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Abstract. We aim to introduce generalized quaternions with dual-generalized complex
number coefficients for all real values «, f and p. Furthermore, the algebraic structures,
properties and matrix forms are expressed as generalized quaternions and dual-generalized
complex numbers. Finally, based on their matrix representations, the multiplication of
these quaternions is restated and numerical examples are given.
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1. INTRODUCTION

The discovery of the quaternions, which is an associative and non-commutative
Clifford algebra over the real numbers, is one of the outstanding contributions of
Hamilton (see [20], [21], [22]). As an extension of the quaternions, the octonions are
a non-associative and non-commutative algebra. Later on, Cayley and Dickson dis-
cussed these algebras, sometimes called the Cayley-Dickson algebras. The extension
originates from R (real numbers 1-D) to C (complex numbers 2-D) and continues as:
from C to H (quaternions 4-D), from H to O (octonions 8-D), from O to S (sedenions
16-D) and from S to T (trigintaduonions 32-D) and has been generalized to algebras
over fields and rings. This process is known as the Cayley-Dickson doubling process
or the Cayley-Dickson process. Hence, one can see the following Cayley-Dickson
doubling subalgebras chain:
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Since the Cayley-Dickson process is inductive, it is possible to construct n-ions by
applying this process in an arbitrarily repeated pattern.

A quaternion can be written as ¢ = ag+aie; +ases+ases, where ag, a1, a2,a3 € R
and ej, ez, eg are quaternionic units. Real quaternions are commonly used in
theoretical and applied mathematics, computer animation and robotics. Cockle
(see [10], [11]) discovered split quaternions (co-quaternions or para-quaternions).
Moreover, the set of generalized quaternions, denoted by Q.gs, is examined in [13],
[18], [24], [27], [30], [33]. The algebra of generalized quaternions as a non-
commutative system includes various well-known 4-dimensional algebras as special
cases. For these quaternions, the conditions of the units are given by:

(1.1) el=—a, e3=-PF, ei=—ap,

e1eg = —ege] = €3, egez = —ezex = fBe1, ezer = —e1ez = aey,
where e, e9,e3 ¢ R and «, 5 € R. For « = 8 = 1 real quaternions, fora =1, § = —1
split quaternions, for « = 1, 8 = 0 semi quaternions, for o = —1, § = 0 split semi

quaternions and for a = 8 = 0 quasi quaternions are obtained.

When it comes to numbers and their relationship to one another, scholars have
long been interested in the subject matter. One of the most significant contributions
of number theory is the revelation of generalized complex numbers. The generalized
complex numbers have the form:

Co={z=a1+22J: 21,220 € R, JQ:pe[R, J ¢ R}

This is a commutative unitary ring and a vector space over R, see [4], [5], [6], [23],
[25], [37], [39]. Complex numbers C (ordinary numbers) in [38], hyperbolic numbers P
(double, binary, split complex, perplex numbers) in [9], [16], [34] and dual numbers D
in [29], [35] are obtained for p = —1, p = 0, and p = 1, respectively. Furthermore,
the construction of the number systems by writing the coefficients as elements of the
sets C, P and D is another fascinating area for researchers. Hence it is no surprise
that hyperbolic-complex numbers are examined in [2], [10], [25]. Furthermore, n-
dimensional hyperbolic-complex and bicomplex numbers are investigated in [17], [31],
[32], [36], respectively. Dual-complex numbers are examined in [7], [8], [26], [28].
Dual-hyperbolic numbers and their algebraic properties are discussed in [26]. Besides,
the functions and various matrix representations of dual-hyperbolic numbers and
complex-hyperbolic numbers are presented in [1]. Hyper-dual numbers are studied
in [12], [14], [15]. Additionally, dual-generalized complex (DGC) numbers have been
constructed by doubling dual numbers over generalized complex numbers using the
Cayley-Dickson process. This extension is examined in [19] and denoted by:

DCp :={a =21+ 226: 21 =21 +x2J, 20 =3+ 24J € Cp},
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where J2 =p € R, 2 =0,e # 0, Je = J, and J,e ¢ R. DC,' generalizes with
dual-complex numbers for p = —1 (see [7], [8], [28]), dual-hyperbolic numbers for
p =1 (see [1]), and hyper-dual numbers for p = 0 (see [12], [14], [15]).

The theoretical perspectives and literature review mentioned are the motivating
factors of this study and as a result lead to the following:

Problem. Is it possible to combine the concepts of generalized quaternions and
DGC numbers? If the answer is affirmative, what algebraic properties are satisfied?

