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Abstract. We investigate the interval I(p3) in the lattice of clones on the ring Zp3 between
the clone of polynomial operations and the clone of congruence preserving operations. All
clones in this interval are known and described by means of generators. In this paper,
we characterize each of these clones by the property of preserving a small set of relations.
These relations turn out to be in a close connection to commutators.
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1. Introduction and preliminaries

A clone on a set A is a family of operations which contains all projections and is

closed under composition. The family of all clones on A forms a lattice. This lattice

is completely known for |A| = 2. If |A| > 2, then the lattice of all clones is uncount-

able and its full description seems intractable. Much of the research is devoted to

describing various parts of this lattice. The clones connected with some algebraic

structure on A seem to be especially interesting. There are several papers investi-

gating clones containing some group operation on A. For instance, see Idziak [11],

Aichinger and Mayr [1], and Mayr [12].

An n-ary operation f on an algebra A is called compatible or congruence preserv-

ing if (x1, y1), . . . , (xn, yn) ∈ θ implies (f(x1, . . . , xn), f(y1, . . . , yn)) ∈ θ for every

congruence θ ∈ ConA. It is clear that all compatible operations form a clone, de-

noted by Comp(A). This clone includes the clone P(A) of all polynomial operations

on A. So, P(A) ⊆ Comp(A) and there is a natural problem of describing the interval

between P(A) and Comp(A).
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One of the most popular algebras are the rings Zn of integers modulo n. Clones

connected with modular arithmetic were studied in papers [17], [19], [20], [3], [4],

and others. Let I(n) denote the interval in the lattice of clones between P(Zn) and

Comp(Zn). The problem of describing I(n) reduces to the case when n = pk is a

prime power (see [15]). If n is a prime, then it is well known that P(Zn) = Comp(Zn).

The case k = 2 has been solved by Remizov in [16], who showed that I(p2) is a

2-element lattice. Alternative proofs of this result can be found in Bulatov [6], and

also in [15]. Partial results for k = 3 have been established in [16], [9], [10], and [13].

A complete description of I(p3) has been achieved in [15], relying substantially on

Bulatov’s description of all clones on Zp2 containing the addition and constants.

The main aim of the present paper is the study of invariant relations. We say

that an operation f : An → A preserves a relation E ⊆ Ak if for every i = 1, . . . , n,

(ai1, . . . , aik) ∈ E implies

(f(a11, . . . , an1), . . . , f(a1k, . . . , ank)) ∈ E.

The relation E is an invariant relation of a clone C if every f ∈ C preserves it. Let

Inv(C) denote the set of all invariant relations of the clone C. Conversely, let Σ be

a set of relations on A. An operation f on A is called a polymorphism of Σ if f

preserves every E ∈ Σ. Let Pol(Σ) denote the set of all polymorphisms of Σ. It is

well known that C = Pol(Inv(C)) for every clone C on a finite set A.

So, every clone can be described by the set of its invariant relations. However,

the set Inv(C) is, in general, infinite and complicated. To obtain a good description

of C, one has to find a small subset Σ ⊆ Inv(C) such that C = Pol(Σ). In our paper,

we achieve this aim for every C ∈ I(p3) for any prime p.

The description of clones in I(p3) in [15] is achieved by presenting generating

sets of operations. So, the results of the present paper provide an alternative, or

complementary, description. Such a description helps to understand the algebraic

properties of these clones. It is convenient, for example, for membership testing.

Some of our results have appeared in the master thesis [8].

The elements of Zn are denoted by 0, 1, . . . , n − 1. For n = p3, where p is

prime, we denote the two special subsets of Zn as M1 = {0, 1, . . . , p− 1} and M2 =

{0, 1, . . . , p2 − 1}. Congruences on the ring Zn are the usual congruences modulo d

for every d|n. For vectors in (Zn)k we adopt the convention that x = (x1, . . . , xk),

l = (l1, . . . , lk), etc. If f is an m-ary operation on Zn, then we use f to denote also

the m-ary operation on (Zn)k defined pointwise, that is

f(x(1), . . . ,x(m))i = f(x
(1)
i , . . . , x

(m)
i ),

where x(1), . . . ,x(m) ∈ Zkn.
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We use [7] as a reference for the commutator theory. If α and β are congruences

of an algebra A, then M(α, β)A is the subalgebra of A
4 generated by all 4-tuples of

the form (a, a, a′, a′) with (a, a′) ∈ α and (b, b′, b, b′) with (b, b′) ∈ β. The elements

of M(α, β)A are usually considered as matrices

(

a a

a′ a′

)

and

(

b b′

b b′

)

,

but we find it convenient to write them as row vectors. The commutator [α, β]A is

defined as the smallest congruence γ of A with the property that (x1, x2, x3, x4) ∈

M(α, β) and (x1, x2) ∈ γ implies (x3, x4) ∈ γ.

