded subsets of the partial metric space (X, p), induced by the partial

metric p. Note that the closeness is taken from (X, τp) (τp is a topology induced by p)

and the boundedness is given as follows: A is a bounded subset in (X, p) if there

exists x0 ∈ X and M > 0 such that for all a ∈ A we have a ∈ Bp(x0,M), that is,

p(x0, a) < p(a, a) +M .

Definition 1.6 ([5]). Let (X, p) be a partial metric space and CBp(X) denote

the collection of all nonempty bounded and closed subsets ofX . For A,B ∈ CBp(X),

define

Hp(A,B) = max {δp(A,B), δp(B,A)},

where p(x,A) = inf {p(x, a) : a ∈ A} and δp(A,B) = sup {p(a,B) : a ∈ A}. Then
the mapping Hp is a partial metric, called the partial Hausdorff metric, on CBp(X)

induced by the partial metric p.

It is immediate to check that p(x,A) = 0 ⇒ ps(x,A) = 0, where ps(x,A) =

inf{ps(x, a), a ∈ A}.
Now, we shall give some properties of mapping δp : CBp(X)×CBp(X) → [0,∞).

Proposition 1.7 ([5]). Let (X, p) be a partial metric space. For any A,B,C ∈
CBp(X) we have the following:

(i) δp(A,A) = sup{p(a, a), a ∈ A};
(ii) δp(A,A) 6 δp(A,B);

(iii) δp(A,B) = 0 implies that A ⊆ B;

(iv) δp(A,B) 6 δp(A,C) + δp(C,B)− inf
c∈C

p(c, c).
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Proposition 1.8 ([5]). Let (X, p) be a partial metric space. For any A,B,C ∈
CBp(X) we have the following:

(h1) Hp(A,A) 6 Hp(A,B);

(h2) Hp(A,B) = Hp(B,A);

(h3) Hp(A,B) 6 Hp(A,C) +Hp(C,B) − inf
c∈C

p(c, c).

Corollary 1.9 ([5]). Let (X, p) be a partial metric space. For A,B,∈ CBp(X),

the following holds: Hp(A,B) = 0 implies that A = B.

By Proposition 1.8 and Corollary 1.9, we say that the mapping Hp : CBp(X) ×
CBp(X) → [0,∞) is a partial Hausdorff metric induced by p.

Lemma 1.10 ([5]). Let (X, p) be a partial metric space. Let A,B ∈ CBp(X)

and q > 1. Then for any a ∈ A there exists b ∈ B that depends on a such that the

following holds:

p(a, b) 6 qHp(A,B).

Definition 1.11 ([13]). The mappings f : X → X and F : X → CB(X) are

compatible if fFx ∈ CB(X) for all x ∈ X and H(Ffxn, fFxn) → 0 whenever {xn}
is a sequence in X such that Fxn → N ∈ CB(X) and fxn → s ∈ N .

Definition 1.12 ([20]). Let (X, d) be a metric space and F : X → CB(X)

and f : X → X be mappings. The mappings F and f are f -weak compatible if

fFx ∈ CB(X) for all x ∈ X and the following limits exist and satisfy:

(i) lim
n→∞

H(fFxn, Ffxn) 6 lim
n→∞

H(Ffxn, Fxn), and

(ii) lim
n→∞

D(fFxn, fxn) 6 lim
n→∞

H(Ffxn, Fxn) whenever {xn} is a sequence in X

such that Fxn → N ∈ CB(X) and fxn → s ∈ N .

Example 1 of Pathak [20] shows that the compatible mappings F and f are f -weak

compatible mappings. But the converse may not hold.

Lemma 1.13 ([20]). Let F : X → CB(X) and f : X → X be f -weak compatible

mappings. If fz ∈ Fz for some z ∈ X , then fFz = Ffz.

We present an extension of the notion of weak compatibility of hybrid pair of

mappings of Pathak [20] on metric spaces in partial metric spaces.