In this regard, the present paper is organized as follows. In Section 2, generalized
quaternions with DGC number coefficients are introduced for all real values «, S
and p. Moreover, the algebraic notions are investigated as numbers and as quater-
nions. Then, several matrix representations are given. Finally, the multiplication
of these quaternions is presented a using different method and numerical examples
are given.

2. GENERALIZED QUATERNIONS WITH DUAL-GENERALIZED COMPLEX NUMBER

The structure of this section is as follows: After a brief definition of new generalized
quaternions, the algebraic properties and structures are discussed.

Definition 2.1. The set of generalized quaternions with DGC number coefficients
is denoted by Qqp and defined as:

Qap :={¢ = ao + are1 + aze2 + azez: ap,a1,a2,a3 € DC,},

where e1, es, e3 are quaternionic units as given in equation (1.1) and «, 5 € R.

It should be noted that the DGC units .J, ¢ and Je commute with the three
quaternionic units eg; that is exJ = Jey, exe = e and epJe = Jeeg for 1 < k < 3.
It is evident that e; is distinct from the usual complex unit for p = —1, & = 1, distinct
from the usual hyperbolic unit for p = 1, @ = —1, and distinct from the usual dual
unit for p = —1, @ = 0. This condition also holds for the other quaternionic units.

! DCyp is a commutative unitary ring and a vector space over R. For a1 = z11 + 212¢,
ag = z21 + z92¢ € DCyp and X € R, the operations are given as follows (see [19]):

equality: a1 = ag <> 211 + 2126 = 221 + 222€ < 211 = 221, 212 = 222,
addition: a1 + a2 = (211 + z12¢) + (221 + 222¢) = (211 + 221) + (212 + 222)e,
scalar multiplication: Aa1 = A(z11 + z128) = (Az11) + (Az12)e,

multiplication:  ajas = (211 + 2126) (221 + 222¢) = (211221) + (211222 + 212221)¢.
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Additionally, special cases of these quaternions are given by:

If « =5 =1, then @(yg is the set of real quaternions.
Ifa=1,5=-1, then @ag is the set of split/para/co quaternions.
Ifa=1, =0, then @ag is the set of semi quaternions.

If a =-1, =0, then @aﬁ is the set of split semi quaternions.

v vV vV VvV V

If o = 8 =0, then Qg is the set %/quasi quaternions.
In all cases with DGC number coefficient.

It is also possible to study more specific quaternions with DGC number coefficients
depending on the choice of the real values o and .

Let § = ag + a1e1 + ases + ases, p = by + brey + baes + bges € @aﬂ. Algebraic
structures are now defined on @(yg considering a generalized quaternion form. In
general, a quaternion ¢ has 2 parts, a scalar S; = ao, and a vector V3 = aje; +
agzez +ases. So that § = S;+ V5. Equality and addition (and hence subtraction) are
component-wise defined as follows:

P=Gq ap=bo, a1 =b1, ax =ba, az=b3 & S5 =55, V; =V;
and
Qaﬁ X ®aﬁ - Qaﬁa
(@,p) = G+ p = (ao +bo) + (a1 +b1)er + (a2 + b2)ea + (a3 + bz)es
= (S5 +5¢) + (Vs + Vg).
An element ¢ called the conjugate of G is defined by:
(2.1) Qap — Qg
d»—)qizao—alel—ageg—agengq—Vq.
The scalar multiplication refers to the product of ¢ by ¢ € R and is
R x @aﬁ — @(yﬁ,
(¢,q) ¥ ¢q = cap + careq + cages + cages = ¢S4 + cVj.
Moreover, multiplication of ¢ and p is calculated as:
(22) @aﬂ X @aﬂ — @aﬂv
(@,P) = Gp = (aobo — aa1by — Bazbs — aBazbs)
+ (a0b1 + a1bg + Basbs — 6@3()2)61
+ (aobg — aarbg + asbg + Oéagbl)eg
+ (a0b3 + a1bs — agby + a3b0)63.

The multiplication is non-commutative but associative and distributive over addition.

332



Corollary 2.1. @ag is a 4-dimensional module over DC, with base {1, e, e2, €3}
and an 8-dimensional module over C, with base {1,¢, e1,¢ce1, e2,ce2, €3,c€3}.