Every clone C ∈ I(p3) can be also regarded as an algebra having C as the set of all

term operations. The denotationsM(α, β)C and [α, β]C refer to this algebra. Notice

that all these algebras have the same congruences: trivial congruences 0 and 1, the

congruence mod p and the congruence mod p2. If C is the clone of polynomials of

the ring Zp3 , we simply write M(α, β) and [α, β].

Finally, let us mention an analogous question for the lattice I(p2). This lat-

tice consists of two elements, namely P(Zp2) and C = Comp(Zp2 ). These two

clones can be distinguished by the commutator [mod p,mod p]. It is well known

that [mod p,mod p] = 0 in the ring Zp2 , while [mod p,mod p]C = mod p (see [6]).

Hence, the separating relation is M(mod p,mod p). The explicit description of this

relation is not difficult: (x1, x2, x3, x4) is in M(mod p,mod p) if and only if the fol-

lowing conditions are satisfied:

(1) x1 − x2 − x3 + x4 = 0;

(2) xi ≡ xj (mod p) for every i, j ∈ {1, 2, 3, 4}.

This fact leads to the characterization of the clone P(Zp2) by invariant relations.

Theorem 1.1. Let f be an operation on Zp2 . The following are equivalent:

(i) f is a polynomial operation on the ring Zp2 ;

(ii) f preserves the congruence modulo p and the relation M(mod p,mod p).

2. The lattice I(p3)

The lattice of I(p3) of clones between P(Zp3) and Comp(Zp3) has been described

in [15]. For a nonpolynomial operation f , by C(f) we denote the clone generated

by addition, multiplication, constants and the operation f . Similarly, C(f, g) is the

clone generated by addition, multiplication, constants, and operations f and g. We

use the following operations.

521



The i-ary operation ξi on Zp3 (i > 2) is defined by

ξi(x) =

{

p2k1k2 . . . ki if x = (k1p, . . . , kip) for some k1, . . . , ki ∈M2,

0 otherwise.

The operation π is unary:

π(x) =

{

pkp if x = kp for some k ∈M2,

0 otherwise.

The remaining operations ψ, ̺, τ and ϕ are binary, they are defined as

ψ(x, y) =

{

pkplp if x = kp, y = lp for some k, l ∈M2,

0 otherwise,

̺(x, y) =

{

pkp(lp − l) if x = kp, y = lp for some k, l ∈M2,

0 otherwise,

ϕ(x, y) =

{

klp2 if x = kp2, y = lp2 for some k, l ∈M1,

0 otherwise,

τ(x, y) =

{

klp if x = kp, y = lp for some k, l ∈M2,

0 otherwise.

The lattice I(p3) is depicted below. The clone E is the union of all C(ξi) and N is

the union of all C(ξi, π) for i = 3, 4, . . .

.

.

.

.

.

.

.

.

.

P(Zp3) =C(ξ2)

C(ξ3)

C(ξp)

C(ξp+1)

E

C(ξp, π)

C(ξp+1, π)

N

C(ψ)
C(τ)

Comp(Zp3)

C(̺)
C(ϕ)
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3. Clones and commutators

As shown in [15], there is a close relationship between clones from I(p3) and clones

on Zp2 containing the addition. In distinguishing these clones on Zp2 , an important

role is played by commutators and relations connected with them (see [6] and [5]).

The relations M(α, β) considered below have been used in the definition of the com-

mutator and, explicitly or implicitly, in many papers about commutators. Especially,

they are behind Bulatov’s classification of clones on Zp2 . One can reasonably expect

that a similar situation will occur in I(p3). In our paper we confirm this conjecture.

In the sequel, α and β denote the congruences mod p2 and mod p, respectively.

Let the 4-ary relation S be defined by the rule that (x1, x2, x3, x4) ∈ S if and only

if the following conditions are satisfied:

(S1) x1 − x2 − x3 + x4 = 0;

(S2) xi ≡ xj (mod p2) for every i, j ∈ {1, 2, 3, 4}.

Lemma 3.1. S =M(α, α).

P r o o f. It is easy to see that S, as a subset of the ring Z4
p3 , is closed under

addition. Now we show that it is also closed under multiplication. Consider 4-tuples

(x1, x2, x3, x4), (y1, y2, y3, y4) from S. Since all elements are congruent modulo p2

and x4 = x3 + x2 − x1, we can express them as x2 = x1 + a1p
2, y2 = y1 + a2p

2,

x3 = x1 + b1p
2, y3 = y1 + b2p

2, x4 = x1 + a1p
2 + b1p

2, y4 = y1 + a2p
2 + b2p

2, where

a1, a2, b1, b2 ∈M1. Then for the 4-tuple (x1y1, x2y2, x3y3, x4y4) we have

x1y1 − x2y2 − x3y3 + x4y4 = x1y1 − x1y1 − a1p
2y1 − a2p

2x1 − x1y1 − b1p
2y1

− b2p
2x1 + x1y1 + a1p

2y1 + b1p
2y1 + a2p

2x1 + b2p
2x1

= 0.