Definition 1.14. Let (X, p) be a partial metric space. Let F : X → CBp(X)

and f : X → X be mappings. The mappings F and f are said to be f -weak com-

patible if fFx ∈ CBp(X) for all x ∈ X and the following limits exist and satisfy:

(i) lim
n→∞

Hp(fFxn, Ffxn) 6 lim
n→∞

Hp(Ffxn, Fxn), and

(ii) lim
n→∞

p(fFxn, fxn) 6 lim
n→∞

Hp(Ffxn, Fxn) whenever {xn} is a sequence in X

such that Fxn → N ∈ CBp(X) and fxn → s ∈ N .
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Clearly, the class of weak compatible mappings on a partial metric space include

that of compatible mappings (cf. [14]).

E x am p l e 1.15. Let X = [0,∞] be endowed with the Euclidean partial metric

defined by p(x, y) = |x − y|. Let f : X → X and T : X → CBp(X) be mappings

defined by

fx = x2 + 1, Fx =
[

0,
2

3
(2x+ 1)

]

if x > 0,

and xn = 1 + 1/(n+ 1) is a sequence in X such that xn → 1. F and f are clearly

continuous: F (X) = f(X) = X . Thus, we have

lim
n→∞

Fxn → [0, 2], lim
n→∞

fxn → 2 ∈ [0, 2].

Now, we compute the metrics involving F , f and xn as follows:

Ffxn =
[

1,
(2

3
(2xn + 1)

)2

+ 1
]

=
[

1,
16x2

n + 16xn + 13

9

]

,

fFxn =
[

0,
2

3
(2(x2

n + 1) + 1)
]

=
[

0,
4x2

n + 6

3

]

,

Fxn =
[

0,
2

3
(2xn + 1)

]

=
[

0,
4xn + 2

3

]

,

fxn = x2
n + 1.

Applying Definition 1.11, we get

Hp(fFxn, Ffxn) = Hp

([

0,
4x2

n + 6

3

]

,
[

1,
16x2

n + 16xn + 13

9

])

(1.3)

6 max
{

δp

[

0,
4x2

n + 6

3

]

,
[

1,
16x2

n + 16xn + 13

9

]

,

δp

([

1,
16x2

n + 16xn + 13

9

]

,
[

0,
4x2

n + 6

3

])}

,

δp

([

0,
4x2

n + 6

3

]

,
[

1,
16x2

n + 16xn + 13

9

])

(1.4)

= max
{

p
(

0,
[

1,
16x2

n + 16xn + 13

9

])

,

p
(4x2

n + 6

3
,
[

1,
16x2

n + 16xn + 13

9

])}

6 max
{

1,
4x2

n + 16xn − 5

9

}

=
4x2

n + 16xn − 5

9
,

δp

([

1,
16x2

n + 16xn + 13

9

]

,
[

0,
4x2

n + 6

3

])

(1.5)

= max
{

p
(

1,
[

0,
4x2

n + 6

3

])

, p
(16x2

n + 16xn + 13

9
,
[

0,
4x2

n + 6

3

])}

6 max
{

1,
4x2

n + 16xn − 5

9

}

=
4x2

n + 16xn − 5

9
.
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Using (1.4) and (1.5) in (1.3) we obtain

Hp(fFxn, Ffxn) =
4x2

n + 16xn − 5

9
,

lim
n→∞

Hp(fFxn, Ffxn) = lim
n→∞

4x2
n + 16xn − 5

9
=

15

9
.

Similarly, we calculate

Hp(Ffxn, Fxn) = Hp

([

1,
16x2

n + 16xn + 13

9

]

,
[

0,
4xn + 2

3

])

,

Hp(Ffxn, Fxn) =
16x2

n + 4xn + 7

9
,

lim
n→∞

Hp(Ffxn, Fxn) = lim
n→∞

16x2
n + 4xn + 7

9
=

27

9
= 3,

lim
n→∞

Hp(fFxn, Ffxn) 6 lim
n→∞

Hp(Ffxn, Fxn).