Proof. Let us consider § = ag+ajie1+ases+agez € @(yg, where a; = 2z;1+240¢ €
DC, and ;1,252 € Cy for ¢ = 0,1,2,3. One can easily see that @(yg is an abelian
group with respect to addition. Considering the operation -: DC, x @ag — @a/g, the
module properties are satisfied: for all a,b € DC,, and for all p, G € @aﬂ, a-(G+p) =
a-g+a-p,(a+d)-§=a-G+b-q (ab)-G=a-(b-q§),1-G=q-1=q, where 1 is
multiplicative identity of @(yg. Hence @a,@ is module over DC,, with base {1, e1, €2, €3}
and dimension 4. Similarly, obtaining module properties considering the operation
-0 Gy x @ag — @ag is a simple calculation. Thus the proof is completed. (]

Definition 2.2. Let ¢ = agp+ai1e1+ases+aszes, p = bg+bre1+bsea+bses € @aﬂ.
The scalar product and the vector product in Q.4 are defined as follows, respectively:

(2.3) Qap X Qug — DCy,
= apbo + aaiby + Bazbs + aBazbs = Sz,

(2.4) Qup X Qap — Qap,
(@,P) = @ xgD=S5V5+ S5Vq — Vg x4 V3,

where (, ), is a generalized scalar product and X, is a generalized vector product?.

Lemma 2.1. For all §,p € Qap, Gp = (G, P)g + § X g P-

Proof. Itis clear that

qp = (aobo + aa1by + Bagsbs + Oéﬁagbg) + (—a0b1 + a1bg — Bagbs + ,Bagbg)el
+ (—aobs + aarbs 4+ agby — aagby)es + (—agbs — arbs + azby + asbo)es
= 539 + (Va, Vo)g + 54V + 55Va = Va x4 V.-

(34,P) g Gxgp
O

Definition 2.3. For any ¢ = ag+ a1e1 + ages + ages € @(yg, the norm operation
of ¢ is defined by:

(2.5) N: Qup X Qo — DC,,
G+ Ng=qq = qq = at + aa? + Bai + aBa3.

2 For a more general description of the generalized inner and cross product, see [24].
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Definition 2.4. For any ¢ = ag + aie1 + azea + ages € @a/g, the inverse of § is
defined by:

@aﬂ — @aﬁv
g (q) ' =

where Nj is non-null® number.

For the elements of @(yg, let us present the following properties, which are prop-
erties analogous to the properties of alternative real Cayley-Dickson algebras:

Proposition 2.1. Let q¢,p € @ag and c1,co € R. Then the basic properties of
conjugation and the norm can be given as follows:
() i=d
(il) c1p + c2G = c1p + 24,
(i) @ = #i.
(iV) Neyg = C%NQ
(v) Ngp = NgNp.

Proof. Let q = ap + are1 + ases + ases, p = bg + bier + baea + bzes € qjaﬂ'
Considering equation (2.1), items (i) and (ii) are obvious.
(iii) Taking the conjugate of equation (2.2), we get:

ﬁ = (aobo — aa1by — ﬂagbg - Oéﬂa;gbg) - (a0b1 + a1bg + ﬂagbg - ﬂagbg)el

— (a0b2 — aa1bs + asbg + aagbl)eg — (a0b3 + a1by — agby + a3b0)€3.

Thus, it is clear that §p = pq.
(iv) Using item (ii) and equation (2.5), we have: N, = (c1§)(c1G) = c2Nj.
(v) Having item (iii) and equation (2.5), we find:

O

Proposition 2.2. For any ¢, p and 7 € @(yg, the inner product possesses the
following properties:
(i) (Fq,7p)g = Ni(d: D)y,
(ii) (g7, p7)g = N#(d; D)y,
(ii)) (7,P)g = (7).
(iv) (@7, P)g = (4, D7)y

% Null numbers are characterized by having zero norm in DCy.
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Proof. Let § = ag + aie; + ases + azes, p = by + bre; + baes + bzez and
T = cp + c1e1 + coea + cges € Qyp3. Using equations (2.3) and (2.5), the follow-
ing proofs can be given:

(i) (7q,7p)g = SrqSrp + (Vig, Vip)g
= (coap — acray — Begaz — afcgaz)(coby — aciby — Beaby — aficzbs)
+ a(cpar + crag + Besas — Besaz)(coby + c1bo + Beabs — Begba)
+ B(epaz — acras + caag + aczar)(cobs — acibs + cabg + acsby)
+ apf(coas + craz — caa1 + czag)(cobs + c1ba — c2b1 + c3bo)
= (2 + ac? + B2 + afc3)(agbo + aarby + Bagbs + afazbs)
= Ni(q, D) g-
(iv) (GF,p)g = SgSp + (Vgr, Vi) g = (apco — aarer — Bazea — aBases )by
+ a(ager + arco + Pazes — Bazca)by
+ Blapce — aaics + asco + aascer)bs

+ af(apcs + a1ca — azer + asco)bs

and
(G,97)g = SqSs7 + (Vg, Vsr)g = ao(boco + abicr + Bbaca + afbscs)
+ a(=boct + bico — Bbacs + Bbsca)ay
+ B(—boca + abics + bacy — abser)as
+ af(—bocs — bica + bac1 + bzcp)as.
Hence we have (7, p), = (G, pr)y. The other items can be proved similarly. O

Example 2.1. Let us consider the following elements of @21 as generalized
quaternions with DGC number coefficients:

(26) g=1—-J+2e—Je)+ (—1+2e+ Je)es + (J —e — Je)ea + (26 — Je)es,
p=0+J+e+Je)+ (-14+2J+3c—Je)e1 + (1 — Je)ea + (1 — J + €)es,
f:1+(1+J€)62.