So, the 4-tuple (x1y1, x2y2, x3y3, x4y4) satisfies (S1). The verification of (S2) is

straightforward, hence S is closed under multiplication and therefore it is a sub-

algebra of Z4
p3 .

The relation M(α, α) is the subalgebra generated by all 4-tuples (a, a, a′, a′) and

(a, a′, a, a′), where (a, a′) ∈ α. These generators obviously satisfy (S1) and (S2), so

M(α, α) ⊆ S. To show the reverse inclusion, let x = (x1, x2, x3, x4) ∈ S. Hence,

x2 = x1 + ap2, x3 = x1 + bp2, x4 = x1 + ap2 + bp2 for some a, b ∈ M1. It is easy to

see that every x ∈ S can be expressed by generators of M(α, α) as

x = (x1, x1, x1, x1) + a(0, p2, 0, p2) + b(0, 0, p2, p2).

Hence, x ∈M(α, α). �
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Lemma 3.2. The operation τ preserves S.

P r o o f. Let x,y ∈ S. If x or y has entries not divisible by p, then τ(x,y) =

(0, 0, 0, 0) ∈ S. Let x = (k1p, k2p, k3p, k4p), y = (l1p, l2p, l3p, l4p), where ki, li ∈ M2

and zi = τ(kip, lip) for i = 1, 2, 3, 4. We need to show that z = (z1, z2, z3, z4) ∈ S.

It follows from (S2) that k2p = k1p + a1p
2, k3p = k1p + b1p

2, l2p = l1p + a2p
2,

l3p = l1p+ b2p
2, where a1, b1, a2, b2 ∈M1. Since x and y satisfy (S1), then

k4p = k1p+ a1p
2 + b1p

2, l4p = l1p+ a2p
2 + b2p

2.

The condition (S2) holds trivially for z, we check (S1):

pk1l1 − p(k1 + a1p)(l1 + a2p)− p(k1 + b1p)(l1 + b2p)

+ p(k1 + a1p+ b1p)(l1 + a2p+ b2p)

= − k1a2p
2 − l1a1p

2 − k1b2p
2 − l1b1p

2 + k1a2p
2 + k1b2p

2 + l1a1p
2 + l1b1p

2 = 0.

�

Lemma 3.3. The operation ϕ does not preserve S.

P r o o f. Consider (0, 0, p2, p2), (0, p2, 0, p2) from S. After applying ϕ, we get the

4-tuple (ϕ(0, 0), ϕ(0, p2), ϕ(p2, 0), ϕ(p2, p2)) = (0, 0, 0, p2) /∈ S. �

Lemma 3.2 means that M(α, α)C(τ) =M(α, α). Consequently, [α, α]C(τ) = 0, the

same as in the ring Zp3 . On the other hand, the proof of Lemma 3.3 shows that

M(α, α)C(ϕ) contains the 4-tuple (0, 0, 0, p2), hence [α, α]C(ϕ) > 0, which implies

[α, α]C(ϕ) = α.

The next separating relation is the 4-ary relation T such that (x1, x2, x3, x4) ∈ T

if and only if the following conditions are satisfied:

(T1) x1 − x2 − x3 + x4 = 0;

(T2) x1 ≡ x3 (mod p2);

(T3) xi ≡ xj (mod p) for every i, j ∈ {1, 2, 3, 4}.

Lemma 3.4. T =M(α, β).

P r o o f. Clearly, T is closed under addition. To check the multiplication, consider

4-tuples (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ T . By (T2), x3 − x1 = ap2, y3 − y1 = bp2

for some a, b ∈M1. By (T1), x4 − x2 = x3 − x1 = ap2, y4 − y2 = y3 − y1 = bp2.

To show that (x1y1, x2y2, x3y3, x4y4) ∈ T , we compute:

x1y1 − x2y2 − x3y3 + x4y4 = x1y1 − x2y2 − (x1 + ap2)(y1 + bp2)

+ (x2 + ap2)(y2 + bp2)

= bp2(x2 − x1) + ap2(y2 − y1) = 0,
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as x2 − x1 and y2 − y1 are congruent with 0 modulo p by (T3). This shows that

(x1y1, x2y2, x3y3, x4y4) satisfies (T1). Further,

x3y3 − x1y1 = (x3 − x1)y3 + x1(y3 − y1) = ap2y3 + bp2x1 ≡ 0 (mod p2),

so (T2) holds.

Next, xi ≡ xj (mod p) and yi ≡ yj (mod p) imply xiyi ≡ xjyj (mod p), which

shows (T3). Therefore, T is closed under multiplication, too.