Next, we have

Hp(fFxn, fxn) = Hp

([

0,
4x2

n + 6

3

]

, x2
n + 1

)

6 min
{

p(0, x2
n + 1), p

(4x2
n + 6

3
, x2

n + 1
)}

6 min
{

x2
n + 1,

x2
n + 3

3

}

=
x2
n + 3

3
,

lim
n→∞

Hp(fFxn, fxn) = lim
n→∞

x2
n + 3

3
=

4

3
,

lim
n→∞

Hp(fFxn, fxn) 6 lim
n→∞

Hp(Ffxn, Fxn).

Thus, the mappings f and F are f -weak compatible mappings.

We present an extension of Lemma 1.13 in partial metric spaces.

Lemma 1.16. Let (X, p) be a partial metric space. Let F : X → CBp(X) and

f : X → X be f -weak compatible mappings. If fz ∈ Fz for some z ∈ X , then

fFz = Ffz.

P r o o f. Let xn = z for each n. Then fxn → fz and Fxn → N = Fz. Assume

that fz ∈ Fz. Then by compatibility of the mappings f and F (see Definition 1.14)

the following hold:

(1.6) Hp(fFz, Ffz) 6 Hp(Ffz, Fz)

and

p(ffz, fz) = p(fFz, fz) 6 Hp(Ffz, Fz).
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Now, we consider Hp(Ffz, Fz). Using (1.2) we have the following:

Hp(Ffz, Fz)

6 hmax
{

p(ffz, fz), p(fz, Ffz), p(fz, Fz),
1

2
[p(ffz, Fz) + p(fz, Ffz)]

}

6 hmax{Hp(Ffz, Fz), Hp(Ffz, Fz), p(fz, fz), Hp(Ffz, Fz)]}.

Therefore Hp(fFz, Fz) 6 hHp(Ffz, Fz). This holds only when Hp(Ffz, Fz) = 0,

which implies Ffz = Fz. So by (1.6) we have Ffz = Ffz. �

Pathak in [20] established the following coincidence point result.

Theorem 1.17. Let (X, d) be a complete metric space, f : X → X and F : X →
CB(X) be f -weak compatible continuous mappings such that F (X) ⊆ f(X) and

satisfying condition (1.1). Then there exists a point s ∈ X such that fs ∈ Ts.

In this paper, we state and prove a coincidence theorem for a pair of hybrid

mappings in partial metric spaces. We generalize Theorem 1.17 to complete partial

metric spaces and obtain fixed point theorems for the mappings.

2. Main results

Now, we are ready to present our main results.

Theorem 2.1. Let (X, p) be a complete partial metric space. Let f : X → X and

F : X → CBp(X) be f -weak compatible continuous mappings such that F (X) ⊆
f(X) and satisfying condition (1.2). Then there exists a point s ∈ X such that

fs ∈ Fs.

P r o o f. Let x0 ∈ X be arbitrary. Since F (X) ⊆ f(X), we can find x1 ∈ X such

that fx1 ∈ Fx0. By the definition of Hp (see Definition 1.6), and (1.2) for h = 0,

we have

p(fx1, Fx1) 6 Hp(Fx0, Fx1) = 0

from which by Definition 1.2 we have

p(fx1, fx1) = p(fx1, Fx1).

Thus, fx1 is contained in Fx1 since Fx1 is closed.

Assume 0 < h < 1. Let us define q = 1/
√
h. So q > 1. By Lemma 1.10, there

exists a point z1 ∈ Fx1 such that p(z1, fx1) 6 qHp(Fx1, Fx0). This inequality may

be in reverse direction if q > 0 or q 6 1. Since F (X) ⊆ f(X), we can find x2 ∈ X

such that z1 = fx2 ∈ Fx1.
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In general, after selecting xn, we can choose xn+1 ∈ X and set zn = fxn+1 ∈ Fxn

satisfying p(zn, fxn) = p(fxn+1, fxn) 6 qHp(Fxn, Fxn−1) for each n > 1.