For p = 1, we have generalized quaternions with dual-hyperbolic number coefficients.
Using Definition 2.2, we obtain:

(G.P)g =2—3J — e+ 2Je,
and
§Xgp=(3—=5J+4e—Je)er + (—2+4J +4e — 11Je)ea + (1 + J — Te + 5Je)es.
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Besides, using Proposition 2.2 item (ii), we verify:
(GF,pryg =4 — 6J — 8+ 8Je = Ni(q, D)y,

where Nz = 2 + 2Je. Moreover, similar calculations can be conducted for the
above generalized quaternions with hyper-dual number coefficients (p = 0) and dual-
complex number coefficients (p = —1) as a particular case.

The same results can be obtained if these quaternions are rewritten as DGC num-
bers with generalized quaternion coeflicients. One can see the details easily through
the following remark:

Remark 2.1. Forge @aﬂ, the following equation can be written:
q = ap + aier + azes +azes = qo + q1J + qae + g3 Je,

where a; = zj1 + zj0J + 38 + xjuJe € DCy and ¢;—1 = xo; + T1ie1 + Taie2 +
x3e3 € Qag, 0 < 7 < 3,1 < i < 4. Thus, it should be noted that there is no difference
between a generalized quaternion with DGC number coefficients and a DGC number
with generalized quaternion coefficients.

For ¢ = qo + ¢1J + q2¢ + q3Je and p = py + p1J + p2e + p3Je, the algebraic
operations considering DGC number form are given as follows, respectively:

equality: D=q<%< po=qo, P1 = q1, P2 = q2, D3 = q3,
addition (and hence subtraction): p+ ¢ = (po + qo) + (p1 + q1)J
+ (p2 + q2)e + (p3 + q3) Je,
scalar multiplication: cq = cqo + cq1J + cqoe + cq3Je, ¢ € R,
multiplication: PG = (poqo + pp1q1) + (Poq1 + P1qo)J
+ (Pog2 + Pp1gs + P2qo + PP3q1)e
+ (Pogs + 192 + p2q1 + p3qo)Je,
generalized complex conjugate: " = q0 — q1J + que — @3 Je,
dual conjugate: i = qo+ q1J — que — q3Je,
coupled conjugate: G =q0 — q1J — que + g3 Je.

Hence, @ag is a 4-dimensional module over Q,s with base {1,.J, ¢, Je} and thus
a 16-dimensional vector space over R with base

{1, J,e,Je, e1, Jer, ee1, Jeeq, ea, Jea, cea, Jeea, e3, Jes, es, Jees}.
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For 1 < i < 3, the following norm operations for § are defined:

generalized complex module: N, = = gq',
dual module: N2 = ggt2,
coupled module: N;* = Gq's.
Additionally, the inverse of a non-null ¢ is defined by:

5t
N\ — q
(q)Tl = —.
s T
Nti

For the elements of @a/g, the following properties, which are properties analogues to

the properties of alternative real Cayley-Dickson algebras, are given as:

Proposition 2.3. Let ¢,p € @aﬁ and ci,co € R. Then, for 1 < i < 3, the
properties of conjugation and the norm can be given as follows:

) @' =4

(i) (c1q+cop)t = 1G" £ eap',

(iii) (gp)T* # p'*g' in general,

(iv) ¢+ qh = 2(qo + g2¢),

(V) G+4" =2(q0 + 1)),
q+q" =2(g0 + g3 Je),

)
)
)
)
(vi)
(vii) §—eG™ = q + a1,
(viii) g +¢™ = ¢2 + g3,
(ix) Nli.=eNJ,
(x) Nifl + NT’N ‘ in general.
Proof. Let us consider ¢§ = (1 +e1) +J and p = (1 + e2) + Je for items (iii)
and (x).
(iii) One can easily see the following:

(2.7) gp=04+er+ex+es)+(1+e)] +pe+ (1+e1)Je,
(2.8) (@) =1 +er+ex+es)+(1+ex)J —pe—(14e1)Je,
and

p12G12 = (1461 +ea—e3) + (1 +ea)J —pe — (1 +e;)Je.
So (Gp)'2 # p'2G™2. Since the generalized quaternions are non-commutative, we also
get (Gp)T+ # pligh for i =1,3.
(x) By substituting equations (2.7) and (2.8) into NTE = (§p)(GP)™, we have:
NEZ=(1+er+er+es)?+p(l+e)?+2(1—B+er+2e+es)]
+ 2pe + 2(e3 — aea)Je

337



and

NENT? = (14 e1) + 1) (1 + 1) + I) (1 + e2) + Je) (1 + e2) — Je)
=((14+e)> +p) (1 +ex)* +2(14e1)(1 +ex)? .

Hence N2 # N TQN T2 Since the generalized quaternions are non-commutative,
N(}L;S#N?NT‘ forz—l 3.
The proof of the other items is a simple calculation so we can omit it. ([

Through the analogy between a generalized quaternion with DGC numbers and
a DGC number with generalized quaternions, the following remark can be given:

Remark 2.2. Let§=qo+q1J+qge+q3Je and p = pg+p1J+p2e+psJe € @(yg.
The analogue of the scalar product on (0,3 is defined as follows:

<Q7ﬁ>g = Sqoﬁo + pStnﬁl + (SQOﬁl + Sthﬁo)'] + (SQO132 + S(I2I30 + p(S(hﬁs + S(Isﬁl))g
+ (Sqoﬁs + SQ1I32 + SQ2I31 + Sq3l70)']5'

3. MATRIX REPRESENTATIONS IN VIEW OF GENERALIZED QUATERNIONS
AND DGC NUMBERS

In this section, we formulate the key concepts, including matrix correspondences.
The following matrix approaches provide an alternative formulation of multiplication.

Theorem 3.1. Every generalized quaternion with DGC number coefficients can
be represented by a 4 x 4 DGC matrix.

Proof. Let us define the bijective linear map f5: a/g — @ag by f5(p) = Gp for
every p € @(yg. By using the equations:

(1

ag + aje1 + azes + ases,

= —aaj + age; + aazes — as€s,

Il
S

= —Bag — Base1 + apea + ayes,

Il
S

fa(1)
faler)
fale2)
a(es)

€3

=

= —afaz + Paze; — aaes + ages,

a 4 x 4 left DGC matrix representation of ¢ = ag + a1e1 + azes + ages concerning the
standard basis {1, e1, €2, €3} is given by

ag —aay —faz —ofag

(3'1) AL — aq ao —pBas Baz
4 as «as ap —aay
as —a2 ai ago
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Denote by M the following subset of M4(DC,) as:

ap —aa; —Paz —aBasz

a1 a —pa az
M:={ AL e My(DC,): AL = o —has B
q P q
a9 aas ao —Qaq
as —a aq ao

Hence it can be concluded that there exists a correspondence between @aﬁ and M
via the bijective map M: @(yg - M, j— Aé.

Similarly, by the bijective linear map fz(p) = pg, 4 x 4 right DGC matrix repre-
sentation of ¢ is also computed as below:

ag —aa; —pPas —afag

A |@ o Bas  —Paz
4 as —oas ao aay
as a2 —ay o

Thus, there exists a correspondence between @ag and N via the bijective map
N: Qap — N, ¢ — A7 where

ap —aay —faz —afas

a a a —Ba
N o= A7 eMy(DCy): A= |1 Pas O
as —Qas ag aax
as ag —al an
The proof is completed. O

Theorem 3.2. Every DGC number with generalized quaternion coefficients can
be represented by a 4 x 4 generalized quaternion matrix.

Proof. BX considering the bijective linear map Fj: @ag — @ag by F;(p) = ¢p
for every p € Qng, we have:
F;(1

Fz(J

F(e

F;(Je

Gd=qo+qiJ + g+ qzle,
GJ = pq1 + qoJ + pgse + q2Je,
= qe = qoe + q1Je,

—_ — — ~—

= qJe = pgie + qoJe.