The relation M(α, β) is the subalgebra generated by all the 4-tuples of the form

(a, a, a′, a′) with (a, a′) ∈ α and (b, b′, b, b′) with (b, b′) ∈ β. These generators obvi-

ously satisfy (T1), (T2) and (T3), so M(α, β) ⊆ T . Now, let (x1, x2, x3, x4) ∈ T .

Conditions (T2) and (T3) imply that x2 = x1 + ap, x3 = x1 + bp2 for some a ∈M2,

b ∈M1 and from (T1) we have x4 = x1 + ap+ bp2. Then

x = (x1, x1+ap, x1+bp
2, x1+ap+bp

2) = (x1, x1, x1, x1)+a(0, p, 0, p)+b(0, 0, p
2, p2).

Hence, T ⊆M(α, β). �

Lemma 3.5. The operation ψ preserves T .

P r o o f. Let x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) belong to T . Let zi =

ψ(xi, yi). We need to show that (z1, z2, z3, z4) ∈ T . We discuss various cases. If x1
or y1 is not a multiple of p, then clearly (z1, z2, z3, z4) = (0, 0, 0, 0) ∈ T . Suppose

that x1 = kp, y1 = lp, k, l ∈ M2. Then x3 = kp + ap2, y3 = lp + bp2 for some

a, b ∈M1. We obtain z1 = pkplp and z3 = p(k + ap)p(l + bp)p = pkplp = z1.

Since x4 − x2 = x3 − x1 and y4 − y2 = y3 − y1, we have x2 ≡ x4 (mod p2) and

y2 ≡ y4 (mod p2). The same argument as above shows z2 = z4. The equalities

z1 = z3 and z2 = z4 clearly imply (T1) and (T2). The fulfillment of (T3) is trivial,

hence the proof is complete. �

Lemma 3.6. The operation ̺ does not preserve the relation T .

P r o o f. It is easy to check that (0, p, 0, p), (0, 0, p2, p2) ∈ T . After applying ̺, the

4-tuple (̺(0, 0), ̺(p, 0), ̺(0, p2), ̺(p, p2)) = (0, 0, 0,−p2) does not belong to T . �

Lemma 3.5 means thatM(α, β)C(ψ) =M(α, β). Consequently, [α, β]C(ψ) = 0, the

same as in the ring Zp3 . On the other hand, the proof of Lemma 3.6 shows that

M(α, β)C(̺) contains the 4-tuple (0, 0, 0,−p
2), hence [α, β]C(̺) > 0, which implies

[α, β]C(̺) = α.

Further, we introduce U as the 4-ary relation such that (x1, x2, x3, x4) ∈ U if and

only if the following conditions are satisfied:

(U1) x1 − x2 − x3 + x4 ≡ 0 (mod p2);

(U2) xi ≡ xj (mod p) for every i, j ∈ {1, 2, 3, 4}.

(Compare this with the relation M(mod p,mod p) in the introduction.)
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Lemma 3.7. U =M(β, β).

P r o o f. It is clear that U is closed under addition. Now we prove that mul-

tiplication preserves U . Take (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ U and we show that

(x1y1, x2y2, x3y3, x4y4) ∈ U . Since all elements are congruent modulo p and x4 ≡

x2 + x3 − x1 (mod p2), we can express them as x2 = x1 + a1p, y2 = y1 + a2p,

x3 = x1 + b1p, y3 = y1 + b2p, x4 = x1 + a1p+ b1p+ c1p
2, y4 = y1 + a2p+ b2p+ c2p

2,

where a1, a2, b1, b2 ∈ M2, c1, c2 ∈ M1. Then for the 4-tuple (x1y1, x2y2, x3y3, x4y4)

we have

x1y1 − x2y2 − x3y3 + x4y4 ≡ x1y1 − x1y1 − a1py1 − a2px1 − x1y1 − b1py1

− b2px1 + x1y1 + a1py1 + b1py1 + a2px1 + b2px1

≡ 0 (mod p2).

So, the 4-tuple (x1y1, x2y2, x3y3, x4y4) satisfies (U1). The verification of (U2) is

straightforward, since multiplication is preserved by congruences of Zp3 . Hence U is

closed under multiplication and therefore it is a subalgebra of Z4
p3 .

The relation M(β, β) is the subalgebra generated by all 4-tuples (a, a, a′, a′) and

(a, a′, a, a′), where (a, a′) ∈ β. These generators clearly satisfy (U1) and (U2), so

M(β, β) ⊆ U . To show the reverse inclusion, let x = (x1, x2, x3, x4) ∈ U . Hence,

x2 = x1 + ap, x3 = x1 + bp for some a, b ∈ M2 and x4 = x1 + ap+ bp+ cp2, where

c ∈M1. It is easy to see that every x ∈ U can be expressed by elements of M(β, β)

in a form

x = (x1, x1, x1, x1) + a(0, p, 0, p) + b(0, 0, p, p) + c(0, 0, 0, p2).