By (1.2), we have the following:

p(fxn, fxn+1) 6 qHp(Fxn−1, Fxn)(2.1)

6 qhmax
{

p(fxn−1, fxn), p(fxn−1, Fxn−1), p(fxn, Fxn),

1

2
[p(fxn−1, Fxn) + p(fxn, Fxn−1)]

}

6
√
hmax

{

p(fxn−1, fxn), p(fxn−1, fxn), p(fxn, fxn+1),

1

2
[p(fxn−1, fxn+1) + p(fxn, fxn)]

}

6
√
hmax

{

p(fxn, fxn−1), p(fxn, fxn+1),

1

2
[p(fxn, fxn−1) + p(fxn, fxn+1)]

}

6
√
hmax{p(fxn, fxn−1), p(fxn, fxn+1)},

p(fxn, fxn+1) 6
√
hp(fxn, fxn−1) ∀n > 2.(2.2)

By mathematical induction, we obtain

(2.3) p(fxn, fxn+1) 6
(
√
h
)n−1

p(fx2, fx1) ∀n ∈ N.

By (2.3) and the triangle inequality property (see Definition 1.2 (P4)), for anym ∈ N

we have

p(fxn, fxn+m) 6 p(fxn, fxn+1) + p(fxn+1, fxn+2)

+ . . .+ p(fxn+m−2, fxn+m−1) + p(fxn+m−1, fxn+m)

6
[(
√
h
)n−1

+
(
√
h
)n

+ . . .+
(
√
h
)n+m−3

+
(
√
h
)n+m−2]

p(x2, x1)

6

(
√
h
)n−1

1−
√
h

p(x2, x1) → 0 as n → ∞ since 0 < h < 1.

By Lemma 1.4, for any m ∈ N we have ps(fxn, fxn+m) 6 2p(fxn, fxn+m) → 0 as

n → ∞. This yields that {fxn} is a Cauchy sequence with respect to ps and hence
convergent in a complete metric space (X, ps). Therefore, by Lemma 1.5, there exists

some t ∈ X such that

(2.4) p(t, t) = lim
n→∞

p(fxn, t) = lim
n,m→∞

p(fxn, fxm).
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From (2.1) and (2.2) we have

qHp(Fxn, Fxn−1) 6
√
hp(fxn−1, fxn),

Hp(Fxn, Fxn−1) 6 hp(fxn−1, fxn) for n > 2.

Since {fxn} is a Cauchy sequence, this implies that {Fxn} is a Cauchy sequence.
Hence, {Fxn} is convergent in a complete partial metric space (CBp(X), Hp). Now,

let Fxn → N ∈ CBp(X). Then we have the following:

p(s,N) 6 p(s, fxn) + p(fxn, N)− p(fxn, fxn)

6 p(s, fxn) +Hp(Fxn−1, N)−Hp(Fxn−1, Fxn−1)

6 p(s, s) as n → ∞ by (2.4)
= p(s, s).

Therefore s ∈ N , since N is closed.

We now show that s ∈ X is a coincidence point of the mappings f and F . Since f

and F are f -weak compatible mappings, the following hold:

lim
n→∞

Hp(fFxn, Ffxn) 6 lim
n→∞

Hp(Ffxn, Fxn),

and lim
n→∞

p(fFxn, fxn) 6 lim
n→∞

Hp(Ffxn, Fxn). Therefore by the continuity of the

mappings f and F we have

(2.5) Hp(fN, Fs) 6 Hp(Fs,N)

and

(2.6) p(fs, s) 6 Hp(Fs,N) since p(fs, s) 6 p(fN, s).