Namely, a 4 x 4 generalized quaternion matrix representation of § = qo + ¢q1J + g2 +
gsJe for the standard basis {1, J, ¢, Je} is

@ P 0 O
0 0
B q1 4o
Q@2 Pg3 qo Pq1
g3 Qg2 41 Qo

(3.2)

E=1
|
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Hence there exists a correspondence between @ag and the set K via the bijective
map K: Qup — K, § — B where

% pg 0 O
@1 g 0 0
Q2 PGz qo Pq1
43 42 41 9o

K:= Bq c M4(Qa5): Bq =

Corollary 3.1. Let q € @a/g. Then, the following statements can be given:

(i) The left DGC matrix representation of ¢ = ag + aje; + azes + ases can be
determined in the following form:

Aé =agly + alEi —+ agEé —+ agEé,

where
0 —a 0 O 0 0 -8 0
1 0 0 O 0 0 0
e;— Fl = , ey By = " ,
0 0 0 —« 1 0 0 O
0O 0 1 0 0O -1 0 O
00 0 -—af
0 0 — 0
0 o O 0
1 0 O 0

The right DGC matrix representation of ¢ = ag + aje1 + ases + azez can be
determined in the following form:

Ag = aoly + alE{’ + agEg + agEg,

where
0 —a 0 O 00 -8 0
1 0 0 0 00 0 -
e1— B = , e By = ¢ ;
0 0 0 « 1 0 0 0
0 0 -1 0 01 0 0
0 0 0 —ap
0 0 0
63'—>E§= 6
0 —a O 0
1 0 0 0
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(ii) The generalized quaternion matrix representation of § = qo + q1J + q2€ + g3 Je,
is also in the form

Bi=qols + 1T + @€ + q3TE,

where
0 p 00 0000
100 0 0000
= 5:
ToT=10 00 p| 7 100 0|
00 1 0 0100
0000
0000
Jem— JE =
0 p 00
100 0

Proof. Taking into account the bijective linear maps f and F, it is obvious that
AL = AT = By = Iy, Ale = E., A, = Ej and By = J, B. = &, Bj. = JE where
i=1,2,3. O

After this part, the representation Afj will be considered and similar computations
can be given for AZ.

Corollary 3.2. The column matrix representation of p = by + bie; + baes +
bses € W, with respect to the basis {1, e1,e2,es} is given by:

p=1[bo b1 by b3]'.

Using the matrix in equation (3.1), the multiplication of ¢,p € @ag can also be
expressed by:

ay —aay —Pay —afas bo
. I~ ai  ay —Paz  Baz by
qp = Agp =

as «as ao —aay ba

as  —a ay ag b3

Moreover, using equation (3.2) and p = [py p1 D2 Ps3 ]T, we have:

9 pg 0 O Do
@1 g 0 0 D1
42 Pg3 qo Paq D2
43 42 41 9o ps3

d

]
Il
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By writing ¢ € @ag as in the form ¢ = (ap + are1) + (a2 + aseq)es, we can state
the following:

Proposition 3.1. Let § = (ap + aie1) + (a2 + azer)es € @a/g. Then, we have
oALo = AL
q G

where o = diag(1,1,—1,—1) and §* = (ap + are1) — (az + aser)es € Qup.

Proof. It is clear that

rt 0 O 0 ag —aa; —Pay —aPag 1 0 0 0
1 0 1 0 0 aq ap —ﬁa;g ﬁag 0 1 0 0
ogAzo =
0O 0 -1 0 as Qas ap —Qay 0O 0 -1 0
LO O 0 -1 as —ag aq ap 0 0 0 -1
[ ap  —aar Paz afag
a ap  Baz —Paz
- —a —Qas aon —Qaq
L—as an ai ap
Hence, the last matrix corresponds to Afj*. O

Standard elementary matrix operations establish the following theorems.

Theorem 3.3. For any ¢,p € @(yg and )\ € R, the following properties are satis-
fied:

(i) g=p& A, = AL,
(i) A\; = A(AD),
(iii) A%, = ALAL,
(iv) ¢ =p < B; = Bj,
(v) Bag = A(B3),
(vi) By = BB5

Theorem 3.4. Let ¢ be the conjugate and §—! be the inverse of non-null § € @aﬂ.

Then,

1
Ay = e AL

T Jdet(AL)
where det(AL) = (af + aaf + Ba3 + afa3)® = NZ.

Proof. By considering Definition 2.4 and Theorem 3.3 item (ii), the proof is
clear. (]
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Let us define a valuable construction of the vector representation of § and give its
properties.

Definition 3.1. Let ¢ = qo+q1J + qe+q3Je € @aﬁ. The vector representation
of ¢ is defined as:

= 5 5 5 ST T q1
i=l@ @ @& @1 =|.|¢eMiex(R),
where ¢;_1 = To; + T1i€1 + Toiez + T3ie3 € Qup and G—1 = (Toi, T1i, T2i, T3;) | are

vectors for 1 < ¢ < 4.