Recall, that sinceM(β, β) is a subalgebra containing (0, p, 0, p) and (0, 0, p, p), it also

contains the product (0, p · 0, 0 · p, p · p), so x ∈M(β, β). �

Lemma 3.8. The operation ϕ preserves U .

P r o o f. Suppose x,y ∈ U and let zi = ϕ(xi, yi) for i = 1, 2, 3, 4. Since every zi

is congruent with 0 modulo p2, the fulfillment of (U1) and (U2) is trivial. �

Lemma 3.9. The operation ψ does not preserve the relation U .

P r o o f. It is easy to see that (0, 0, p, p), (0, p, 0, p) are from U . After applying ψ,

we get a 4-tuple (ψ(0, 0), ψ(0, p), ψ(p, 0), ψ(p, p)) = (0, 0, 0, p), which does not belong

to the relation U . �
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Lemma 3.8 implies that M(β, β)C(ϕ) = M(β, β). The commutator [β, β]C(ϕ)

equals the congruence α. On the other hand, the subalgebra M(β, β)C(ψ) contains

the 4-tuple (0, 0, 0, p) (see Lemma 3.9), hence the commutator [β, β]C(ψ) equals β.

4. Clones and n-ary commutators

The clones between P (Zp3) and N cannot be distinguished by the commutator

considered in the previous section. However, they can be distinguished by n-ary

commutators introduced by Bulatov in [5]. The basic properties of higher commuta-

tors for congruence permutable varieties have been further developed by Aichinger

and Mudrinski in [2].

For an integer n > 3 let Pn be the power set of {1, . . . , n}. We use Pn for indexing

2n-ary relations.

Let α1, . . . , αn be congruences of an algebra A. Let M(α1, . . . , αn)A be the subal-

gebra of A2n generated by all 2n-tuples (u(i, a, a′)J : J ∈ Pn), where i ∈ {1, . . . , n},

(a, a′) ∈ αi and

u(i, a, a′)J =

{

a if i ∈ J,

a′ if i /∈ J.

The n-ary commutator [α1, . . . , αn]A is defined as the smallest congruence on A

satisfying for every x = (xJ : J ∈ Pn) ∈M(α1, . . . , αn)A the implication

(xJ , xJ∪{n}) ∈ γ for every J  {1, . . . , n− 1} ⇒ (x{1,...,n−1}, x{1,...,n}) ∈ γ.

The relation M(α1, . . . , αn)A has also been investigated by Shaw (see [18]) and

Opršal (see [14]), and the idea is implicitly used also in Bulatov [6].

For our purpose we consider the 2n-ary relation Rn on Zp3 , such that x = (xJ :

J ∈ Pn) ∈ Rn if and only if the following conditions are satisfied:

(R1) xJ ≡ x∅ (mod p) for every J ∈ Pn;

(R2)
∑

K⊆J
(−1)|K|xK ≡ 0 (mod p2) for every J ∈ Pn, |J | > 2;

(R3)
∑

K∈Pn

(−1)|K|xK = 0.

In the sequel we write x0 and xj instead of x∅ and x{j}, respectively. We will

see that the relation Rn coincides with M(β, β, . . . , β)C(ξn−1) (n occurences of β).

(In distinction from the previous section, the relations M(β, . . . , β) computed in the

ring Zp3 cannot do the job.)

Lemma 4.1. Every x = (xJ : J ∈ Pn) satisfying (R2) satisfies also

(R4) xJ − x0 ≡
∑

i∈J

(xi − x0) (mod p2) for every J ∈ Pn.
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P r o o f. We proceed by induction on |J |. The cases |J | = 0 and |J | = 1 are

trivial. Let |J | > 2 and assume that (R4) holds for all proper subsets of J . We start

from the equality

∑

K⊆J

(−1)|K|

(

x0 +
∑

i∈K

(xi − x0)

)

=
∑

K⊆J

(−1)|K|x0 +
∑

i∈J

∑

i∈K⊆J

(−1)|K|(xi − x0) = 0,

which is due to the fact that exactly one half of subsets of J have an even number of

elements. (The same is true when we count subsets containing a fixed i ∈ J .) Using

the induction hypothesis we obtain

(−1)|J|
(

x0 +
∑

i∈J

(xi − x0)

)

+
∑

K J

(−1)|K|xK ≡ 0 (mod p2).

The condition (R2) now implies

(−1)|J|
(

x0 +
∑

i∈J

(xi − x0)

)

− (−1)|J|xJ ≡ 0 (mod p2),

hence xJ ≡ x0 +
∑

i∈J

(xi − x0) (mod p2). �

Let qn,m be the polynomial with integer coefficients and variables t
(k)
i , i ∈

{0, 1, . . . n}, k ∈ {1, . . .m}, defined as

qn,m =
∑

J∈Pn

(−1)|J|
m
∏

k=1

(

t
(k)
0 +

∑

i∈J

t
(k)
i

)

.