We consider p(fs, Fs):

p(fs, Fs) 6 p(fs, ffxn+1) + p(ffxn+1, F s)− p(ffxn+1, ffxn+1)

6 p(fs, ffxn+1) +Hp(fFxn, F s)− p(ffxn+1, ffxn+1)

6 p(fs, ffxn+1) +Hp(fFxn, Ffxn) +Hp(Ffxn, F s)

− p(ffxn+1, ffxn+1)−Hp(Fxn, Fxn)

6 Hp(fN, Fs) as n → ∞
6 Hp(Fs,N) by (2.5).

We now consider Hp(Fxn, F s):
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Using (1.2) we have

Hp(Fxn, F s) 6 hmax
{

p(fxn, fs), p(fxn, Fxn), p(fs, Fs),

1

2
[p(fxn, F s) + p(fs, Fxn)]

}

6 hmax
{

p(fxn, fs), p(fxn, Fxn), p(fs, Fs),

1

2
[p(fxn, F s) + p(fs, fxn) + p(fxn, Fxn)]

}

6 hmax
{

p(s, fs), p(s,N), p(fs, Fs),

1

2
[p(s, Fs) + p(s, fs) + p(s,N)]

}

as n → ∞

6 hmax
{

Hp(Fs,N), p(s, s), Hp(Fs,N),

1

2
[Hp(Fs,N) +Hp(Fs,N) + p(s, s)]

}

by (2.5) and (2.6).

Therefore, Hp(N,Fs) 6 h[Hp(N,Fs) + p(s, s)], which implies Hp(N,Fs) = 0 since

0 < h < 1 and p(s, s) 6 Hp(N,Fs). Thus, p(fs, Fs) = 0, which implies p(fs, fs) =

p(fs, Fs). Whence fs ∈ Fs, as desired. �

Now, we will provide an example to support the results proved in Theorem 2.1.

E x am p l e 2.2. Let X, f and F be as defined in Example 1.1. Clearly F (X) =

f(X) = X . Now, for x > y we have

Hp(Fx, Fy) = max{δp(Fx, Fy), δp(Fy, Fx)},

Hp

([

0,
4x+ 2

3

]

,
[

0,
4y + 2

3

])

= max
{

δp

([

0,
4x+ 2

3

]

,
[

0,
4y + 2

3

])

,

δp

([

0,
4y + 2

3

]

,
[

0,
4x+ 2

3

])}

,

δp

([

0,
4x+ 2

3

]

,
[

0,
4y + 2

3

])

6 max
{

p
(

0,
[

0,
4y + 2

3

])

, p
(4x+ 2

3
,
[

0,
4y + 2

3

])}

=
4(x− y)

3
,

δp

([

0,
4y + 2

3

]

,
[

0,
4x+ 2

3

])

6 max
{

p
(

0,
[

0,
4x+ 2

3

])

, p
(4y + 2

3
,
[

0,
4x+ 2

3

])}

=
4(y − x)

3
,

Hp(Fx, Fy) = max
{4(x− y)

3
,
4(y − x)

3

}

=
4(x− y)

3
,

p(fx, fy) = p
{

x2 + 1, y2 + 1
}

= x2 − y2,

p(fx, Fx) = p
{

x2 + 1,
[

0,
4x+ 2

3

]}

=
3x2 − 4x+ 1

3
,
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p(fy, Fy) = p
{

y2 + 1,
[

0,
4y + 2

3

]}

=
3y2 − 4y + 1

3
,

p(fx, Fy) = p
{

x2 + 1,
[

0,
4y + 2

3

]}

=
3x2 − 4y + 1

3
,

p(fy, Fx) = p
{

y2 + 1,
[

0,
4x+ 2

3

]}

=
3y2 − 4x+ 1

3
.

Using contraction inequality we have

Hp(Fx, Fy) 6 max
{

x2 − y2,
3x2 − 4x+ 1

3
,
3y2 − 4y + 1

3
,

1

2

[3x2 − 4y + 1

3
+

3y2 − 4x+ 1

3

]}

,

4(x− y)

3
6 h(x2 − y2),

which is true for 0 < h < 1.

Notice that our example satisfies all conditions of equation (2.1). Thus, all condi-

tions of Theorem 2.1 are satisfied.

R em a r k 2.3. Even in the case when p in Example 2.2 defines a metric, Theo-

rem 1.17 does not apply since the mapping f is discontinuous.