Theorem 3.5. Let ¢ = qo + ¢1J + qoe + q3Je € @aﬁ. Then,

(i) XG=qh,
(i) Yq =g,
(i) 24 =47,
where

X =diag(1,1,1,1,-1,—-1,-1,—1,1,1,1,1, -1, -1, -1, =1) € My4(R),
Y =diag(1,1,1,1,1,1,1,1, -1, —-1,-1, -1, -1, -1, =1, —1) € My4(R),
Z =diag(1,1,1,1,-1,-1,-1—1,-1,-1,—1,-1,1,1,1,1) € My4(R).

Proof. For 1 <4 < 4, let us consider § = qo + ¢1J + qoe + g3Je € @ag, where
Qi1 = Toi + T1:€1 + T2ie2 + T3ie3 € Qap and G—1 = (@o;, 14, T2i,x3;) . Taking
Y =diag(1,1,1,1,1,1,1,1,—1,-1,-1,—1,—1,—1, -1, 1) € My6(R), we have:

Iy 0 0 0 [zo1 @11 @21 $31]T

ya_ |0 B0 0| e o e w32’
0 0 —Ii 0 | |[wos 2135 @23 s3]

[ 1"

0 0 0 —L To4 Ti4 Toa T34

It is clear that multiplication gives (jﬁ. The other items can be proved similarly. [J

Theorem 3.6. Every DGC number with generalized quaternion coefficients can
be represented by an 8 x 8 generalized complex number matrix.
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Proof. Let us consider § = ag+aie;+azes+azes € @aﬂ, where a; = z;1+ 242¢ €
DC, and z;1, zi2 € Cp for ¢ = 0,1,2,3. Applying the bijective map

[,

(@) Zi2  Zil
which is from DGC numbers to the subset of 2 x 2 generalized complex number

matrices, into equation (3.1), we can write:

Y(ao) y(—aa) ~(—Baz) ~(—aBas)
(3.3) v(a1)  ~v(ao)  v(=Basz)  v(Baz)
v(az)  ~(aas) 7v(ao) v(—aar)
v(az)  v(—az)  v(a) 7(ao)
It follows that
(200 0 —azn1 0 — Bz 0 —afz3 0 ]
202 zo1 —aziz —azir —fBze —Bza1 —aBza —aBz
z11 0 201 0 Bz31 0 Bza1 0
(3.4) Z12 211 202 201 —Bzz2 Pz Bz22 Bza1
z91 0 az31 0 201 0 —Qz11 0
222 %21 Qz32 az31 202 201 —Qz12 —Qz11
zz31 0 —221 0 Z11 0 201 0
L 232 231 —z22 —z21 212 211 202 zZo1 |

This is a representation of ¢ with respect to the base {1,¢, e1,ce1, €2, cea,e3,ce3}. It
is called the left generalized complex matrix representation of ¢ and denoted by Cé.
O

Theorem 3.7. Every DGC number with generalized quaternion coefficients can
be represented by a 16 x 16 real matrix.

Proof. Let us consider § = ag+aie1+ases+ages € @(yg, where a; = 2z;1+240¢ €
DCy and z;1 = x41 + x42J € C,, for ¢ = 0,1,2,3. We have the following 16 x 16 real
matrix:

3.5

('r()zm) P(0) T(-azi) T(0) T(—Bz1) T(0) T(-aBz) T(0)
I'(202) T'(2z01) T'(—az12) T'(—az11) T'(—Pza2) I'(—F221) I'(—aBzs2) T'(—afzs1)
[(z11) T(0) T(zo1)  T'(0) D(Bzz:1) I(0)  I(Bza) I'(0)
P(212) T'(211) T(z02)  T(201) T(=PBzz2) T(Bzz1) T(Bza2)  T'(Bza1)
D(z1) T(0) T(azs) T(0) T(z1) T(0) T(-azy) T©O) |
T(z22) T'(221) T(azs2) T(azsi) T(zo2) I'(z01) T(—azi2) T(—az11)
[(z31) T(0) I(=z21) T(0)  T(z1)  T(0) I'(z01) I'(0)

[ [(2s32) I'(231) D(—222) I'(—221) T(z12)  T'(211) I['(202) ['(201)




| T P2
Ti2  Ti1

tion (3.4). Here I is defined from generalized complex numbers to the subset of 2 x 2

which is computed by applying the bijective map T'(z;) } into equa-

real matrices. Equation (3.5) is representation of ¢ with respect to the base
{1, J,e,Je, e1, Jer, ee1, Jeeq, ea, Jea, cea, Jeea, e3, Jes, ees, Jees}.

It is called the left real matrix representation of ¢ and denoted by Dé.