Lemma 4.2. For every n > m > 1, qn,m is a zero polynomial.

P r o o f. By distributivity, qn,m is the sum of all expressions of the form

(−1)|J|t
(1)
j1
. . . t

(m)
jm

,

where j1, . . . , jm ∈ J ∪ {0}. For every m-tuple (j1, . . . , jm), there are 2l sets J ∈ Pn
satisfying j1, . . . , jm ∈ J ∪ {0}, where l = n − |{j1, . . . , jm} \ {0}| > 1. Exactly

half of these sets have an even number of elements, so the coefficient at t
(1)
j1
. . . t

(m)
jm

in qn,m is 0. �

Lemma 4.3. For every n > 3, the (n − 1)-ary operation ξn−1 preserves the

relation Rn.

528



P r o o f. Let x(1), . . . ,x(n−1) ∈ Rn, x
(k) = (x

(k)
J : J ∈ Pn). We need to show

that (yJ : J ∈ Pn) ∈ Rn, where yJ = ξn−1(x
(1)
J , . . . , x

(n−1)
J ). The conditions (R1)

and (R2) are trivial, since ξn−1 has values congruent with 0 modulo p2. The equal-

ity (R3) is clear when any of x(k) has entries not divisible by p, because then all yJ

are zero. Suppose now that x
(k)
i = pm

(k)
i for every k and every i. By (R4) we have

x
(k)
J = pm

(k)
0 +

∑

i∈J

(pm
(k)
i − pm

(k)
0 ) + p2n

(k)
J

for some n
(k)
J ∈M1. By the definition of ξn−1,

yJ = ξn−1(x
(1)
J , . . . , x

(n−1)
J ) = p2

n−1
∏

k=1

(

m
(k)
0 + pn

(k)
J +

∑

i∈J

(m
(k)
i −m

(k)
0 )

)

= p2
n−1
∏

k=1

(

m
(k)
0 +

∑

i∈J

(m
(k)
i −m

(k)
0 )

)

,

hence

∑

K∈Pn

(−1)|K|yK = p2
∑

K∈Pn

(−1)|K|
n−1
∏

k=1

(

m
(k)
0 +

∑

i∈J

(m
(k)
i −m

(k)
0 )

)

.

Substituting m = n − 1, t
(k)
0 = m

(k)
0 , t

(k)
i = m

(k)
i −m

(k)
0 in the polynomial qn,m we

obtain
∑

K∈Pn

(−1)|K|yK = 0.

�

Lemma 4.4. For every n > 3, the addition, multiplication, and constants preserve

the relation Rn.

P r o o f. The verification for the addition and constants is straightforward. Since

ξ2(x1, x2) is equal to ξn−1(x1, x2, p, . . . , p), Lemma 4.3 implies that ξ2 preserves Rn.

Now, we check the multiplication. Let x,y ∈ Rn, let zJ = xJ · yJ for every

J ∈ Pn. We show that z = (zJ : J ∈ Pn) ∈ Rn. If both x0 and y0 are divisible

by p, then by (R1) the same is true for any xJ and yJ , so zJ = ξ2(xJ , yJ), and

z ∈ Rn follows from the fact that ξ2 preserves Rn. In general, consider u and v

defined by uJ = xJ − x0, vJ = yJ − y0. Clearly, u,v ∈ Rn and zJ = xJ · yJ =

uJ · vJ + x0yJ + y0xJ − x0y0. Hence, z is the sum of four tuples that belong to Rn,

so z ∈ Rn. �
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Lemma 4.5. If n > p, then π preserves Rn.

P r o o f. Let x = (xJ : J ∈ Pn) ∈ Rn and yJ = π(xJ ). We show that y =

(yJ : J ∈ Pn) belongs to the relation Rn. The condition (R1) holds trivially. If

the entries of x are not multiples of p, then yJ = 0 and all conditions are satisfied.

Suppose that all xJ = mJp, mJ ∈ M2 for every J . By the definition of π we have

yJ = pmp
J . Since m

p
J ≡ mJ (mod p), we obtain yJ ≡ xJ (mod p2). Hence, the

validity of (R2) for x implies its validity for y.

Simplifying the notation we have xi = mip for i ∈ {0, 1, . . . , n}. By Lemma 4.1,

xJ = m0p+
∑

i∈J

(mip−m0p) + nJp
2

for some nJ ∈ M1. Then

yJ = p

(

m0 +
∑

i∈J

(mi −m0) + nJp

)p

= p

(

m0 +
∑

i∈J

(mi −m0)

)p

.