Corollary 2.4. Let (X, p) be a complete partial metric space. Let F : X →
CBp(X) and f : X → X be continuous mappings satisfying Hp(Fx, Fy) 6

hp(fx, fy) for all x, y ∈ X , where 0 6 h < 1 and Ffx = fFx. If the mappings f , F

are such that F (X) ⊆ f(X), then the mappings have a coincidence point.

R em a r k 2.5. Let (X, p) be a partial metric space. Denote by PBp(X) the

collection of all nonempty bounded subsets A of X such that for each x ∈ X there

exists a point y ∈ A with p(x, y) = p(x,A). Let F : X → PBp(X) be a mapping.

Then the iterative process zn in the above proof of Theorem 2.1 can be simplified

to the iteration scheme of Smithson (see [23]), where Fx is compact and therefore

contained in PBp(X). This can be done as follows: after selecting xn, let xn+1 ∈ X

be such that zn = fxn+1 ∈ Fxn and p(fxn, zn) = p(fxn, Fxn). Clearly PBp(X) ⊆
CBp(X). Therefore we have the following corollary to Theorem 2.1.

Corollary 2.6. Let (X, p) be a complete partial metric space. Let f : X → X and

F : X → PBp(X) be continuous mappings such that fFx ∈ PBp(X) for all x ∈ X .

If the mappings f and F are such that F (X) ⊆ f(X), Hp(Ffx, fFx) 6 p(fx, Fx)

for all x ∈ X , and satisfy condition (1.2), where 0 6 h < 1, then the mappings f

and F have a common coincidence point.

We present a fixed point theorem by imposing appropriate restrictions to the

mappings f and F as they are defined in Theorem 2.1.
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Theorem 2.7. Let (X, p) be a complete partial metric space. Let f : X → X and

F : X → CBp(X) be compatible continuous mappings such that F (X) ⊆ f(X) and

satisfying condition (1.2). Furthermore, if for each x ∈ X either fx 6= f2x implies

fx 6∈ Fx or fx ∈ Fx implies that fnx → y for some y ∈ X , then there exists a point

s ∈ X such that s = fs ∈ Fs.

P r o o f. By Theorem 2.1, there exists a point s ∈ X such that fs ∈ Fs. Assume

that fx 6= f2x implies fx 6∈ Fx for each x ∈ X . Now, suppose fx ∈ Fx for each

x ∈ X . Then by continuity of f and Lemma 1.16 we have f2s ∈ fFs = Ffs. Thus,

we have fs = f2s ∈ Ffs, i.e., f(s) is a common fixed point for the mappings f and F .

Assume that for each x ∈ X , fx ∈ Fx implies that fnx → y for some y ∈ X . By

the continuity of f we have fy = y. We now show that y is also a fixed point for F .

By Lemma 1.16, fns ∈ Ffn−1s for each natural number n, and the continuity of F

we have

p(y, Fy) 6 p(y, fns) + p(fns, Fy)− p(fns, fns)

6 p(y, fns) +Hp(Ffn−1s, Fy)−Hp(Ffn−1s, Ffn−1s) 6 p(y, y) as n → ∞.

So we have p(y, y) = p(y, Fy), which implies that y ∈ Fy since Fy is closed. There-

fore, y = fy ∈ Fy. �

R em a r k 2.8. Vetro and Vetro in [24] used implicit contractive type conditions

to prove the results while in this paper, we used a contraction condition for hybrid

pair of weak compatible mappings in partial metric spaces. Thus, the approach of

the contraction condition as well as the mappings are different from the approach of

Vetro and Vetro (see [24]).

R em a r k 2.9. Altun and Romaguera in [3] used w-distance property to deter-

mine fixed point for 0-weakly contractive mapping on partial metric space. In this

paper, Theorem 2.1 is proved using f -weak compatible continuous mappings for com-

plete partial metric space while Theorem 2.7 is proved for compatible mappings in

complete partial metric space. Thus, the approach for the two results is different

from each other.
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