Example 3.1. Let
Gg=(184+6J+8)+ (—2+4+9¢)e1 + (=7 +3e+8Jc)ea + (19+ J — e+ 3J¢)es

be a generalized quaternion in @32 and p = % Then,

[ 18+6J+8¢ —3(—2+9¢) —2(=7T+3c+8Je) —6(19+J —ec+3J¢)
AL — -2+ 9 18 +6J + 8¢ —2(19+4 J —e+3J¢) 2(=T+ 3=+ 8J¢)
4 —74+3e+8Je  3(19+J —e+3Je) 18 +6J + 8¢ -3(—2+49¢) ’
L19+J —e+3Je —(—=743c+8J¢) —2+9¢ 18+ 6J + 8¢
r18 — 2e; — 7es + 19e3 1(6+e3) 0 0
B — 6 +e3 18 — 2e; — Tey + 19e3 0 0
9771 84 9e1 +3e2 —e3 1(8ea + 3e3) 18 — 2e; — Tey + 19e3 1(6+e3) ’
L 8eg + 3es 8+ 9e1 + 3ex —e3 6+ e3 18 — 2e1 — 7es + 19e3
[18+6J 0 6 14 0 —114—-6J 0 ]
8 18 +6J -27 —6—16J 14 6-18J —114-6J
-2 0 18 +6J —38—-2J 0 —14 0
cl — 9 -2 8 18+6J 2—-6J —-38-2J 6+16J —14
q -7 0 574 3J 18 +6J 0 6 0 ’
3+8J -7 -3+9J 57+3J 8 18 +6J -27 6
19+J 0 7 -2 0 18 +6J 0
|-1+3J 19+J —-3-8J 9 -2 8 18 +6J
r8 3 0 0 6 0 0 0 14 0 0 0 -114 -6 0 0 7
6 18 0 0 0 0 0 0 0 0 0 0 -6 —114 0 0
8§ 0 18 3 =27 0 6 0 -6 -—-16 14 0 6 -9 —-114 -3
0 0 6 18 0 0 0 0 =16 -6 0 0 -18 6 -6 —114
-2 0 0 0 18 3 0 0 =38 -1 0 0 -4 0 0 0
0o 0o 0 o 6 18 0 0 -2 =38 0 0 0 0 0 0
9 0 -2 0 8 0o 18 3 2 =3 =38 -1 6 8 —14 0
Dl — 0 0 0 0 0 0 6 18 -6 2 -2 =38 16 6 0 0
4 -7 0 0 0 5 % o0 o0 18 3 0 0 6 0 0 0
0 0 0 O 3 57 0 0 6 18 0 0 0 0 0
3 4 -7 0 -3 % 57 1 8 0 18 3 =27 0 6 0
8 3 0 0 9 -3 3 57 0 0 6 18 0 0 0 0
v 3 0 0 7 0 0 0 -2 0 0 0 18 3 0 0
1 19 0 0 0 0 0 0 o0 0 0 0 6 18 0 0
-1 3 19 I -3 -4 7 0 9 0o -2 0 8 0 18 3
L3 -1 1 19 -8 -3 0 0 O 0 0 0 0 0 6 18 |
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Moreover, the matrix Aé_l is as follows:

18 +6J + 8¢ 3(—2+9¢) 2(=7+3c+8Je) 6(19+J—¢c+3Je)
1 2-9e 18+ 6.J + 8¢ 2019+ J — e +3Je) —2(=T+ 3+ 8J¢)
det(AL) 7T—3c—8Jc —3(19+J—c+3Js) —18—6J—8¢ 3(—2+ 9) ’
V' 1L-19—-J+e—-3Je (=T+3e+8Je) 18 +6J + 8¢ 18 +6J + 8¢
where

det(AL) = (2621 4 444 — 114 + 544.J¢)?.

Also, the vector representation of ¢t is computed by:

I, 0 0 0 (18 —2 -7 19]"
= - 0 Iy 0 0 6 0 0 1]"
2 = =
m=Yi=10 o 0 8 9 3 —1]"
0 0 0 -I [0 o 8 3]"

2[18—2—7196001893—10083]T.

4. CONCLUSION

This study develops the theory of generalized quaternions with DGC number co-
efficients for any real number p. With this purpose, the algebraic structures and
properties are investigated by considering them as a generalized quaternion and as
a DGC number. In addition, different matrix representations are investigated and ex-
amples are presented. The crucial part of this paper is that one can find the different
types of generalized quaternions included in the following Table 1:

Type of components Ref.
p=-1 dual-complex
p=0 hyper-dual see [3] (fora =1, 3= -1)
p=1 dual-hyperbolic

Table 1. Classification of generalized quaternions regarding components.

Moreover, it is worth pointing out that real, split, semi, split semi, and quasi
quaternions are also obtained in this study by taking special values for o and 5.
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