Hence,
∑

J∈Pn

(−1)|J|yJ = p
∑

J∈Pn

(−1)|J|
(

m0 +
∑

i∈J

(mi −m0)

)p

.

Using Lemma 4.2 with m = p, substituting t
(k)
0 = m0 and t

(k)
i = mi −m0 (for i > 0

and every k), we obtain
∑

J∈Pn

(−1)|J|yJ = 0. �

Recall that the 2n-ary relationM(β, . . . , β)C(ξn−1) is the subalgebra of (C(ξn−1))
2n

generated by all tuples u(i, a, a′), where (a, a′) ∈ β and i ∈ {1, . . . , n}, defined by

u(i, a, a′)J =

{

a if i ∈ J,

a′ if i /∈ J.

Since β is the congruence modulo p, it is easy to see that this subalgebra is in fact

generated by all g(i) = u(i, p, 0) and the constant 2n-tuple 1.

Lemma 4.6. Rn =M(β, . . . , β)C(ξn−1) for every n > 3.

P r o o f. We have already proved that Rn is a subalgebra of (C(ξn−1))
2n . Clearly,

1 ∈ Rn. Let us check that g
(i) = (g

(i)
J : J ∈ Pn) ∈ Rn for every i. The validity

of (R1) is trivial. Let J ∈ Pn, |J | > 2. If i ∈ J then
∑

K⊆J

(−1)|K|g
(i)
K =

∑

i∈K⊆J

(−1)|K|p = 0,

as exactly half of the subsets of J containing i have an even cardinality. If i /∈ J ,

then the above sum equals 0 trivially. This shows both (R2) and (R3). Thus, Rn
contains all the generators of M(β, . . . , β)C(ξn−1).
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It remains to prove that Rn ⊆M(β, . . . , β)C(ξn−1). Let x ∈ Rn. By (R1) we have

xi − x0 = pmi for some mi ∈ M2. By (R2) we have

(−1)|J|xJ +
∑

K J

(−1)|K|xK ≡ 0 (mod p2)

for every J with 2 6 |J | < n. After multiplying with (−1)|J| we obtain

xJ = mJp
2 −

∑

K J

(−1)|J\K|xK

for some mJ ∈M1. We claim that

x = x0 · 1+

n
∑

i=1

mig
(i) +

n−1
∑

k=2

∑

|K|=k

mKξk(g
(i) : i ∈ K),

which implies x ∈ M(β, . . . , β)C(ξn−1), as all ξk with k 6 n − 1 belong to C(ξn−1).

For every J ∈ Pn we have

g
(i)
J =

{

p if i ∈ J,

0 if i /∈ J

and (if |K| = k > 2)

ξk(g
(i)
J : i ∈ K) =

{

p2 if K ⊆ J,

0 if K * J.

To prove our equality we have to show that

xJ = x0 +
∑

i∈J

mip+
∑

K⊆J,|K|>2

mKp
2

for every J ∈ Pn. We proceed by induction on |J |. The cases |J | = 0 and |J | = 1

are trivial, let |J | > 2. By the induction hypothesis,

xJ = mJp
2 −

∑

K J

(−1)|J\K|

(

x0 +
∑

i∈K

mip+
∑

X⊆K,|X|>2

mXp
2

)

.

It is easy to see that, for every X  J (including X = ∅ and X = {i}),

∑

K J,X⊆K

(−1)|J\K| = −1.
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Hence,

∑

K J

(−1)|J\K|x0 = − x0,

∑

K J

(−1)|J\K|
∑

i∈K

mip =
∑

i∈J

∑

K J,i∈K

(−1)|J\K|mip = −
∑

i∈J

mip,

∑

K J

(−1)|J\K|
∑

X⊆K,|X|>2

mXp
2 =

∑

X⊆J,|X|>2

∑

K J,X⊆K

(−1)|J\K|mXp
2

= −
∑

X⊆J,|X|>2

mXp
2,

which implies the desired equality. �

Lemma 4.7. The n-ary operation ξn does not preserve the relation Rn.

P r o o f. Clearly,

ξn(g
(1)
J , . . . ,g

(n)
J ) =

{

p2 if J = {1, . . . , n},

0 otherwise.

This 2n-tuple violates (R3). �

The shape of the relation Rn shows that the n-ary commutator [β, . . . , β]C(ξn−1)

is equal to 0. On the other hand, the 2n-tuple from the proof of Lemma 4.7 shows

that [β, . . . , β]C(ξn) > 0.

It is also interesting that the n-ary commutator [β, . . . , β]C(ξm) equals 0 for every

2 6 m < n despite the fact that the sets M(β, . . . , β)C(ξm) are distinct.

Finally, we need a relation distinguishing clones C(ξn) and C(ξn, π), p 6 n. These

clones cannot be distinguished by commutators. However, we can use another con-

cept from the commutator theory: the similarity of algebras (see [7], Chapter 10).

The rings Zp3 and Zp2 are similar. This can be proved using [7], Theorem 10.8 with

algebra C = β which we now regard as a subring of Zp3 ×Zp3 . The ring C has ideals

Iε = {(x, y) ∈ C : y = 0}, Iη = {(x, y) ∈ C : x ≡ 0 (mod p2)},

Iγ = {(p2k, pk) : k ∈M2}, Iδ = {(0, p2l) : l ∈M1}.

It is straightforward to check that these sets are indeed ideals of the ring C. They

determine congruences on C, which satisfy the conditions of Theorem 10.8 in [7] and

hence show the similarity of rings Zp3 and Zp2 . (We skip the details.) Let

Q = {(x1, x2, x3, x4) ∈ Z
4
p3 : (x1, x2), (x3, x4) ∈ C; (x1, x2)− (x3, x4) ∈ Iγ}.

So, Q can be identified with the congruence on the ring C determined by the ideal Iγ .
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Lemma 4.8. The 4-tuple (x1, x2, x3, x4) ∈ Q if and only if the following condi-

tions are satisfied:

(Q1) x1 − px2 − x3 + px4 = 0;

(Q2) xi ≡ xj (mod p) for every i, j ∈ {1, . . . , 4}.

P r o o f. Suppose that x = (x1, x2, x3, x4) satisfies (Q1)–(Q2). Then x2−x4 = pk

for some k ∈ M2. From (Q1) we obtain that x1 − x3 = px2 − px4 = p2k, so

(x1, x2)−(x3, x4) = (p2k, pk). The condition (Q2) ensures that (x1, x2), (x3, x4) ∈ C,

hence x ∈ Q.

Conversely, let (x1, x2), (x3, x4) ∈ C be such that x1 − x3 = p2k, x2 − x4 = pk for

some k ∈M2. Then clearly (Q2) holds, and it is easy to check that x1 − px2 − x3 +

px4 = 0, so (Q1) is satisfied too. �

Since Q is a congruence, it is preserved by the addition and multiplication. Obvi-

ously, all constant 4-tuples are in Q.

Lemma 4.9. The operations ξn for every n ∈ N, n > 2, preserve the relation Q.

P r o o f. Consider 4-tuples (x
(j)
1 , x

(j)
2 , x

(j)
3 , x

(j)
4 ) ∈ Q, where j ∈ {1, . . . , n}. Let us

put yi = ξn(x
(1)
i , . . . , x

(n)
i ), i ∈ {1, 2, 3, 4}. We need to show that (y1, y2, y3, y4) ∈ Q.

Since ξn can only take values that are congruent with 0modulo p
2, the condition (Q2)

is trivial and (Q1) reduces to the condition y1 = y3. The only nontrivial case is when

x
(j)
1 = kjp, kj ∈M2 for every j. Then x

(j)
3 = kjp+ cjp

2 for some cj ∈M1 and hence

y3 = p2
4
∏

j=1

(kj + cjp) = p2
4
∏

j=1

kj = y1.

�

Lemma 4.10. The operation π does not preserve Q.

P r o o f. It is easy to check that (0, 0, p2, p) ∈ Q and (π(0), π(0), π(p2), π(p)) =

(0, 0, 0, p) does not belong to Q. �

The preservation of Q by the operations ξn implies that the algebras C(ξn) and

C(ξn)/α are similar. (Use the same argument as in the case of Zp3 and Zp2 .)

To sum up the results, for each clone C ∈ I(p3) we define the set ΣC of invariant

relations according to the following table.
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C ΣC
C(ξi), i < p congruences, Ri+1

C(ξi), i > p congruences, Ri+1, Q

E congruences, Q

C(ξi, π), i > p congruences, Ri+1

N congruences, T, U

C(ψ) congruences, T

C(̺) congruences, S,U

C(τ) congruences, S

C(ϕ) congruences, U

Theorem 4.1. Let C be a clone and f be an operation on Zp3 . The following

are equivalent:

(i) f ∈ C;

(ii) f preserves all relations from ΣC .

So, C = Pol(ΣC).

P r o o f. (i) ⇒ (ii) In the above lemmas we have proved that the generators of C

preserve all relations from ΣC . So, every f ∈ C preserves them, too.

(ii)⇒ (i) Every operation from C(f) preserves all relations from ΣC . As proved in

the above lemmas, every clone D ∈ I(p3) with D * C contains an operation which

does not preserve a relation from ΣC . Therefore C(f) ⊆ C and hence f ∈ C. �

In particular, since P(Zp3) is the clone of polynomial operations, we have the

following result.

Corollary 4.1. The following are equivalent:

(i) f is a polynomial operation on the ring Zp3 ;

(ii) f preserves congruences, the relation R3 (and the relation Q, if p = 2).
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